
Package ‘GenomAutomorphism’
March 31, 2025

Title Compute the automorphisms between DNA's Abelian group
representations

Version 1.8.1

URL https://github.com/genomaths/GenomAutomorphism

BugReports https://github.com/genomaths/GenomAutomorphism/issues

Description This is a R package to compute the automorphisms between pairwise
aligned DNA sequences represented as elements from a Genomic
Abelian group. In a general scenario, from genomic regions till
the whole genomes from a given population (from any species or
close related species) can be algebraically represented as a
direct sum of cyclic groups or more specifically Abelian p-groups.
Basically, we propose the representation of multiple sequence
alignments of length N bp as element of a finite Abelian group
created by the direct sum of homocyclic Abelian group of
prime-power order.

Depends R (>= 4.4.0),

License Artistic-2.0

Encoding UTF-8

biocViews MathematicalBiology, ComparativeGenomics,
FunctionalGenomics, MultipleSequenceAlignment, WholeGenome

Imports Biostrings, BiocGenerics, BiocParallel, GenomeInfoDb,
GenomicRanges, IRanges, matrixStats, XVector, dplyr,
data.table, parallel, doParallel, foreach, methods, S4Vectors,
stats, numbers, utils

RoxygenNote 7.3.2

Suggests spelling, rmarkdown, BiocStyle, testthat (>= 3.0.0), knitr

Roxygen list(markdown = TRUE)

Language en-US

LazyData false

Config/testthat/edition 3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/GenomAutomorphism

git_branch RELEASE_3_20

git_last_commit 7a7dfcf

1

https://github.com/genomaths/GenomAutomorphism
https://github.com/genomaths/GenomAutomorphism/issues

2 Contents

git_last_commit_date 2024-12-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

Author Robersy Sanchez [aut, cre] (<https://orcid.org/0000-0002-5246-1453>)

Maintainer Robersy Sanchez <genomicmath@gmail.com>

Contents
aaindex1 . 4
aaindex2 . 4
aaindex3 . 5
aa_phychem_index . 6
aln . 7
aminoacid_dist . 8
as.AutomorphismList . 11
aut3D . 12
autby_coef . 14
autm . 14
autm_3d . 15
autm_z125 . 15
Automorphism-class . 16
AutomorphismByCoef-class . 17
AutomorphismByCoefList-class . 18
automorphismByRanges . 18
AutomorphismList-class . 19
automorphisms . 21
automorphism_bycoef . 24
automorphism_prob . 25
autZ125 . 28
autZ5 . 29
autZ64 . 31
base2codon . 33
base2int . 34
BaseGroup-class . 36
BaseGroup_OR_CodonGroup-class . 36
BaseSeq-class . 36
BaseSeqMatrix-class . 37
base_coord . 37
base_repl . 40
brca1_aln . 41
brca1_aln2 . 42
brca1_autm . 42
brca1_autm2 . 43
cdm_z64 . 43
CodonGroup-class . 44
CodonMatrix-class . 44
CodonSeq-class . 45
codon_coord . 46
codon_dist . 48
codon_dist_matrix . 51

https://orcid.org/0000-0002-5246-1453

Contents 3

codon_matrix . 52
ConservedRegion-class . 54
conserved_regions . 55
covid_aln . 56
covid_autm . 57
cyc_aln . 58
cyc_autm . 58
dna_phyche . 59
dna_phychem . 60
GenomAutomorphism . 62
getAutomorphisms . 62
get_coord . 63
get_mutscore . 65
GRangesMatrixSeq-class . 68
GRanges_OR_NULL-class . 69
is.url . 70
ListCodonMatrix-class . 70
matrices . 71
MatrixList-class . 73
MatrixSeq-class . 73
mod . 74
modeq . 75
modlineq . 76
mut_type . 77
peptide_phychem_index . 78
reexports . 80
seqranges . 81
show,CodonSeq-method . 83
slapply . 84
sortByChromAndStart . 85
str2chr . 86
str2dig . 87
translation . 88
valid.Automorphism.mcols . 89
valid.AutomorphismByCoef . 90
valid.AutomorphismByCoefList . 90
valid.AutomorphismList . 91
valid.BaseGroup.elem . 91
valid.CodonGroup.mcols . 92
valid.MatrixList . 92
[,AutomorphismList,ANY,ANY-method . 93

Index 95

4 aaindex2

aaindex1 List of 571 Amino Acid Physicochemical Indexes from AAindex
Database

Description

The aminoacid indexes from Amino Acid Index Database https://www.genome.jp/aaindex/ are
provided here. AAindex (ver.9.2) is a database of numerical indices representing various physico-
chemical and biochemical properties of amino acids and pairs of amino acids.

Usage

data("aaindex1", package = "GenomAutomorphism")

Format

A list carrying the the description 566 Amino Acid Indices in AAindex ver.9.2 and the text file with
the matrices imported from https://www.genome.jp/aaindex/.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

aaindex2 and aaindex3.

Examples

Load the mutation matrices from database from the packages
data("aaindex1", package = "GenomAutomorphism", envir = environment())

Get the available aminoacid indices.
mat <- aa_phychem_index(aaindex = "aaindex1", acc_list = TRUE)
mat[1:10]

aaindex2 List of 94 Amino Acid Matrices from AAindex

Description

The aminoacid similarity matrices from Amino Acid Index Database https://www.genome.jp/
aaindex/ are provided here. AAindex (ver.9.2) is a database of numerical indices representing
various physicochemical and biochemical properties of amino acids and pairs of amino acids.

Usage

data("aaindex2", package = "GenomAutomorphism")

https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/
https://genomaths.com
https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/

aaindex3 5

Format

A list carrying the description of 94 Amino Acid Matrices in AAindex ver.9.2 and the text file of
matrices imported from https://www.genome.jp/aaindex/.

Details

The similarity of amino acids can be represented numerically, expressed in terms of observed mu-
tation rate or physicochemical properties. A similarity matrix, also called a mutation matrix, is
a set of 210 numerical values, 20 diagonal and 20x19/2 off-diagonal elements, used for sequence
alignments and similarity searches.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

aaindex2 and aa_mutmat, and get_mutscore.

Examples

Load the mutation matrices from database from the packages
data("aaindex2", package = "GenomAutomorphism")

Get the available matrices
mat <- aa_mutmat(aaindex = "aaindex2", acc_list = TRUE)
mat[1:10]

aaindex3 Statistical protein contact potentials matrices from AAindex ver.9.2

Description

A statistical potential (also knowledge-based potential, empirical potential, or residue contact po-
tential) is an energy function derived from an analysis of known structures in the Protein Data Bank.

Usage

data("aaindex3", package = "GenomAutomorphism")

Format

A list carrying the the description 47 Amino Acid Matrices in AAindex ver.9.2 and the text file of
matrices imported from https://www.genome.jp/aaindex/.

Details

A list of 47 amino acid matrices from Amino Acid Index Database https://www.genome.jp/
aaindex/ are provided here. AAindex is a database of numerical indices representing various
physicochemical and biochemical properties of amino acids and pairs of amino acids.

The contact potential matrix of amino acids is a set of 210 numerical values, 20 diagonal and
20x19/2 off-diagonal elements, used for sequence alignments and similarity searches.

https://www.genome.jp/aaindex/
https://genomaths.com
https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/

6 aa_phychem_index

Author(s)

Robersy Sanchez https://genomaths.com

See Also

aaindex1, aaindex2, and get_mutscore.

Examples

Load the mutation matrices from database from the packages
data("aaindex3", package = "GenomAutomorphism")

Get the available mutation matrices
mat <- aa_mutmat(aaindex = "aaindex3", acc_list = TRUE)
mat[1:10]

aa_phychem_index Amino acid mutation matrix

Description

The aminoacid similarity matrices from Amino Acid Index Database https://www.genome.jp/
aaindex/ are provided here. AAindex (ver.9.2) is a database of numerical indices representing
various physicochemical and biochemical properties of amino acids and pairs of amino acids.

The similarity of amino acids can be represented numerically, expressed in terms of observed mu-
tation rate or physicochemical properties. A similarity matrix, also called a mutation matrix, is
a set of 210 numerical values, 20 diagonal and 20x19/2 off-diagonal elements, used for sequence
alignments and similarity searches.

Function aa_phychem_index is wrapper function to call two other functions: aa_mutmat and
aa_index

Usage

aa_phychem_index(acc = NA, aaindex = NA, acc_list = FALSE, info = FALSE)

aa_mutmat(acc = NA, aaindex = c("aaindex2", "aaindex3"), acc_list = FALSE)

aa_index(acc = NA, acc_list = FALSE, info = FALSE)

Arguments

acc Accession id for a specified mutation or contact potential matrix.

aaindex Database where the requested accession id is locate. The possible values are:
"aaindex2" or "aaindex3".

acc_list Logical. If TRUE, then the list of available matrices ids and index names is
returned.

info Logical. if TRUE, then whole information for the physicochemical index will
be returned.

https://genomaths.com
https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/

aln 7

Value

Depending on the user specifications, a mutation or contact potential matrix, a list of available
matrices (indices) ids or index names can be returned. More specifically:

aa_mutmat: Returns an aminoacid mutation matrix or a statistical protein contact potentials ma-
trix.

aa_index: Returns the specified aminoacid physicochemical indices.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

aaindex1, aaindex2, aaindex3, and get_mutscore.

Examples

Load the mutation matrices from database from the packages
data("aaindex1","aaindex2", package = "GenomAutomorphism")

Get the available mutation matrices
mat <- aa_mutmat(aaindex = "aaindex2", acc_list = TRUE)
mat[seq(10)]

Return the 'Base-substitution-protein-stability matrix
(Miyazawa-Jernigan, 1993)'
aa_mutmat(acc = "MIYS930101", aaindex = "aaindex2")

Return the 'BLOSUM80 substitution matrix (Henikoff-Henikoff, 1992)'
aa_mutmat(acc = "HENS920103", aaindex = "aaindex2")

Using wrapping function
aa_phychem_index(acc = "EISD840101", aaindex = "aaindex1")

Just the info. The information provided after the reference
corresponds to the correlaiton of 'EISD840101' with other indices.
aa_phychem_index(acc = "EISD840101", aaindex = "aaindex1", info = TRUE)

aln Simulated DNAStringSet class object

Description

This is a DNAStringSet carrying a small pairwise DNA sequence alignment to be used in the
examples provided for the package functions.

Usage

data("aln", package = "GenomAutomorphism")

https://genomaths.com

8 aminoacid_dist

Format

DNAStringSet class object.

Examples

data("aln", package = "GenomAutomorphism")
aln

aminoacid_dist Distance Between Aminoacids in Terms of Codon Distance

Description

This function computes the distance between aminoacids in terms of a statistic of the corresponding
codons. The possible statistics are: ’mean’, ’median’, or some user defined function.

Usage

aminoacid_dist(aa1, aa2, ...)

S4 method for signature 'character,character'
aminoacid_dist(
aa1,
aa2,
weight = NULL,
stat = c("mean", "median", "user_def"),
genetic_code = "1",
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

S4 method for signature 'DNAStringSet,ANY'
aminoacid_dist(
aa1,
weight = NULL,
stat = c("mean", "median", "user_def"),
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

aminoacid_dist 9

S4 method for signature 'AAStringSet,ANY'
aminoacid_dist(
aa1,
weight = NULL,
stat = c("mean", "median", "user_def"),
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

S4 method for signature 'CodonGroup_OR_Automorphisms,ANY'
aminoacid_dist(
aa1,
weight = NULL,
stat = c("mean", "median", "user_def"),
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

Arguments

aa1, aa2 A character string of codon sequences, i.e., sequences of DNA base-triplets. If
only ’x’ argument is given, then it must be a DNAStringSet-class object.

... Not in use yet.

weight A numerical vector of weights to compute weighted Manhattan distance be-
tween codons. If weight = NULL, then weight = (1/4, 1, 1/16) for group =
”Z4” and weight = (1/5, 1, 1/25) for group = ”Z5” (see codon_dist).

stat The name of some statistical function summarizing data like ’mean’, ’median’,
or some user defined function (’user_def’). If stat =′ userdef

′, then function
must have a logical argument named ’na.rm’ addressed to remove missing (NA)
data (see e.g., mean).

genetic_code A single string that uniquely identifies the genetic code to extract. Should be
one of the values in the id or name2 columns of GENETIC_CODE_TABLE.

group A character string denoting the group representation for the given codon se-
quence as shown in reference (2-3).

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2-3).

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

10 aminoacid_dist

verbose If TRUE, prints the progress bar.

Details

Only aminoacids sequences given in the following alphabet are accepted: "A","R","N","D","C","Q","E","G","H","I","L","K",
"M","F","P", "S","T","W","Y","V", "", "-", and "X"; where symbols "" and "-" denote the presence
a stop codon and of a gap, respectively, and letter "X" missing information, which are then taken as
a gap.

The distance between any aminoacid and any of the non-aminoacid symbols is the ceiling of the
greater distance found in the corresponding aminoacid distance matrix.

Value

A numerical vector with the pairwise distances between codons in sequences ’x’ and ’y’.

References

1. Sanchez R. Evolutionary Analysis of DNA-Protein-Coding Regions Based on a Genetic Code
Cube Metric. Curr. Top. Med. Chem. 2014;14: 407–417. https://doi.org/10.2174/
1568026613666131204110022.

2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF.

See Also

automorphisms and codon_coord

codon_dist

Examples

Write down to aminoacid sequences
x <- "A*LTHMC"
y <- "AAMTDM-"

aminoacid_dist(aa1 = x, aa2 = y)

Let's create an AAStringSet-class object
aa <- AAStringSet(c(x, y))

aminoacid_dist(aa1 = aa)

Let's select cube "GCAT" and group "Z5"
aminoacid_dist(aa1 = aa, group = "Z5", cube = "TCGA")

https://doi.org/10.2174/1568026613666131204110022
https://doi.org/10.2174/1568026613666131204110022
https://is.gd/na9eap
https://is.gd/ZY1Gx8

as.AutomorphismList 11

as.AutomorphismList Methods for AutomorphismList-class Objects

Description

Several methods are available to be applied on Automorphism-class and AutomorphismList-class
objects.

Usage

as.AutomorphismList(x, grs = GRanges(), ...)

S4 method for signature 'GRangesList,GRanges_OR_NULL'
as.AutomorphismList(x, grs = GRanges(), ...)

S4 method for signature 'list,GRanges_OR_NULL'
as.AutomorphismList(x, grs = GRanges(), ...)

Arguments

x A DataFrame or a automorphisms class object.

grs A GRanges-class object.

... Not in use yet.

Value

The returned an AutomorphismList-class object.

See Also

automorphism_bycoef, automorphisms

Examples

Load a dataset
data("brca1_autm", package = "GenomAutomorphism")

Let's transforming into a list of Automorphisms-class objects
x1 <- as.list(brca1_autm[seq(2)])

Now, object 'x1' is transformed into a AutomorphismList-class object
as.AutomorphismList(x1)

Alternatively, let's transform the list 'x1' into a GRangesList-class
object.
x1 <- GRangesList(x1)

Next, object 'x1' is transformed into a AutomorphismList-class object
as.AutomorphismList(x1)

12 aut3D

aut3D Compute the Automorphisms of Mutational Events Between two
Codon Sequences Represented in Z5^3.

Description

Given two codon sequences represented in the Z5^3 Abelian group, this function computes the
automorphisms describing codon mutational events.

Usage

aut3D(
seq = NULL,
filepath = NULL,
cube = c("ACGT", "TGCA"),
cube_alt = c("CATG", "GTAC"),
field = "GF5",
start = NA,
end = NA,
chr = 1L,
strand = "+",
genetic_code = getGeneticCode("1"),
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = TRUE

)

Arguments

seq An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences. The pairwise alignment provided in
argument seq or the ’fasta’ file filepath must correspond to codon sequences.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube, cube_alt A character string denoting pairs of the 24 Genetic-code cubes, as given in refer-
ences (2-3). That is, the base pairs from the given cubes must be complementary
each other. Such a cube pair are call dual cubes and, as shown in reference (3),
each pair integrates group.

field A character string denoting the Galois field where the 3D automorphisms are
estimated. This can be ’GF(4)’ or ’GF(5)’, but only ’GF(5)’ is implemented so
far.

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

genetic_code The named character vector returned by getGeneticCode or similar. The trans-
lation of codon into aminoacids is a valuable information useful for downstream
statistical analysis. The standard genetic code is the default argument value ap-
plied in the translation of codons into aminoacids (see GENETIC_CODE_TABLE.

aut3D 13

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the progress bar.

Details

Automorphisms in Z5^3’ are described as functions f(x) = AxmodZ5, where A is diagonal ma-
trix, as noticed in reference (4).

Value

An object Automorphism-class with four columns on its metacolumn named: seq1, seq2, autm,
and cube.

Author(s)

Robersy Sanchez (https://genomaths.com).

References

1. Sanchez R, Morgado E, Grau R. Gene algebra from a genetic code algebraic structure. J Math
Biol. 2005 Oct;51(4):431-57. doi: 10.1007/s00285-005-0332-8. Epub 2005 Jul 13. PMID:
16012800. (PDF).

2. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. https://doi.org/
10.1101/2021.06.01.446543.

3. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

4. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF.

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

Automorphism on Z5^3
autms <- aut3D(seq = aln)
autms

https://genomaths.com
https://arxiv.org/pdf/q-bio/0412033.pdf
https://doi.org/10.1101/2021.06.01.446543
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://bit.ly/2Z9mjM7

14 autm

autby_coef Automorphisms between DNA Primate BRCA1 Genes Grouped by Co-
efficients

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the DNA se-
quences from the MSA of primate somatic cytochrome C grouped by automorphism’s coefficients.
The grouping derives from the dataset brca1_autm after applying function automorphism_bycoef.

Usage

data("autby_coef", package = "GenomAutomorphism")

Format

AutomorphismByCoefList class object.

Examples

Load the data set
data("autby_coef", package = "GenomAutomorphism")
autby_coef

Mutation type found in the data
unique(autby_coef$human_1.human_2$mut_type)

autm Automorphisms between DNA Sequences from two COVID-19
genomes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the SARS
coronavirus GZ02 (GenBank: AY390556.1: 265-13398_13398-21485) and Bat SARS-like coron-
avirus isolate bat-SL-CoVZC45 (GenBank: MG772933.1:265-1345513455-21542), nonstructural_polyprotein.
The pairwise DNA sequence alignment is available in the dataset named covid_aln and the auto-
morphisms were estimated with function autZ64.

Usage

data("autm", package = "GenomAutomorphism")

Format

AutomorphismList class object.

Details

The alignment of these DNA sequences is available at: https://github.com/genomaths/seqalignments/
raw/master/COVID-19 in the fasta file ’AY390556.1_265-13398_13398-21485_RNA-POL_SARS_COVI_GZ02.fas’

https://github.com/genomaths/seqalignments/raw/master/COVID-19
https://github.com/genomaths/seqalignments/raw/master/COVID-19

autm_3d 15

Examples

data("autm", package = "GenomAutomorphism")
autm

autm_3d Automorphisms between DNA Sequences from two COVID-19
genomes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the SARS
coronavirus GZ02 (GenBank: AY390556.1: 265-13398_13398-21485) and Bat SARS-like coron-
avirus isolate bat-SL-CoVZC45 (GenBank: MG772933.1:265-1345513455-21542), nonstructural_polyprotein.
The pairwise DNA sequence alignment is available in the dataset named covid_aln and the auto-
morphisms were estimated with function aut3D.

Usage

data("autm_3d", package = "GenomAutomorphism")

Format

AutomorphismList class object.

Examples

data("autm_3d", package = "GenomAutomorphism")
autm_3d

autm_z125 Automorphisms between DNA Sequences from two COVID-19
genomes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the SARS
coronavirus GZ02 (GenBank: AY390556.1: 265-13398_13398-21485) and Bat SARS-like coron-
avirus isolate bat-SL-CoVZC45 (GenBank: MG772933.1:265-1345513455-21542), nonstructural_polyprotein.
The pairwise DNA sequence alignment is available in the dataset named covid_aln and the auto-
morphisms were estimated with function autZ125.

Usage

data("autm_z125", package = "GenomAutomorphism")

Format

AutomorphismList class object.

16 Automorphism-class

Examples

data("autm_z125", package = "GenomAutomorphism")
autm_z125

Automorphism-class A class definition to store codon automorphisms in a given Abelian
group representation.

Description

Two classes are involved in to storing codon automorphisms: Automorphism-class and AutomorphismList-
class.

Details

An Automorphism-class object has six columns: "seq1", "seq2","coord1", "coord2", "autm", and
"cube". See the examples for function automorphisms. Observe that as the Automorphism-class
inherits from GRanges-class the transformation starting from a GRanges-class object into an
Automorphism-class is straightforward.

However, the transformation starting from a data.frame or a DataFrame-class object ”x” re-
quires for the creation of an additional GRanges-class object, which by default will have the argu-
ment seqnames = "1", strand = "+", start/end = seq(row(x)), length = nrow(x). These details must
be keep in mind to prevent fundamental errors in the downstream analyses.

Value

Given the slot values, it defines an Automorphism-class object.

Automorphism-class methods

as(from, "Automorphism")::
Permits the transformation of a data.frame or a DataFrame-class object into Automorphism-
class object if the proper columns are provided.

Methods from GRanges-class can also be applied.

See Also

AutomorphismByCoef-class and AutomorphismList-class

AutomorphismByCoef-class 17

AutomorphismByCoef-class

A class definition to store conserved gene/genomic regions found in a
MSA.

Description

Objects from this class are generated by function automorphism_bycoef.

Value

AutomorphismByCoef-class definition.

AutomorphismByCoefList-class methods

unlist(x)::
It transforms a AutomorphismByCoefList-class object into an AutomorphismByCoef-class ob-
ject.

as(x, "AutomorphismByCoefList"):
It transforms a ’list’ of AutomorphismByCoef-class object into an AutomorphismByCoefList-
class object.

See Also

automorphism_bycoef

AutomorphismByCoefList-class and Automorphism-class

Examples

Let's transform a AutomorphismByCoefList-class object into an
AutomorphismByCoef-class object
data("autby_coef")
unlist(autby_coef[1:2])

Herein a 'list' object of AutomorphismByCoef-class objects
lista <- list(human = autby_coef[[1]], gorilla = autby_coef[[2]])

Let's transform the the last list 'lista' into an
AutomorphismByCoefList-class object
aut <- as(lista, "AutomorphismByCoefList")
aut

Let's get the element names from object 'aut'
names(aut)

Let's assign new names
names(aut) <- c("human_1", "gorilla_1")
names(aut)

18 automorphismByRanges

AutomorphismByCoefList-class

A class definition for a list of AutomorphismByCoef class objects.

Description

A class definition for a list of AutomorphismByCoef class objects.

Details

AutomorphismByCoefList-class has the following methods:

as(’from’, "AutomorphismByCoefList"):
Where ’from’ is a list of AutomorphismByCoef-class.

unlist(x):
Where ’x’ is a an AutomorphismByCoefList-class object.

Value

AutomorphismByCoefList-class definition.

See Also

AutomorphismByCoef-class and AutomorphismList-class

automorphismByRanges Get the automorphisms by ranges.

Description

Automorphisms estimated on a pairwise or a MSA alignment can be grouped by ranges which
inherits from GRanges-class or a GRanges-class.

Usage

automorphismByRanges(x, ...)

S4 method for signature 'Automorphism'
automorphismByRanges(x)

S4 method for signature 'AutomorphismList'
automorphismByRanges(
x,
min.len = 0L,
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = TRUE

)

AutomorphismList-class 19

Arguments

x An AutomorphismList-class object returned by function automorphisms.

... Not in use.

min.len Minimum length of a range to be reported.
num.cores, tasks

Integers. Argument num.cores denotes the number of cores to use, i.e. at most
how many child processes will be run simultaneously (see bplapply function
from BiocParallel package). Argument tasks denotes the number of tasks per
job. value must be a scalar integer >= 0L. In this documentation a job is defined
as a single call to a function, such as bplapply. A task is the division of the
X argument into chunks. When tasks == 0 (default), X is divided as evenly as
possible over the number of workers (see MulticoreParam from BiocParallel
package).

verbose logic(1). If TRUE, enable progress bar.

Value

A GRanges-class or a GRangesList-class. Each GRanges-class object with a column named
cube, which carries the type of cube automorphims.

Examples

Load dataset
data("autm", package = "GenomAutomorphism")

automorphismByRanges(x = autm[c(1, 4)])

AutomorphismList-class

A class definition to store list of Automorphism class objects.

Description

A class definition to store list of Automorphism class objects derived from the pairwise auto-
morphism estimation from pairwise alignments. Objects from this class are created by function
automorphisms and as.AutomorphismList.

Usage

S4 method for signature 'AutomorphismList'
names(x)

S4 replacement method for signature 'AutomorphismList,ANY'
names(x) <- value

S4 method for signature 'AutomorphismList'
as.list(x)

S4 method for signature 'AutomorphismList'
show(object)

20 AutomorphismList-class

Arguments

x An AutomorphismList-class object.

value A character vector naming the elements of the AutomorphismList-class ob-
ject ’x’.

object An object from AutomorphismList-class.

Value

An object from AutomorphismList-class

AutomorphismList-class methods

as.AutomorphismList(x)::
as.AutomorphismList function transform a list of GRanges-class, a GRangesList-class, a list
of data.frame or a DataFrame-class objects into a AutomorphismList-class object.

unlist(x):
It transforms a AutomorphismList-class object into an Automorphism-class object.

as.list(x):
It transforms a list of Automorphism-class objects into an AutomorphismList-class object.

as(x, "GRangesList"):
It transforms a GRangesList of Automorphism-class objects into an ’AutomorphismList-class’
object.

names(x):
To get the element’s names from an ’AutomorphismList-class’ object.

names(x) <- value:
To assign names to the element from an ’AutomorphismList-class’ object.

See Also

Automorphism-class and AutomorphismByCoefList-class.

Examples

Load datasets
data("autm", "brca1_autm")

Transforming a list of Automorphisms into an AutomorphismList object
lista <- list(human = brca1_autm[[1]], gorilla = brca1_autm[[2]])
as.AutomorphismList(lista)

Alternatively we can set
aut <- as.list(brca1_autm[seq(2)])
class(aut)

And reverse it
aut <- as.AutomorphismList(aut)
aut

Let's get the element names from object 'aut'

automorphisms 21

names(aut)

Let's assign new names
names(aut) <- c("human_1", "gorilla_1")
names(aut)

Transforming a GRangesList of Automorphisms into an AutomorphismList
object
lista <- as(lista, "GRangesList")
as.AutomorphismList(lista)

Transform a AutomorphismList-class object into an Automorphism-class
object
unlist(brca1_autm[seq(2)])
Load a DNA sequence alignment
data("brca1_autm", package = "GenomAutomorphism")
names(brca1_autm)
Load a DNA sequence alignment
data("brca1_autm", package = "GenomAutomorphism")
x1 <- brca1_autm[seq(2)]
names(x1)

Let's assign a new names
names(x1) <- c("human_1.human_2.0", "human_1.gorilla_0")
names(x1)
Load a DNA sequence alignment
data("brca1_autm", package = "GenomAutomorphism")

The list of the first three elements
autm_list <- as.list(brca1_autm[seq(3)])
autm_list

automorphisms Compute the Automorphisms of Mutational Events Between two
Codon Sequences Represented in a Given Abelian group.

Description

Given two codon sequences represented in a given Abelian group, this function computes the au-
tomorphisms describing codon mutational events. Basically, this function is a wrapping to call the
corresponding function for a specified Abelian group.

Usage

automorphisms(seqs = NULL, filepath = NULL, group = "Z4", ...)

S4 method for signature 'DNAStringSet_OR_NULL'
automorphisms(
seqs = NULL,
filepath = NULL,
group = c("Z5", "Z64", "Z125", "Z5^3"),
cube = c("ACGT", "TGCA"),
cube_alt = c("CATG", "GTAC"),

22 automorphisms

nms = NULL,
start = NA,
end = NA,
chr = 1L,
strand = "+",
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = TRUE

)

Arguments

seqs An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences. The pairwise alignment provided in
argument seq or the ’fasta’ file filepath must correspond to codon sequences.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

group A character string denoting the group representation for the given base or codon
as shown in reference (1).

... Not in use.

cube, cube_alt A character string denoting pairs of the 24 Genetic-code cubes, as given in refer-
ences (2-3). That is, the base pairs from the given cubes must be complementary
each other. Such a cube pair are call dualcubes and, as shown in reference (3),
each pair integrates group.

nms Optional. Only used if the DNA sequence alignment provided carries more than
two sequences. A character string giving short names for the alignments to be
compared. If not given then the automorphisms between pairwise alignment are
named as: ’aln_1’, ’aln_2’, and so on.

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the progress bar.

Details

Herein, automorphisms are algebraic descriptions of mutational event observed in codon sequences
represented on different Abelian groups. In particular, as described in references (3-4), for each
representation of the codon set on a defined Abelian group there are 24 possible isomorphic Abelian
groups. These Abelian groups can be labeled based on the DNA base-order used to generate them.
The set of 24 Abelian groups can be described as a group isomorphic to the symmetric group of
degree four (S4, see reference (4)). Function automorphismByRanges permits the classification of
the pairwise alignment of protein-coding sub-regions based on the mutational events observed on it
and on the genetic-code cubes that describe them.

Automorphisms in Z5, Z64 and Z125 are described as functions f(x) = kxmod64 and f(x) =
kxmod125, where k and x are elements from the set of integers modulo 64 or modulo 125, respec-
tively. If an automorphisms cannot be found on any of the cubes provided in the argument cube,

automorphisms 23

then function automorphisms will search for automorphisms in the cubes provided in the argument
cubealt.

Automorphisms in Z5^3’ are described as functions f(x) = AxmodZ5, where A is diagonal ma-
trix.

Arguments cube and cube_alt must be pairs of’ dual cubes (see section 2.4 from reference 4).

Value

This function returns a Automorphism-class object with four columns on its metacolumn named:
seq1, seq2, autm, and cube.

Methods

automorphismByRanges::
This function returns a GRanges-class object. Consecutive mutational events (on the codon
sequence) described by automorphisms on a same cube are grouped in a range.

automorphism_bycoef:
This function returns a GRanges-class object. Consecutive mutational events (on the codon
sequence) described by the same automorphisms coefficients are grouped in a range.

getAutomorphisms:
This function returns an AutomorphismList-class object as a list of Automorphism-class objects,
which inherits from GRanges-class objects.

conserved_regions:
Returns a AutomorphismByCoef class object containing the requested regions.

Author(s)

Robersy Sanchez (https://genomaths.com).

References

1. Sanchez R, Morgado E, Grau R. Gene algebra from a genetic code algebraic structure. J Math
Biol. 2005 Oct;51(4):431-57. doi: 10.1007/s00285-005-0332-8. Epub 2005 Jul 13. PMID:
16012800. (PDF).

2. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi:10.1101/2021.06.01.446543

3. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
110-152.PDF.

4. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF

See Also

autZ64.

https://genomaths.com
https://arxiv.org/pdf/q-bio/0412033.pdf
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://bit.ly/2Z9mjM7

24 automorphism_bycoef

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

Automorphism on "Z5^3"
autms <- automorphisms(seqs = aln, group = "Z5^3", verbose = FALSE)
autms

Automorphism on "Z64"
autms <- automorphisms(seqs = aln, group = "Z64", verbose = FALSE)
autms

Automorphism on "Z64" from position 1 to 33
autms <- automorphisms(

seqs = aln,
group = "Z64",
start = 1,
end = 33,
verbose = FALSE

)
autms

automorphism_bycoef Autmorphism Grouping by Coefficient

Description

Automorphisms with the same automorphism’s coefficients are grouped.

Usage

automorphism_bycoef(x, ...)

S4 method for signature 'Automorphism'
automorphism_bycoef(x, mut.type = TRUE)

S4 method for signature 'AutomorphismList'
automorphism_bycoef(
x,
min.len = 1L,
mut.type = TRUE,
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = TRUE

)

Arguments

x An automorphism-class object returned by function automorphisms.

... Not in use.

automorphism_prob 25

mut.type Logical. Whether to include the mutation type as given by function mut_type.

min.len Minimum length of a range to be reported.
num.cores, tasks

Integers. Argument num.cores denotes the number of cores to use, i.e. at most
how many child processes will be run simultaneously (see bplapply function
from BiocParallel package). Argument tasks denotes the number of tasks per
job. value must be a scalar integer >= 0L. In this documentation a job is defined
as a single call to a function, such as bplapply. A task is the division of the
X argument into chunks. When tasks == 0 (default), X is divided as evenly as
possible over the number of workers (see MulticoreParam from BiocParallel
package).

verbose logic(1). If TRUE, enable progress bar.

Value

An AutomorphismByCoef class object. A coefficient with 0 value is assigned to mutational events
that are not automorphisms, e.g., indel mutations.

See Also

automorphisms

Examples

Load dataset
data("autm", package = "GenomAutomorphism")

automorphism_bycoef(x = autm[1:2])

automorphism_prob Autmorphism Probability

Description

This function applies a Dirichlet-Multinomial Modelling (in Bayesian framework) to compute the
posterior probability of each type of mutational event. DNA bases are classified based on the physic-
ochemical criteria used to ordering the set of codons: number of hydrogen bonds (strong-weak,
S-W), chemical type (purine-pyrimidine, Y-R), and chemical groups (amino versus keto, M-K) (see
reference 4). Preserved codon positions are labeled with letter “H”.

As a result, mutational events are grouped by type of mutation covering all the possible combina-
tions of symbols: "Y", "R", "M", "W", "K", "S", and "H", for example: "YSH", "RSH", "MSH",
"WSH", "KSH", "SSH", "HSH", "YHH", "RHH", and so on. Insertion/deletion mutations are not
considered.

Maximum Likelihood Estimation (MLE) for Dirichlet Parameters:
Given the observed data n = (n1, ..., nk), where ni is the frequency for the mutation type i, we
want to estimate the parameters of the Dirichlet distribution, α = (α1, ..., αk), that maximize the
marginal likelihood.

26 automorphism_prob

Marginal Likelihood:
The marginal likelihood of the data under the Dirichlet-multinomial model is given by

P (n|α) = N !∏k
i=1 ni

Γ
(∑k

i=1 αi

)
Γ
(
N +

∑k
i=1 αi

) k∏
i=1

Γ (ni + αi)

Γ (αi)

where N =
∑k

i=1 ni.

Optimization:
To perform MLE, we maximize the log of this likelihood: log(P (n|α)). That is, we aim to
maximize this log-likelihood with respect to α. This is done numerically because there’s no
closed-form solution. Here, we use:

Argmax
α

{log (P (n|α)}

with initial guess set as αi = 1/(ni + 1).

Posterior Distribution:
Let be θ the vector of probabilities for each mutation type. It’s the parameter we’re estimating,
which represents the probabilities of observing each mutation type in the multinomial distribution.
The conjugate distribution in this context refers to the Dirichlet distribution, which is the prior
distribution for θ. When we have observed data, the posterior distribution of θ given this data is
also a Dirichlet distribution due to the conjugate property.
The prior distribution, before observing any data, our belief about the distribution of θ is given
by:

θ ∼ Dirichlet (α1, αk, . . . , αk)

where the αi are known as initial concentration parameters, which represents our initial belief
or assumption about the distribution of the mutation types. These parameters control how the
probability mass is distributed among the mutation types. We might set these initial parameters
based on some prior knowledge or simply to provide a non-informative prior.
Once we have the MLE for α, the posterior distribution of θ given the data updates these parame-
ters to incorporate the observed data:

θ | n ∼ Dirichlet (α∗
1 + n1, α∗

k + n2, . . . , α
∗
k + nk)

where α∗
i are the MLE estimates, i.e., α∗

i + ni are our updated belief about the frequencies of
mutation types in the population sample.
The expected values of θi, given the data under the posterior Dirichlet distribution is:

E [θi] =
α∗
i + ni∑k

j=1

(
α∗
j + nj

)
These expected values directly corresponds to the "posterior probability" of observing mutation
type i.
This approach provides a rigorous estimation of the Dirichlet parameters under the Dirichlet-
multinomial model using MLE.

automorphism_prob 27

Usage

automorphism_prob(x, ...)

S4 method for signature 'AutomorphismByCoef'
automorphism_prob(
x,
initial_alpha = NULL,
method = c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "Brent"),
maxit = 500,
abstol = 10^-8,
...

)

S4 method for signature 'AutomorphismByCoefList'
automorphism_prob(
x,
initial_alpha = NULL,
method = c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "Brent"),
maxit = 500,
abstol = 10^-8

)

Arguments

x An AutomorphismByCoefList-class object returned by function automorphism_bycoef.

... Not in use yet.

initial_alpha A vector of initial guess values for pseudo counts αi (see Description). Default
is: αi = 1/(ni + 1), which corresponds to initialalpha = NULL.

method, maxit, abstol
Parameter values to pass into optim.

Value

A data frame with the posterior probabilities.

See Also

automorphism_bycoef

Examples

Load the data set
data("autby_coef", package = "GenomAutomorphism")
post_prob <- automorphism_prob(autby_coef[1:10])
head(post_prob,10)

28 autZ125

autZ125 Compute the Automorphisms of Mutational Events Between two
Codon Sequences Represented in Z125.

Description

Given two codon sequences represented in the Z125 Abelian group, this function computes the
automorphisms describing codon mutational events.

Usage

autZ125(
seq = NULL,
filepath = NULL,
cube = c("ACGT", "TGCA"),
cube_alt = c("CATG", "GTAC"),
start = NA,
end = NA,
chr = 1L,
strand = "+",
genetic_code = getGeneticCode("1"),
num.cores = multicoreWorkers() - 1,
tasks = 0L,
verbose = TRUE

)

Arguments

seq An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences. The pairwise alignment provided in
argument seq or the ’fasta’ file filepath must correspond to codon sequences.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube, cube_alt A character string denoting pairs of the 24 Genetic-code cubes, as given in refer-
ences (2-3). That is, the base pairs from the given cubes must be complementary
each other. Such a cube pair are call dual cubes and, as shown in reference (3),
each pair integrates group.

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

genetic_code The named character vector returned by getGeneticCode or similar. The trans-
lation of codon into aminoacids is a valuable information useful for downstream
statistical analysis. The standard genetic code is the default argument value ap-
plied in the translation of codons into aminoacids (see GENETIC_CODE_TABLE.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the progress bar.

autZ5 29

Details

Automorphisms in Z125 are described as functions f(x) = kxmod64, where k and x are elements
from the set of integers modulo 64. As noticed in reference (1)

Value

An object Automorphism-class with four columns on its metacolumn named: seq1, seq2, autm,
and cube.

References

1. Sanchez R, Morgado E, Grau R. Gene algebra from a genetic code algebraic structure. J Math
Biol. 2005 Oct;51(4):431-57. doi: 10.1007/s00285-005-0332-8. Epub 2005 Jul 13. PMID:
16012800. (PDF).

2. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi:10.1101/2021.06.01.446543

3. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
110-152.PDF.

4. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

Automorphism on Z125
autms <- autZ125(seq = aln)
autms

autZ5 Compute the Automorphisms of Mutational Events Between two
Codon Sequences Represented in Z5.

Description

Given two codon sequences represented in the Z5 Abelian group, this function computes the auto-
morphisms describing codon mutational events.

Usage

autZ5(
seq = NULL,
filepath = NULL,
cube = c("ACGT", "TGCA"),
cube_alt = c("CATG", "GTAC"),
start = NA,
end = NA,

https://arxiv.org/pdf/q-bio/0412033.pdf
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://bit.ly/2Z9mjM7

30 autZ5

chr = 1L,
strand = "+",
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = TRUE

)

Arguments

seq An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube, cube_alt A character string denoting pairs of the 24 Genetic-code cubes, as given in refer-
ences (2-3). That is, the base pairs from the given cubes must be complementary
each other. Such a cube pair are call dual cubes and, as shown in reference (3),
each pair integrates group.

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the progress bar.

Details

Automorphisms in Z5 are described as functions f(x) = kxmod64, where k and x are elements
from the set of integers modulo 64. As noticed in reference (1). The pairwise alignment provided
in argument seq or the ’fasta’ file filepath must correspond to DNA base sequences.

Value

An object Automorphism-class with four columns on its metacolumn named: seq1, seq2, autm,
and cube.

References

1. Sanchez R, Morgado E, Grau R. Gene algebra from a genetic code algebraic structure. J Math
Biol. 2005 Oct;51(4):431-57. doi: 10.1007/s00285-005-0332-8. Epub 2005 Jul 13. PMID:
16012800. (PDF).

2. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi:10.1101/2021.06.01.446543

3. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
110-152.PDF.

4. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF

https://arxiv.org/pdf/q-bio/0412033.pdf
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://bit.ly/2Z9mjM7

autZ64 31

See Also

automorphisms

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

Automorphism on Z5
autms <- autZ5(seq = aln, verbose = FALSE)
autms

autZ64 Compute the Automorphisms of Mutational Events Between two
Codon Sequences Represented in Z64.

Description

Given two codon sequences represented in the Z64 Abelian group, this function computes the auto-
morphisms describing codon mutational events.

Usage

autZ64(
seq = NULL,
filepath = NULL,
cube = c("ACGT", "TGCA"),
cube_alt = c("CATG", "GTAC"),
start = NA,
end = NA,
chr = 1L,
strand = "+",
genetic_code = getGeneticCode("1"),
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = TRUE

)

Arguments

seq An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences. The pairwise alignment provided in
argument seq or the ’fasta’ file filepath must correspond to codon sequences.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube, cube_alt A character string denoting pairs of the 24 Genetic-code cubes, as given in refer-
ences (2-3). That is, the base pairs from the given cubes must be complementary
each other. Such a cube pair are call dual cubes and, as shown in reference (3),
each pair integrates group.

32 autZ64

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

genetic_code The named character vector returned by getGeneticCode or similar. The trans-
lation of codon into aminoacids is a valuable information useful for downstream
statistical analysis. The standard genetic code is the default argument value ap-
plied in the translation of codons into aminoacids (see GENETIC_CODE_TABLE.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the progress bar.

Details

Automorphisms in Z64 are described as functions f(x) = k∗x mod 64, where k and x are elements
from the set of integers modulo 64.

Value

An object Automorphism-class with four columns on its metacolumn named: seq1, seq2, autm,
and cube.

Author(s)

Robersy Sanchez (https://genomaths.com).

References

1. Sanchez R, Morgado E, Grau R. Gene algebra from a genetic code algebraic structure. J Math
Biol. 2005 Oct;51(4):431-57. doi: 10.1007/s00285-005-0332-8. Epub 2005 Jul 13. PMID:
16012800. (PDF).

2. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi:10.1101/2021.06.01.446543

3. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
110-152.PDF.

4. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

Automorphism on Z64
autms <- autZ64(seq = aln, verbose = FALSE)
autms

https://genomaths.com
https://arxiv.org/pdf/q-bio/0412033.pdf
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://bit.ly/2Z9mjM7

base2codon 33

base2codon Split a DNA sequence into codons

Description

This function split a DNA sequence into a codon sequence.

Usage

base2codon(x, ...)

S4 method for signature 'character'
base2codon(x)

S4 method for signature 'DNAStringSet'
base2codon(x)

S4 method for signature 'DNAMultipleAlignment'
base2codon(x)

Arguments

x A character string, DNAStringSet-class or DNAMultipleAlignment-class
object carrying the a DNA sequence.

... Not in use.

Details

It is expected that the provided DNA sequence is multiple of 3, otherwise gaps are added to the end
of the sequence.

Value

If the argument of ’x’ is character string, then a character vector of codons will returned. If the
argument of ’x’ is DNAStringSet-class or DNAMultipleAlignment-class object, then a matrix
of codons is returned.

Author(s)

Robersy Sanchez https://genomaths.com. 01/15/2022

Examples

Gaps are added at the sequence end.
seq <- c("ACCT")
base2codon(x = seq)

This DNA sequence is multiple of 3
seq <- c("ACCTCA")
base2codon(x = seq)

Load a DNAStringSet. A matrix of codons is returned

https://genomaths.com

34 base2int

data("aln", package = "GenomAutomorphism")
base2codon(x = aln)

base2int Replace bases with integers from Z4 and Z5

Description

A simple function to represent DNA bases as elements from the Abelian group of integers modulo
4 (Z4), 5 (Z5), or 2 (Z2).

Usage

base2int(base, ...)

S4 method for signature 'character'
base2int(
base,
group = c("Z4", "Z5", "Z64", "Z125", "Z4^3", "Z5^3", "Z2"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

phychem = list(A = NULL, T = NULL, C = NULL, G = NULL, N = NULL)
)

S4 method for signature 'data.frame'
base2int(
base,
group = c("Z4", "Z5", "Z64", "Z125", "Z4^3", "Z5^3", "Z2"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

phychem = list(A = NULL, T = NULL, C = NULL, G = NULL, N = NULL)
)

Arguments

base A character vector, string , or a dataframe of letters from the DNA/RNA alpha-
bet.

... Not in use.

group A character string denoting the group representation for the given base or codon
as shown in reference (2-3).

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2-3).

phychem Optional. Eventually, it could be useful to represent DNA bases by numerical
values of measured physicochemical properties. If provided, then this argument
must be a named numerical list. For example, the scale values of deoxyribonu-
cleic acids proton affinity (available at https://www.wolframalpha.com/ and
in cell phone app: Wolfram Alpha):

https://www.wolframalpha.com/

base2int 35

list(′A′ = 0.87,′ C ′ = 0.88,′ T ′ = 0.82,′ G′ = 0.89,′ N ′ = NA)

where symbol ’N’ provide the value for any letter out of DNA base alphabet. In
this example, we could write NA or 0 (see example section).

Details

For Z2 (binary representation of DNA bases), the cube bases are represented in their order by: ’00’,
’01’, ’10’, and ’11’ (examples section).

Value

A numerical vector.

Author(s)

Robersy Sanchez https://genomaths.com

References

1. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi: 10.1101/2021.06.01.446543

2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560.

See Also

base_coord, codon_coord, and dna_phychem.

Examples

A triplet with a letter not from DNA/RNA alphabet
'NA' is introduced by coercion!
base2int("UDG")

The base replacement in cube "ACGT and group "Z4"
base2int("ACGT")

The base replacement in cube "ACGT and group "Z5"
base2int("ACGT", group = "Z5")

A vector of DNA base triplets
base2int(c("UTG", "GTA"))

A vector of DNA base triplets with different number of triplets.
Codon 'GTA' is recycled!
base2int(base = c("UTGGTA", "CGA"), group = "Z5")

Data frames

base2int(data.frame(x1 = c("UTG", "GTA"), x2 = c("UTG", "GTA")))

https://genomaths.com
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap

36 BaseSeq-class

Cube bases are represented n their order by: '00', '01', '10', and '11',
For example for cube = "ACGT" we have mapping: A -> '00', C -> '01',
G -> '11', and C -> '10'.

base2int("ACGT", group = "Z2", cube = "ACGT")

BaseGroup-class A class definition to store codon automorphisms in given in the Abelian
group representation.

Description

A class definition to store codon automorphisms in given in the Abelian group representation.

Value

Given the slot values define a BaseGroup-class.

See Also

automorphisms

BaseGroup_OR_CodonGroup-class

A definition for the union of classes ’BaseGroup’ and ’CodonGroup’

Description

A definition for the union of classes ’BaseGroup’ and ’CodonGroup’

See Also

BaseGroup and CodonGroup.

BaseSeq-class A class definition to store DNA base sequence.

Description

A class definition to store DNA base sequence.

Value

Given the slot values define a BaseSeq-class.

See Also

automorphisms

BaseSeqMatrix-class 37

BaseSeqMatrix-class A class definition to Store DNA base sequence coordinates in a given
Genetic Code Cube.

Description

A class definition to Store DNA base sequence coordinates in a given Genetic Code Cube.

Value

Given the slot values define a BaseSeq-class.

See Also

automorphisms

base_coord DNA Sequences Methods

Description

Base coordinates on a given Abelian group representation:
Given a string denoting a codon or base from the DNA (or RNA) alphabet, function base_coord
return the base coordinates in the specify genetic-code Abelian group, as given in reference (1).

DNA sequences to GRanges of bases.:
Function seq2granges transform an object from DNAStringSet, DNAMultipleAlignment-class
or a character into an object from BaseSeq.

BaseSeq-class object to DNAStringSet-class object.:
Function base_seq2string_set transforms an object from BaseSeq into an object from DNAStringSet-class.

Usage

base_coord(base = NULL, filepath = NULL, cube = "ACGT", group = "Z4", ...)

S4 method for signature 'DNAStringSet_OR_NULL'
base_coord(
base = NULL,
filepath = NULL,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

group = c("Z4", "Z5"),
start = NA,
end = NA,
chr = 1L,
strand = "+"

)

38 base_coord

seq2granges(base = NULL, filepath = NULL, ...)

S4 method for signature 'DNAStringSet_OR_NULL'
seq2granges(
base = NULL,
filepath = NULL,
start = NA,
end = NA,
chr = 1L,
strand = "+",
seq_alias = NULL,
...

)

base_seq2string_set(x, ...)

S4 method for signature 'BaseSeq'
base_seq2string_set(x)

base_matrix(base, ...)

S4 method for signature 'DNAStringSet_OR_NULL'
base_matrix(
base,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

group = c("Z4", "Z5"),
seq_alias = NULL

)

Arguments

base An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2 2 3).

group A character string denoting the group representation for the given base or codon
as shown in reference (1).

... Not in use yet.
start, end, chr, strand

Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

seq_alias DNA sequence alias/ID and description.
x A ’BaseSeq’ class object.

Details

Function ’base_coord’:

base_coord 39

Function base_coord is defined only for pairwise aligned sequences. Symbols "-" and "N" usually
found in DNA sequence alignments to denote gaps and missing/unknown bases are represented
by the number: ’-1’ on Z4 and ’0’ on Z5. In Z64 the symbol ’NA’ will be returned for codons
including symbols "-" and "N".

Functions ’seq2granges’ and ’base_seq2string_set’:
For the sake of brevity the metacolumns from the object returned by function ’seq2granges’ are
named as ’S1’, ’S2’, ’S3’, and so on. The original DNA sequence alias are stored in the slot
named ’seq_alias’. (see examples).

Value

Depending on the function called, different object will be returned:

Function ’base_coord’:
This function returns a BaseGroup object carrying the DNA sequence(s) and their respective co-
ordinates in the requested Abelian group of base representation (one-dimension, "Z4" or "Z5").
Observe that to get coordinates in the set of of integer numbers ("Z") is also possible but they are
not defined to integrate a Abelian group. These are just used for the further insertion the codon
set in the 3D space (R^3).

Function ’seq2granges’:
This function returns a BaseGroup object carrying the DNA sequence(s), one base per ranges. A
BaseGroup class object inherits from GRanges-class.

Function ’base_seq2string_set’:
This function returns a DNAStringSet-class.

A BaseGroup-class object.

Author(s)

Robersy Sanchez https://genomaths.com

References

1. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi:10.1101/2021.06.01.446543

2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560.

See Also

Symmetric Group of the Genetic-Code Cubes.

codon_coord and base2int.

Symmetric Group of the Genetic-Code Cubes.

base_coord and codon_coord.

https://genomaths.com
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://github.com/genomaths/GenomeAlgebra_SymmetricGroup
https://github.com/genomaths/GenomeAlgebra_SymmetricGroup

40 base_repl

Examples

Example 1. Let's get the base coordinates for codons "ACG"
and "TGC":
x0 <- c("ACG", "TGC")
x1 <- DNAStringSet(x0)
x1

Get the base coordinates on cube = "ACGT" on the Abelian group = "Z4"
base_coord(x1, cube = "ACGT", group = "Z4")

Example 2. Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

DNA base representation in the Abelian group Z4
bs_cor <- base_coord(

base = aln,
cube = "ACGT"

)
bs_cor

Example 3. DNA base representation in the Abelian group Z5
bs_cor <- base_coord(

base = aln,
cube = "ACGT",
group = "Z5"

)
bs_cor

Example 4. Load a multiple sequence alignment (MSA) of primate BRCA1 DNA
repair genes
data("brca1_aln2", package = "GenomAutomorphism")
brca1_aln2

Get BaseSeq-class object
gr <- seq2granges(brca1_aln2)
gr

Transform the BaseSeq-class object into a DNAStringSet-class object
str_set <- base_seq2string_set(gr)
str_set

Recovering the original MSA
DNAMultipleAlignment(as.character(str_set))

Example 5.
base_matrix(base = aln, cube = "CGTA", group = "Z5")

Example 5.

base_repl Replace bases with integers

brca1_aln 41

Description

Replace bases with integers

Usage

base_repl(base, cube, group, phychem)

Details

Internal use only.

Value

A numerical vector.

brca1_aln Multiple Sequence Alignment (MSA) of Primate BRCA1 DNA repair
genes.

Description

This is a DNAMultipleAlignment carrying a MSA of BRCA1 DNA repair genes to be used in the
examples provided for the package functions. The original file can be downloaded from GitHub at:
https://bit.ly/3DimROD

Usage

data("brca1_aln", package = "GenomAutomorphism")

Format

DNAMultipleAlignment class object.

See Also

brca1_aln2, brca1_autm, and covid_aln.

Examples

data("brca1_aln", package = "GenomAutomorphism")
brca1_aln

https://bit.ly/3DimROD
https://bit.ly/3DimROD

42 brca1_autm

brca1_aln2 Multiple Sequence Alignment (MSA) of Primate BRCA1 DNA repair
genes.

Description

This is a DNAMultipleAlignment carrying a MSA of BRCA1 DNA repair genes to be used in the
examples provided for the package functions. The original file can be downloaded from GitHub
at: https://bit.ly/3DimROD. This data set has 41 DNA sequences and it contains the previous
20 primate variants found in ’brca1_aln’ data set plus 21 single mutation variants (SMV) from the
human sequence NM_007298 transcript variant 4. The location of each SMV is given in the heading
from each sequence.

Usage

data("brca1_aln2", package = "GenomAutomorphism")

Format

DNAMultipleAlignment class object.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

brca1_aln, brca1_autm2, cyc_aln, and covid_autm.

Examples

data("brca1_aln2", package = "GenomAutomorphism")
brca1_aln2

brca1_autm Automorphisms between DNA Sequences from Primate BRCA1 Genes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the DNA
sequences from the MSA of primate BRCA1 DNA repair gene. The automorphisms were estimated
from the brca1_aln MSA with function autZ64.

Usage

data("brca1_autm", package = "GenomAutomorphism")

Format

AutomorphismList class object.

https://bit.ly/3DimROD
https://bit.ly/3DimROD
https://genomaths.com

brca1_autm2 43

Author(s)

Robersy Sanchez https://genomaths.com

See Also

brca1_autm2, brca1_aln, brca1_aln2, and covid_autm.

Examples

data("brca1_autm", package = "GenomAutomorphism")
brca1_autm

brca1_autm2 Automorphisms between DNA Sequences from Primate BRCA1 Genes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the DNA
sequences from the MSA of primate BRCA1 DNA repair gene. The data set brca1_aln2 has 41
DNA sequences and it contains the previous 20 primate variants found in ’braca1_aln’ data set
plus 21 single mutation variants (SMV) from the human sequence NM_007298 transcript variant 4.
The location of each SMV is given in the heading from each sequence. The automorphisms were
estimated from the brca1_aln MSA with function autZ64.

Usage

data("brca1_autm2", package = "GenomAutomorphism")

Format

AutomorphismList class object.

cdm_z64 Codon Distance Matrices for the Standard Genetic Code on Z4

Description

This is a list of 24 codon distance matrices created with function codon_dist_matrix in the set of
24 genetic-code cubes on Z4 (using the default weights and assuming the standard genetic code
(SGC). The data set is created to speed up the computation when working with DNA sequences
from superior organisms. Since distance matrices are symmetric, it is enough to provide the lower
matrix. Each matrix is given as named/labeled vector (see the example).

Usage

data("cdm_z64", package = "GenomAutomorphism")

Format

A list object.

https://genomaths.com

44 CodonMatrix-class

Examples

Load the data set
data("cdm_z64", package = "GenomAutomorphism")
cdm_z64

The lower matrix (given as vector) for cube "TCGA" (picking out the 20
first values). Observe that this vector is labeled. Each numerical value
corresponds to the distance between the codons specified by the
name/label on it. For example, the distance between codons TTT and TCT
is: 0.0625.

head(cdm_z64[["TCGA"]], 20)

CodonGroup-class A class definition to store codon automorphisms in given in the Abelian
group representation.

Description

A class definition to store codon automorphisms in given in the Abelian group representation.

Value

Given the slot values define a CodonGroup-class.

See Also

automorphisms

CodonMatrix-class A Convenient Class to Store a Codon Coordinate in given Genetic
Code cube.

Description

A CodonMatrix is the object created by function codon_matrix

Usage

CodonMatrix(object, group, cube, seq_alias = NULL)

Arguments

object A GRanges-class object.

group The name of the base group, ’Z4’ or ’Z5’.

cube The name of the genetic-code cube applied to get the codon coordinates.

seq_alias The ’alias’ given to the codon sequence.

CodonSeq-class 45

Value

A ’CodonMatrix’ class object

See Also

base_coord and codon_coord.

Examples

CodonMatrix is generated by function 'codon_matrix' (inside a
ListCodonMatrix-class object)
Let's create DNAStringSet-class object
base <- DNAStringSet(x = c(S1 = 'ACGTGATCAAGT'))

x1 <- codon_matrix(base)
x1

Extract the first element
x1[1]
x1$codon.1
x1[[1]]

CodonSeq-class A class definition to store codon coordinates given in the Abelian
group and the codon sequence.

Description

An objects from ’CodonSeq’ or ’MatrixList’ class is returned by function get_coord. This object
will store the coordinate of each sequence in a list of 3D-vectors or a list of vectors located in the
slot named ’CoordList’. The original codon sequence (if provided) will be stored in the slot named
’SeqRanges’.

Usage

coordList(x)

S4 method for signature 'CodonSeq'
coordList(x)

seqRanges(x)

S4 method for signature 'CodonSeq'
seqRanges(x)

Arguments

x An object from CodonSeq-class.

Value

Given the slot values define a CodonSeq-class.

46 codon_coord

Examples

Load a DNA sequence alignment
data("aln", package = "GenomAutomorphism")

Get base coordinates on 'Z5'
coord <- get_coord(

x = aln,
cube = "ACGT",
group = "Z5"

)
coordList(coord)
Load a DNA sequence alignment
data("aln", package = "GenomAutomorphism")

Get base coordinates on 'Z5'
coord <- get_coord(

x = aln,
cube = "ACGT",
group = "Z5"

)

seqRanges(coord)

codon_coord Codon coordinates on a given a given Abelian group representation.

Description

Given a string denoting a codon or base from the DNA (or RNA) alphabet and a genetic-code
Abelian group as given in reference (1).

Usage

codon_coord(codon = NULL, ...)

S4 method for signature 'BaseGroup'
codon_coord(codon, group = NULL)

S4 method for signature 'DNAStringSet_OR_NULL'
codon_coord(
codon = NULL,
filepath = NULL,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

group = c("Z4", "Z5", "Z64", "Z125", "Z4^3", "Z5^3"),
start = NA,
end = NA,
chr = 1L,
strand = "+"

)

codon_coord 47

S4 method for signature 'matrix_OR_data_frame'
codon_coord(
codon,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

group = c("Z64", "Z125", "Z4^3", "Z5^3")
)

Arguments

codon An object from BaseGroup-class (generated with function base_coord), DNAStringSet
or from DNAMultipleAlignment class carrying the DNA pairwise alignment of
two sequences.

... Not in use.
group A character string denoting the group representation for the given base or codon

as shown in reference (2-3).
filepath A character vector containing the path to a file in fasta format to be read. This

argument must be given if codon & base arguments are not provided.
cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-

ences (2-3).
start, end, chr, strand

Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

Details

Symbols "-" and "N" usually found in DNA sequence alignments to denote gaps and missing/unknown
bases are represented by the number: ’-1’ on Z4 and ’0’ on Z5. In Z64 the symbol ’NA’ will be
returned for codons including symbols "-" and "N".
This function returns a GRanges-class object carrying the codon sequence(s) and their respective
coordinates in the requested Abelian group or simply, when group = ’Z5^3’ 3D-coordinates, which
are derive from Z5 as indicated in reference (3). Notice that the coordinates can be 3D or just one-
dimension ("Z64" or "Z125"). Hence, the pairwise alignment provided in argument codon must
correspond to codon sequences.

Value

A CodonGroup-class object.

Author(s)

Robersy Sanchez https://genomaths.com

References

1. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi: 10.1101/2021.06.01.446543
2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-

tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560.

https://genomaths.com
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap

48 codon_dist

See Also

Symmetric Group of the Genetic-Code Cubes.

codon_matrix, base_coord and base2int.

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

DNA base representation in the Abelian group Z5
bs_cor <- codon_coord(

codon = aln,
cube = "ACGT",
group = "Z5"

)
bs_cor ## 3-D coordinates

DNA base representation in the Abelian group Z64
bs_cor <- codon_coord(

codon = aln,
cube = "ACGT",
group = "Z64"

)
bs_cor

Giving a matrix of codons
codon_coord(base2codon(x = aln))

codon_dist Weighted Manhattan Distance Between Codons

Description

This function computes the weighted Manhattan distance between codons from two sequences as
given in reference (1). That is, given two codons x and y with coordinates on the set of integers
modulo 5 ("Z5"): x = (x1, x2, x3) and x = (y1, y2, y3) (see (1)), the Weighted Manhattan distance
between this two codons is defined as:

dw(x, y) = |x1 − y1|/5 + |x2 − y2|+ |x3 − y3|/25

If the codon coordinates are given on "Z4", then the Weighted Manhattan distance is define as:

dw(x, y) = |x1 − y1|/4 + |x2 − y2|+ |x3 − y3|/16

Herein, we move to the generalized version given in reference (3), for which:

dw(x, y) = |x1 − y1|w1 + |x2 − y2|w2 + |x3 − y3|w3

where we use the vector of weight = (w1, w2, w3).

https://github.com/genomaths/GenomeAlgebra_SymmetricGroup

codon_dist 49

Usage

codon_dist(x, y, ...)

S4 method for signature 'DNAStringSet'
codon_dist(
x,
weight = NULL,
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

S4 method for signature 'character'
codon_dist(
x,
y,
weight = NULL,
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

S4 method for signature 'CodonGroup_OR_Automorphisms'
codon_dist(
x,
weight = NULL,
group = c("Z4", "Z5"),
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

num.cores = 1L,
tasks = 0L,
verbose = FALSE

)

Arguments

x, y A character string of codon sequences, i.e., sequences of DNA base-triplets. If
only ’x’ argument is given, then it must be a DNAStringSet-class object.

... Not in use yet.

weight A numerical vector of weights to compute weighted Manhattan distance be-
tween codons. If weight = NULL, then weight = (1/4, 1, 1/16) for group =
”Z4” and weight = (1/5, 1, 1/25) for group = ”Z5”.

50 codon_dist

group A character string denoting the group representation for the given codon se-
quence as shown in reference (2-3).

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2-3).

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the progress bar.

Value

A numerical vector with the pairwise distances between codons in sequences ’x’ and ’y’.

References

1. Sanchez R. Evolutionary Analysis of DNA-Protein-Coding Regions Based on a Genetic Code
Cube Metric. Curr Top Med Chem. 2014;14: 407–417. https://doi.org/10.2174/1568026613666131204110022.

2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560. PDF.

See Also

codon_dist_matrix, automorphisms, codon_coord, and aminoacid_dist.

Examples

Let's write two small DNA sequences
x = "ACGCGTGTACCGTGACTG"
y = "TGCGCCCGTGACGCGTGA"

codon_dist(x, y, group = "Z5")

Alternatively, data can be vectors of codons, i.e., vectors of DNA
base-triplets (including gaps simbol "-").
x = c("ACG","CGT","GTA","CCG","TGA","CTG","ACG")
y = c("TGC","GCC","CGT","GAC","---","TGA","A-G")

Gaps are not defined on "Z4"
codon_dist(x, y, group = "Z4")

Gaps are considered on "Z5"
codon_dist(x, y, group = "Z5")

Load an Automorphism-class object
data("autm", package = "GenomAutomorphism")
codon_dist(x = head(autm,20), group = "Z4")

Load a pairwise alignment

https://doi.org/10.2174/1568026613666131204110022
https://is.gd/na9eap
https://is.gd/ZY1Gx8

codon_dist_matrix 51

data("aln", package = "GenomAutomorphism")
aln

codon_dist(x = aln, group = "Z5")

codon_dist_matrix Compute Codon Distance Matrix

Description

This function computes the codon distance matrix based on the weighted Manhattan distance be-
tween codons estimated with function codon_dist.

Usage

codon_dist_matrix(
genetic_code = "1",
group = c("Z4", "Z5"),
weight = NULL,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

output = c("list", "vector", "dist"),
num.cores = 1L

)

Arguments

genetic_code A single string that uniquely identifies the genetic code to extract. Should be
one of the values in the id or name2 columns of GENETIC_CODE_TABLE.

group A character string denoting the group representation for the given codon se-
quence as shown in reference (2-3).

weight A numerical vector of weights to compute weighted Manhattan distance be-
tween codons. If weight = NULL, then weight = (1/4, 1, 1/16) for group =
"Z4" and weight = (1/5, 1, 1/25) for group = "Z5" (see codon_dist).

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2-3).

output Format of the returned lower triangular matrix: as a list of 63 elements (labeled)
or as a labeled vector using codons as labels.

num.cores An integer to setup the number of parallel workers via makeCluster.

Details

By construction, a distance matrix is a symmetric matrix. Hence, the knowledge of lower triangular
matrix is enough for its application to any downstream analysis.

Value

A lower triangular matrix excluding the diagonal.

52 codon_matrix

See Also

codon_dist.

Examples

The distance matrix for codons for the Invertebrate Mitochondrial,
cube "TGCA" with base-triplet represented on the group "Z5". Each
coordinate from each returned numerical vector corresponds to the
distance between codons given in the coordinate name.
x <- codon_dist_matrix(genetic_code = "5", cube = "TGCA", group = "Z5",

output = "vector")
x[seq(61, 63)]

codon_matrix Codon Coordinate Matrix

Description

This function build the coordinate matrix for each sequence from an aligned set of DNA codon
sequences.

Usage

codon_matrix(base, ...)

S4 method for signature 'BaseSeqMatrix'
codon_matrix(base, num.cores = 1L, tasks = 0L, verbose = TRUE, ...)

S4 method for signature 'DNAStringSet'
codon_matrix(
base,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

group = c("Z4", "Z5"),
num.cores = 1L,
tasks = 0L,
verbose = TRUE

)

S4 method for signature 'DNAMultipleAlignment'
codon_matrix(
base,
cube = c("ACGT", "AGCT", "TCGA", "TGCA", "CATG", "GTAC", "CTAG", "GATC", "ACTG",
"ATCG", "GTCA", "GCTA", "CAGT", "TAGC", "TGAC", "CGAT", "AGTC", "ATGC", "CGTA",
"CTGA", "GACT", "GCAT", "TACG", "TCAG"),

group = c("Z4", "Z5"),
num.cores = 1L,
tasks = 0L,
verbose = TRUE

)

codon_matrix 53

Arguments

base A DNAMultipleAlignment, a DNAStringSet, or a BaseSeqMatrix.

... Not in use yet.
num.cores, tasks

Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the function log to stdout

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (3-4).

group A character string denoting the group representation for the given base or codon
as shown in reference (3-4).

Details

The purpose of this function is making the codon coordinates from multiple sequence alignments
(MSA) available for further downstream statistical analyses, like those reported in references (1)
and (2).

Value

A ListCodonMatrix class object with the codon coordinate on its metacolumns.

Author(s)

Robersy Sanchez https://genomaths.com

References

1. Lorenzo-Ginori, Juan V., Aníbal Rodríguez-Fuentes, Ricardo Grau Ábalo, and Robersy Sánchez
Rodríguez. "Digital signal processing in the analysis of genomic sequences." Current Bioin-
formatics 4, no. 1 (2009): 28-40.

2. Sanchez, Robersy. "Evolutionary analysis of DNA-protein-coding regions based on a genetic
code cube metric." Current Topics in Medicinal Chemistry 14, no. 3 (2014): 407-417.

3. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi: 10.1101/2021.06.01.446543

4. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

5. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560.

1.

2.

See Also

codon_coord, base_coord and base2int.

https://genomaths.com
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap

54 ConservedRegion-class

Examples

Load the MSA of Primate BRCA1 DNA repair genes
data("brca1_aln")

Get the DNAStringSet for the first 33 codons and apply 'codon_matrix'
brca1 <- unmasked(brca1_aln)
brca1 <- subseq(brca1, start = 1, end = 33)
codon_matrix(brca1)

Get back the alignment object and apply 'codon_matrix' gives us the
same result.
brca1 <- DNAMultipleAlignment(as.character(brca1))
codon_matrix(brca1)

ConservedRegion-class A class definition to store conserved gene/genomic regions found in a
MSA.

Description

A class definition to store conserved gene/genomic regions found in a MSA.

Valid ConservedRegion mcols

A class definition for a list of ConservedRegion class objects.

Valid ConservedRegionList mcols

Usage

valid.ConservedRegion(x)

valid.ConservedRegionList(x)

Arguments

x A ’ConservedRegionList object’

Details

ConservedRegionList-class has the following method:

as(’from’, "ConservedRegionList"):
Where ’from’ is a list of ConservedRegion-class.

Value

Definition of the ConservedRegion-class.

conserved_regions 55

conserved_regions Conserved and Non-conserved Regions from a MSA

Description

Returns the Conserved or the Non-conserved Regions from a MSA.

Usage

conserved_regions(x, ...)

S4 method for signature 'Automorphism'
conserved_regions(
x,
conserved = TRUE,
output = c("all_pairs", "unique_pairs", "unique")

)

S4 method for signature 'AutomorphismList'
conserved_regions(
x,
conserved = TRUE,
output = c("all_pairs", "unique_pairs", "unique"),
num.cores = multicoreWorkers(),
tasks = 0L,
verbose = FALSE

)

S4 method for signature 'AutomorphismByCoef'
conserved_regions(
x,
conserved = TRUE,
output = c("all_pairs", "unique_pairs", "unique")

)

S4 method for signature 'AutomorphismByCoefList'
conserved_regions(
x,
conserved = TRUE,
output = c("all_pairs", "unique_pairs", "unique")

)

Arguments

x A Automorphism-class, a AutomorphismList-class, a AutomorphismByCoef
or a AutomorphismByCoefList class object.

... Not in use.

conserved Logical, Whether to return the conserved or the non-conserved regions.

output A character string. Type of output.

56 covid_aln

num.cores, tasks
Integers. Argument num.cores denotes the number of cores to use, i.e. at most
how many child processes will be run simultaneously (see bplapply function
from BiocParallel package). Argument tasks denotes the number of tasks per
job. value must be a scalar integer >= 0L. In this documentation a job is defined
as a single call to a function, such as bplapply. A task is the division of the
X argument into chunks. When tasks == 0 (default), X is divided as evenly as
possible over the number of workers (see MulticoreParam from BiocParallel
package).

verbose logic(1). If TRUE, enable progress bar.

Value

A AutomorphismByCoef class object containing the requested regions.

Examples

Load dataset
data("autm", package = "GenomAutomorphism")
conserved_regions(autm[1:3])
Load automorphism found COVID datatset
data("covid_autm", package = "GenomAutomorphism")

Conserved regions in the first 100 codons
conserv <- conserved_regions(covid_autm[1:100], output = "unique")
conserv

covid_aln Pairwise Sequence Alignment (MSA) of COVID-19 genomes.

Description

This is a DNAMultipleAlignment carrying the pairwise sequence alignment of SARS coronavirus
GZ02 (GenBank: AY390556.1: 265-13398_13398-21485) and Bat SARS-like coronavirus iso-
late bat-SL-CoVZC45 (GenBank: MG772933.1:265-1345513455-21542), complete genomes. The
alignment is available at GitHub: https://github.com/genomaths/seqalignments/tree/master/
COVID-19

Usage

data("covid_aln", package = "GenomAutomorphism")

Format

DNAMultipleAlignment class object.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

brca1_aln, brca1_autm2, cyc_aln and covid_aln.

https://github.com/genomaths/seqalignments/tree/master/COVID-19
https://github.com/genomaths/seqalignments/tree/master/COVID-19
https://genomaths.com

covid_autm 57

Examples

data("covid_aln", package = "GenomAutomorphism")
covid_aln

covid_autm Automorphisms between DNA Sequences from two COVID-19
genomes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the SARS
coronavirus GZ02 (GenBank: AY390556.1: 265-13398_13398-21485) and Bat SARS-like coron-
avirus isolate bat-SL-CoVZC45 (GenBank: KY417151.1: protein-coding regions). The pairwise
DNA sequence alignment is available in the dataset named covid_aln and the automorphisms were
estimated with function autZ64.

Usage

data("covid_autm", package = "GenomAutomorphism")

Format

AutomorphismList class object.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

brca1_autm, brca1_autm2, cyc_autm, and covid_aln.

Examples

data("covid_autm", package = "GenomAutomorphism",
envir = environment())

covid_autm

https://genomaths.com

58 cyc_autm

cyc_aln Multiple Sequence Alignment (MSA) of Primate Somatic Cytochrome
C

Description

This is a DNAMultipleAlignment carrying a MSA of Primate Somatic Cytochrome C to be used in
the examples provided for the package functions. The original file can be downloaded from GitHub
at: https://bit.ly/3kdEAzs

Usage

data("cyc_aln", package = "GenomAutomorphism")

Format

DNAMultipleAlignment class object.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

brca1_aln, brca1_aln2, covid_aln, and covid_aln.

Examples

data("cyc_aln", package = "GenomAutomorphism")
cyc_aln

cyc_autm Automorphisms between DNA Sequences from Primate Cytochrome C
Genes

Description

This is a AutomorphismList object carrying a list of pairwise automorphisms between the DNA
sequences from the MSA of Primate Somatic Cytochrome C to be used in the examples provided for
the package functions. The automorphisms were estimated from the cyc_aln MSA with function
autZ64.

Usage

data("cyc_autm", package = "GenomAutomorphism")

Format

AutomorphismList class object.

https://bit.ly/3kdEAzs
https://bit.ly/3kdEAzs
https://genomaths.com
https://bit.ly/3kdEAzs

dna_phyche 59

Author(s)

Robersy Sanchez https://genomaths.com

See Also

brca1_autm, brca1_autm2, covid_autm, and covid_aln.

Examples

data("cyc_autm", package = "GenomAutomorphism")
cyc_autm

dna_phyche Some Physicochemical Properties of DNA bases

Description

This data set carries some relevant physicochemical properties of the DNA bases. Available prop-
erties are:

"proton_affinity: " It is an indicatio of the thermodynamic gradient between a molecule and the
anionic form of that molecule upon removal of a proton from it (Wikipedia). The proton affin-
ity values, given in kJ/mol, were taken from reference (1), also available in Wolfram Alpha
at https://www.wolframalpha.com/ and in the cell phone App ’Wolfram Alpha’.. Reference
(2) provides several measurements accomplished by several computational and experimental
approaches.

"partition_coef: " 1-octanol/water partition coefficients, logP. In the physical sciences, a partition
coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a
mixture of two immiscible solvents at equilibrium (3). The partition coefficient measures how
hydrophilic ("water-loving") or hydrophobic ("water-fearing") a chemical substance is. Parti-
tion coefficients are useful in estimating the distribution of drugs within the body. Hydropho-
bic drugs with high octanol-water partition coefficients are mainly distributed to hydrophobic
areas such as lipid bilayers of cells. Conversely, hydrophilic drugs (low octanol/water partition
coefficients) are found primarily in aqueous regions such as blood serum. The partition coef-
ficient values included here were taken from reference (1), also available in Wolfram Alpha at
https://www.wolframalpha.com/ and in the cell phone App ’Wolfram Alpha’.

"dipole_moment: " Dipole-dipole, dipole-induced-dipole and London force interactions among
the bases in the helix are large, and make the free energy of the helix depend on the base
composition and sequence. The dipole moment values were taken from reference (4). The
dipole moment of DNA bases refers to the measure of polarity in the chemical bonds between
atoms within the nucleobases. Dipole moments arise due to differences in electronegativity
between the bonded atoms. In DNA bases, these dipole moments can influence the orienta-
tion of the bases when interacting with other molecules or surfaces, such as graphene/h-BN
interfaces. The concept of dipole moments has been applied to analyze the electric moments
of RNA-binding proteins, which can help identify DNA-binding proteins and provide insights
into their mechanisms and prediction.

"tautomerization_energy: " The term “tautomerism” is usually defined as structural isomerism
with a low barrier to interconversion between the isomers, for example, the enol/imino forms
for cytosine and guanine. Tautomerization is a process where the chemical structure of a

https://genomaths.com
https://en.wikipedia.org/wiki/Proton_affinity

60 dna_phychem

molecule, such as DNA bases, undergoes a rearrangement of its atoms. This rearrangement
results in the formation of different isomers, called tautomers, which can exist in solution or
in a cell. The DNA bases can undergo tautomeric shifts, which can potentially contribute to
mutagenic mispairings during DNA replication. The energy required for tautomerization of
DNA bases is known as tautomerization energy. These values were taken from reference (2)
and the value for each base corresponds to the average of the values estimated from different
measurement approaches.

Usage

data("dna_phyche", package = "GenomAutomorphism")

Format

A data frame object.

References

1. Wolfram Research (2007), ChemicalData, Wolfram Language function, https://reference.wolfram.com/language/ref/ChemicalData.html
(updated 2016).

2. Moser A, Range K, York DM. Accurate proton affinity and gas-phase basicity values for
molecules important in biocatalysis. J Phys Chem B. 2010;114: 13911–13921. doi:10.1021/jp107450n.

3. Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71:
525–616. doi:10.1021/cr60274a001.

4. Vovusha H, Amorim RG, Scheicher RH, Sanyal B. Controlling the orientation of nucleobases
by dipole moment interaction with graphene/h-BN interfaces. RSC Adv. Royal Society of
Chemistry; 2018;8: 6527–6531. doi:10.1039/c7ra11664k.

Examples

data("dna_phyche", package = "GenomAutomorphism")
dna_phyche

Select DNA base tautomerization energy
te <- as.list(dna_phyche$tautomerization_energy)
names(te) <- rownames(dna_phyche)

Let's create DNAStringSet-class object
base <- DNAStringSet(x = c(seq1 ='ACGTGATCAAGT',

seq2 = 'GTGTGATCCAGT'))

dna_phychem(seqs = base, phychem = te,
index_name = "Tautomerization-Energy")

dna_phychem DNA numerical matrix

Description

This function applies the numerical indices representing various physicochemical and biochemical
properties of DNA bases. As results, DNA sequences are represented as numerical vectors which
can be subject of further downstream statistical analysis and digital signal processing.

dna_phychem 61

Usage

dna_phychem(seqs, ...)

S4 method for signature 'character'
dna_phychem(
seqs,
phychem = list(A = NULL, T = NULL, C = NULL, G = NULL, N = NULL)

)

S4 method for signature 'DNAStringSet_OR_DNAMultipleAlignment'
dna_phychem(
seqs,
phychem = list(A = NULL, T = NULL, C = NULL, G = NULL, N = NULL),
index_name = NULL,
...

)

Arguments

seqs A character string, a DNAStringSet or a DNAMultipleAlignment class object
carrying the DNA pairwise alignment of two sequences.

... Not in use.

phychem A list of DNA bases physicochemical properties, e.g., like those provided in
dna_phyche.

index_name Optional. Name of breve description of the base physicochemical property ap-
plied to represent the DNA sequence.

Value

A MatrixSeq-class object.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

peptide_phychem_index

Examples

Let's create DNAStringSet-class object
base <- DNAStringSet(x = c(seq1 ='ACGTGATCAAGT',

seq2 = 'GTGTGATCCAGT',
seq3 = 'TCCTGATCAGGT'))

dna_phychem(seqs = base,
phychem = list('A' = 0.87, 'C' = 0.88, 'T' = 0.82,

'G' = 0.89, 'N' = NA),
index_name = "Proton-Affinity")

https://genomaths.com

62 getAutomorphisms

GenomAutomorphism GenomAutomorphism: An R package to compute the automorphisms
between DNA sequences represented as elements from an Abelian
group.

Description

This is a R package to compute the automorphisms between pairwise aligned DNA sequences rep-
resented as elements from a Genomic Abelian group as described in reference (1). In a general
scenario, whole chromosomes or genomic regions from a population (from any species or close
related species) can be algebraically represented as a direct sum of cyclic groups or more specifi-
cally Abelian p-groups. Basically, we propose the representation of multiple sequence alignments
(MSA) of length N as a finite Abelian group created by the direct sum of homocyclic Abelian group
of prime-power order.

Author(s)

Maintainer: Robersy Sanchez <genomicmath@gmail.com> (ORCID)

See Also

Useful links:

• https://github.com/genomaths/GenomAutomorphism

• Report bugs at https://github.com/genomaths/GenomAutomorphism/issues

getAutomorphisms Get Automorphisms

Description

For the sake of saving memory, each Automorphism-class objects is stored in an AutomorphismList-class,
which does not inherits from a GRanges-class.

Usage

getAutomorphisms(x, ...)

S4 method for signature 'AutomorphismList'
getAutomorphisms(x)

S4 method for signature 'list'
getAutomorphisms(x)

S4 method for signature 'DataFrame_OR_data.frame'
getAutomorphisms(x)

Arguments

x An AutomorphismList-class.
... Not in use.

https://orcid.org/0000-0002-5246-1453
https://github.com/genomaths/GenomAutomorphism
https://github.com/genomaths/GenomAutomorphism/issues

get_coord 63

Details

This function just transform each Automorphism-class object into an object from the same class
but now inheriting from a GRanges-class.

Value

This function returns an AutomorphismList-class object as a list of Automorphism-class ob-
jects, which inherits from GRanges-class objects.

An AutomorphismList-class

An Automorphism-class

Examples

Load a dataset
data("autm", package = "GenomAutomorphism")
aut <- mcols(autm)
aut ## This a DataFrame object

The natural ranges for the sequence (from 1 to length(aut)) are added
getAutomorphisms(aut)

A list of automorphisms
aut <- list(aut, aut)
getAutomorphisms(aut)

Automorphism-class inherits from 'GRanges-class'
aut <- as(autm, "GRanges")
as(aut, "Automorphism")

get_coord DNA base/codon sequence and coordinates represented on a given
Abelian group.

Description

Given a string denoting a codon or base from the DNA (or RNA) alphabet and a genetic-code
Abelian group as given in reference (1), this function returns an object from CodonGroup-class
carrying the DNA base/codon sequence and coordinates represented on the given Abelian group.

Usage

get_coord(x, ...)

S4 method for signature 'BaseGroup_OR_CodonGroup'
get_coord(x, output = c("all", "matrix.list"))

S4 method for signature 'DNAStringSet_OR_NULL'
get_coord(
x,
output = c("all", "matrix.list"),
base_seq = TRUE,

64 get_coord

filepath = NULL,
cube = "ACGT",
group = "Z4",
start = NA,
end = NA,
chr = 1L,
strand = "+"

)

Arguments

x An object from a BaseGroup-class, CodonGroup-class, DNAStringSet or
DNAMultipleAlignment class carrying the DNA pairwise alignment of two se-
quences. Objects from BaseGroup-class and CodonGroup-class are gener-
ated with functions: base_coord and codon_coord, respectively.

... Not in use.

output See ’Value’ section.

base_seq Logical. Whether to return the base or codon coordinates on the selected Abelian
group. If codon coordinates are requested, then the number of the DNA bases in
the given sequences must be multiple of 3.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2 2 3).

group A character string denoting the group representation for the given base or codon
as shown in reference (1).

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

Details

Symbols ’-’ and ’N’ usually found in DNA sequence alignments to denote gaps and missing/unknown
bases are represented by the number: ’-1’ on Z4 and ’0’ in Z5. In Z64 the symbol ’NA’ will be re-
turned for codons including symbols ’-’ and ’N’.

Although the CodonGroup-class object returned by functions codon_coord and base_coord are
useful to store genomic information, the base and codon coordinates are not given on them as
numeric magnitudes. Function get_coord provides the way to get the coordinates in a numeric
object in object from and still to preserve the base/codon sequence information.

Value

An object from CodonGroup-class class is returned when output = ’all’. This has two slots, the
first one carrying a list of matrices and the second one carrying the codon/base sequence informa-
tion. That is, if x is an object from CodonGroup-class class, then a list of matrices of codon coordi-
nate can be retrieved as x@CoordList and the information on the codon sequence as x@SeqRanges.

if output = ’matrix.list’, then an object from MatrixList class is returned.

get_mutscore 65

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

DNA base representation in the Abelian group Z5
coord <- get_coord(

x = aln,
cube = "ACGT",
group = "Z5"

)
coord ## A list of vectors

Extract the coordinate list
coordList(coord)

Extract the sequence list
seqRanges(coord)

DNA codon representation in the Abelian group Z64
coord <- get_coord(

x = aln,
base_seq = FALSE,
cube = "ACGT",
group = "Z64"

)
coord

Extract the coordinate list
coordList(coord)

Extract the sequence list
seqRanges(coord)

get_mutscore Get Mutation Score from an AAindex or a Mutation/Distance Matrix

Description

This function is applied to get the mutation or contact potential scores representing the similar-
ity/distance between amino acids corresponding to substitution mutations. The scores are retrieved
from a mutation matrix or a statistical protein contact potentials matrix from AAindex (ver.9.2).

Alternatively, the mutation scores can be estimated based on an user mutation matrix, for example,
see aminoacid_dist and codon_dist_matrix.

Usage

get_mutscore(aa1, aa2, ...)

S4 method for signature 'character,character'
get_mutscore(
aa1,

https://www.genome.jp/aaindex/

66 get_mutscore

aa2,
acc = NULL,
aaindex = NULL,
mutmat = NULL,
alphabet = c("AA", "DNA"),
num.cores = 1L,
tasks = 0L,
verbose = FALSE,
...

)

S4 method for signature 'BaseSeq,missing'
get_mutscore(
aa1,
aa2,
acc = NULL,
aaindex = NULL,
mutmat = NULL,
alphabet = c("AA", "DNA"),
stat = mean,
numcores = 1L,
num.cores = 1L,
tasks = 0L,
output = c("dist", "matrix", "vector"),
na.rm = TRUE,
verbose = TRUE,
...

)

S4 method for signature 'DNAStringSet,missing'
get_mutscore(
aa1,
aa2,
acc = NULL,
aaindex = NULL,
mutmat = NULL,
alphabet = c("AA", "DNA"),
stat = mean,
num.cores = 1L,
tasks = 0L,
verbose = TRUE,
output = c("dist", "matrix", "vector"),
na.rm = TRUE,
...

)

S4 method for signature 'DNAMultipleAlignment,missing'
get_mutscore(
aa1,
aa2,
acc = NULL,
aaindex = NULL,

get_mutscore 67

mutmat = NULL,
alphabet = c("AA", "DNA"),
stat = mean,
num.cores = 1L,
tasks = 0L,
verbose = TRUE,
output = c("dist", "matrix", "vector"),
na.rm = TRUE,
...

)

Arguments

aa1, aa2 A simple character representing an amino acids or a character string of let-
ter from the amino acid alphabet or base-triplets from the DNA/RNA alpha-
bet. If aa1 is an object from any of the classes: BaseSeq, DNAStringSet, or
DNAMultipleAlignment, then argument aa2 is not required.

... Not in use.

acc Accession id for a specified mutation or contact potential matrix.

aaindex Database where the requested accession id is locate. The possible values are:
"aaindex2" or "aaindex3".

mutmat A mutation or any score matrix provided by the user.

alphabet Whether the alphabet is from the 20 amino acid (AA) or four (DNA)/RNA base
alphabet. This would prevent mistakes, i.e., the strings "ACG" would be a base-
triplet on the DNA alphabet or simply the amino acid sequence of alanine, cys-
teine, and glutamic acid.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose Optional. Only if num.cores > 1. If TRUE, prints the function log to stdout.

stat Statistic that will be used to summarize the scores of the DNA sequences pro-
vided. Only if aa1 is an object from any of the classes: BaseSeq, DNAStringSet,
or DNAMultipleAlignment.

numcores An integer to setup the number of parallel workers via makeCluster.

output Optional. Class of the returned object. Only if aa1 is an object from any of the
classes: BaseSeq, DNAStringSet, or DNAMultipleAlignment.

na.rm a logical evaluating to TRUE or FALSE indicating whether NA values should
be stripped before the computation proceeds.

Details

If a score matrix is provided by the user, then it must be a symmetric matrix 20x20.

Value

A single numeric score or a numerical vector, or if aa1 is an object from any of the classes: BaseSeq,
DNAStringSet, or DNAMultipleAlignment, then depending on the user selection the returned ob-
ject will be:

68 GRangesMatrixSeq-class

1. A lower diagonal numerical vector of the sequence pairwise scores.

2. A dist-class object.

3. A whole score matrix.

Author(s)

Robersy Sanchez https://genomaths.com

See Also

aa_mutmat, aaindex2 and aaindex3.

Examples

A single amino acids substitution mutation
get_mutscore("A", "C", acc = "MIYS930101", aaindex = "aaindex2")

A tri-peptide mutation
get_mutscore(aa1 = "ACG", aa2 = "ATG", acc = "MIYS930101",

aaindex = "aaindex2", alphabet = "AA")

A single base-triple mutation, i.e., a single amino acid substitution
mutation
get_mutscore(aa1 = "ACG", aa2 = "CTA", acc = "MIYS930101",

aaindex = "aaindex2", alphabet = "DNA")

Peptides can be also written as:
get_mutscore(aa1 = c("A","C","G"), aa2 = c("C","T","A"),

acc = "MIYS930101", aaindex = "aaindex2", alphabet = "AA")

GRangesMatrixSeq-class

Definition of GRangesMatrixSeq-class

Description

This is a very simple flexible class to store DNA and aminoacid aligned sequences together with
their physicochemical properties. That is, a place where each aminoacid or codon from the sequence
is represented by numerical value from a physicochemical index.

Constructor for ’GRangesMatrixSeq-class’ object.

Usage

GRangesMatrixSeq(
object = NULL,
seqnames = Rle(factor()),
start = integer(0),
end = integer(0),
ranges = IRanges(),
strands = Rle(strand()),
elementMetadata = DataFrame(),
seqinfo = NULL,

https://genomaths.com

GRanges_OR_NULL-class 69

seqs = character(),
names = character(),
aaindex = character(),
phychem = character(),
accession = character()

)

Arguments

object If provided, it must be a GRangesMatrixSeq-class object and in this case

seqnames, start, end, ranges, strand, elementMetadata, seqinfo
The same as in GRanges

seqs, names, aaindex, phychem, accession
The same as in MatrixSeq.

Details

This is a convenient function to transform a MatrixSeq-class object returned by function aa_phychem_index
into a ’GRangesMatrixSeq-class’ object. Since a ’GRangesMatrixSeq-class’ inherits from GRanges-class,
this transformation permits the application of several methods from GenomicRanges package in the
downstream analysis.

Value

Given the slot values, it defines a MatrixList-class.

Only used to specify signature in the S4 setMethod.

Examples

aln <- c(S1 = "ATGCGGATTAGA", S2 = "ATGACGATCACA",
S3 = "ATGAGATCACAG")

cd <- DNAMultipleAlignment(aln)
r1 <- peptide_phychem_index(unmasked(cd), acc = "EISD840101")

r2 <- GRangesMatrixSeq(r1)
r2

slot(r2, "phychem")

GRanges_OR_NULL-class A definition for the union of ’GRanges’ and ’NULL’ class.

Description

A definition for the union of ’GRanges’ and ’NULL’ class.

70 ListCodonMatrix-class

is.url Check URLs

Description

Check URLs

Usage

is.url(x)

Details

Internal use only.

Value

Logical values

ListCodonMatrix-class A Convenient Class to Store Codon Coordinates in given Genetic Code
cube.

Description

ListCodonMatrix-class objects are generated by function codon_matrix.

Usage

ListCodonMatrix(object, cube, group, seq_alias = NULL, names = NULL)

valid.ListCodonMatrix(x)

Arguments

object A list of CodonMatrix-class objects

x A ’ListCodonMatrix-class’ object

Examples

ListCodonMatrix-class objects are generated by function 'codon_matrix'.
Let's create DNAStringSet-class object
base <- DNAStringSet(x = c(seq1 ='ACGTGATCAAGT',

seq2 = 'GTGTGATCCAGT',
seq3 = 'TCCTGATCAGGT'))

x1 <- codon_matrix(base)
x1

Extract the first element
x1[1]

matrices 71

x1$codon.1
x1[[1]]

matrices Get the Coordinate Representation from DNA Sequences on Specified
Abelian Group

Description

Extract the Coordinate Representation from DNA Sequences on Specified Abelian Group.

Usage

matrices(x, ...)

S4 method for signature 'MatrixList'
matrices(x)

S4 method for signature 'CodonSeq'
matrices(x)

S4 method for signature 'DNAStringSet_OR_NULL'
matrices(
x,
base_seq = TRUE,
filepath = NULL,
cube = "ACGT",
group = c("Z4", "Z5", "Z64", "Z125", "Z4^3", "Z5^3"),
start = NA,
end = NA,
chr = 1L,
strand = "+"

)

Arguments

x An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences.

... Not in use.
base_seq Logical. Whether to return the base or codon coordinates on the selected Abelian

group. If codon coordinates are requested, then the number of the DNA bases in
the given sequences must be multiple of 3.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

cube A character string denoting one of the 24 Genetic-code cubes, as given in refer-
ences (2-3).

group A character string denoting the group representation for the given base or codon
as shown in reference (1).

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

72 matrices

Details

These are alternative ways to get the list of matrices of base/codon coordinate and the information
on the codon sequence from CodonSeq and MatrixList class objects. These functions can either
take the output from functions base_coord and matrices or to operate directly on a DNAStringSet
or to retrieve the a DNA sequence alignment from a file.

base_seq parameter will determine whether to return the matrices of coordinate for a DNA or codon
sequence. While in function seqranges, granges parameter will determine whether to return a
GRanges-class object or a DataFrame.

Value

The a list of vectors (group = c("Z4", "Z5", "Z64", "Z125") or a list of matrices (group = ("Z4^3",
"Z5^3")) carrying the coordinate representation on the specified Abelian group.

Author(s)

Robersy Sanchez https://genomaths.com

References

1. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi: 10.1101/2021.06.01.446543

2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560.

See Also

Symmetric Group of the Genetic-Code Cubes.

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

Coordinate representation of the aligned sequences on "Z4".
A list of vectors
matrices(

x = aln,
base_seq = TRUE,
filepath = NULL,
cube = "ACGT",
group = "Z4",

)

Coordinate representation of the aligned sequences on "Z4".
A list of matrices
matrices(

x = aln,
base_seq = FALSE,
filepath = NULL,

https://genomaths.com
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap
https://github.com/genomaths/GenomeAlgebra_SymmetricGroup

MatrixList-class 73

cube = "ACGT",
group = "Z5^3",

)

MatrixList-class Definition of MatrixList-class

Description

A class denoting a list of matrices.

Value

Given the slot values, it defines a MatrixList-class.

MatrixSeq-class Definition of MatrixSeq-class

Description

This is a very simple flexible class to store DNA and aminoacid aligned sequences together with
their physicochemical properties. That is, a place where each aminoacid or codon from the sequence
is represented by numerical value from a physicochemical index.

Usage

MatrixSeq(seqs, matrix, names, aaindex, phychem, accession)

S4 method for signature 'MatrixSeq'
show(object)

Arguments

seqs, matrix, names, aaindex, phychem, accession
See detail section

object An object from ’MatrixSeq’ class

Details

seqs: A string character vector of DNA or aminoacid sequences.

matrix: A numerical matrix or a numerical vector (in the constructor) carrying the specified
aminoacid physicochemical indices for aminoacid in the DNA or aminoacid sequence(s).

names: Alias/names/IDs DNA or aminoacid sequences.

aaindex: Aminoacid index database where the physicochemical index can be found.

phychem: Description of the physicochemical index applied to represent the DNA or aminoacid
sequences.

accession: Accession number or ID of the applied physicochemical index in the database.

74 mod

Value

Given the slot values, it defines a MatrixSeq-class.

A MatrixSeq-class object

Print/show of a MatrixSeq-class object.

Author(s)

Robersy Sanchez https://genomaths.com

Examples

aln <- c(S1 = "ATGCGGATTAGA", S2 = "ATGACGATCACA", S3 = "ATGAGATCACAG")
cd <- DNAMultipleAlignment(aln)
r1 <- peptide_phychem_index(unmasked(cd), acc = "EISD840101")
r1

Extract the second aminoacid sequence
r1[2]

Using the sequence given name
r1$S1

Extract the second aminoacid value from the first sequence
r1[1,2]

Change the name the second sequence
names(r1) <- c('S1', 'Seq1', 'S1')
r1

Extract the amino acid sequences
slot(r1, 'seqs')

mod Modulo Operation

Description

Integer remainder of the division of the integer n by m: n mod m.

Usage

mod(n, m, ...)

S4 method for signature 'matrix,numeric'
mod(n, m)

Arguments

n A numeric vector (preferably of integers), a matrix where each element can be
reduced to integers.

m An integer vector (positive, zero, or negative).
... Not in use.

https://genomaths.com

modeq 75

Value

An element of x, an Automorphism-class object.

Author(s)

Robersy Sanchez (https://genomaths.com).

Examples

Example 1
Build a matrix 'n' and set a vector of integers 'm'
n <- diag(x=1, nrow = 4, ncol = 4) * c(43,125,2,112)
m <- c(64,4,4,64)

Operation n mod m
mod(n = n, m = m)

Or simply:
n %% m

Example 2
m <- matrix(c(8,2,3, 11,12,13), nrow = 2)
m

m %% 4

modeq A Wrapper Calling Modular Linear Equation Solver (MLE)

Description

It is just a wrapper function to call modlin. This function is intended to be use internally. MLE
(a ∗ x = bmodn) not always has solution If the MLE has not solution the function will return the
value -1. Also, if a ∗ x = bmodn has solution x = 0, then function ’modeq’ will return -1.

Usage

modeq(a, b, n)

Value

A number. If the equation has not solution in their definition, domain it will return -1.

Examples

The MLE 10 * x = 3 mod 64 has not solution
modeq(10, 3, 64)

The result is the giving calling modlin(10, 4, 64)
modeq(10, 4, 64)

https://genomaths.com

76 modlineq

modlineq Modular System of Linear Equation Solver (MLE)

Description

If a, b, and c are integer vectors, this function try to find, at each coordinate, the solution of the MLE
ax = b mod n. If the MLE ax = bmodn has not solutions (see modlin), the value reported for the
coordinate will be 0 and the corresponding translation.

Usage

modlineq(a, b, n, no.sol = 0L)

Arguments

a An integer or a vector of integers.

b An integer or a vector of integers.

n An integer or a vector of integers.

no.sol Values to return when the equation is not solvable or yield the value 0. Default
is 0.

Details

For a, b, and c integer scalars, it is just a wrapper function to call modlin.

Value

If the solution is exact, then a numerical vector will be returned, otherwise, if there is not exact
solution for some coordinate, the a list carrying the element on the diagonal matrix and a translation
vector will be returned.

Examples

Set the vector x, y, and m.
x <- c(9,32,24,56,60,27,28,5)
y <- c(8,1,0,56,60,0,28,2)
modulo <- c(64,125,64,64,64,64,64,64)

Try to solve the modular equation a x = b mod n
m <- modlineq(a = x, b = y, n = modulo)
m

Or in matrix form
diag(m)

The reverse mapping is an affine transformation
mt <- modlineq(a = y, b = x, n = modulo, no.sol = 1L)
mt

That is, vector 'x' is revovered with the transformaiton
(y %*% diag(mt$diag) + mt$translation) %% modulo

mut_type 77

Or
cat("\n---- \n")

(y %*% diag(mt$diag) + mt$translation) %% modulo == x

mut_type Classification of DNA base mutations

Description

Each DNA/RNA base can be classified into three main classes according to three criteria (1): num-
ber of hydrogen bonds (strong-weak), chemical type (purine-pyrimidine), and chemical groups
(amino versus keto). Each criterion produces a partition of the set of bases: 1. According to
the number of hydrogen bonds (on DNA/RNA double helix): strong S = (C,G) (three hydrogen
bonds) and weak W = (A,U) (two hydrogen bonds); 2. According to the chemical type: purines
R = (A,G) and pyrimidines Y = (C,U). 3. According to the presence of amino or keto groups
on the base rings: amino M = (C,A) and keto K = (G,U). So, each mutational event can be
classified as according to the type of involved in it (2).

Usage

mut_type(x, y)

Arguments

x, y Character strings denoting DNA bases

Value

A character string of same length of ’x’ and ’y’.

References

1. A. Cornish-Bowden, Nomenclature for incompletely specified bases in nucleic acid sequences:
recommendations 1984, Nucleic Acids Res. 13 (1985) 3021-3030.

2. MA.A. Jimenez-Montano, C.R. de la Mora-Basanez, T. Poschel, The hypercube structure of
the genetic code explains conservative and non-conservative aminoacid substitutions in vivo
and in vitro, Biosystems. 39 (1996) 117-125.

Examples

Mutation type 'R'
mut_type("A", "G")

Mutation type 'M'
mut_type("A", "C")

Mutation type 'W'
mut_type("A", "T")

Mutation type 'S'
mut_type("G", "C")

78 peptide_phychem_index

peptide_phychem_index Amino acid numerical matrix

Description

This function applies numerical indices representing various physicochemical and biochemical
properties of amino acids and pairs of amino acids to DNA protein-coding or to aminoacid se-
quences. As results, DNA protein-coding or the aminoacid sequences are represented as numerical
vectors which can be subject of further downstream statistical analysis and digital signal processing.

Usage

peptide_phychem_index(aa, ...)

S4 method for signature 'character'
peptide_phychem_index(
aa,
acc = NULL,
aaindex = NA,
userindex = NULL,
alphabet = c("AA", "DNA"),
genetic.code = getGeneticCode("1"),
no.init.codon = FALSE,
if.fuzzy.codon = "error",
...

)

S4 method for signature 'DNAStringSet_OR_DNAMultipleAlignment'
peptide_phychem_index(
aa,
acc = NULL,
aaindex = NA,
userindex = NULL,
alphabet = c("AA", "DNA"),
genetic.code = getGeneticCode("1"),
no.init.codon = FALSE,
if.fuzzy.codon = "error",
num.cores = 1L,
tasks = 0L,
verbose = FALSE,
...

)

Arguments

aa A character string, a DNAStringSet or a DNAMultipleAlignment class object
carrying the DNA pairwise alignment of two sequences.

... Not in use.

acc Accession id for a specified mutation or contact potential matrix.

peptide_phychem_index 79

aaindex Database where the requested accession id is locate and from where the aminoacid
indices can be obtained. The possible values are: "aaindex2" or "aaindex3".

userindex User provided aminoacid indices. This can be a numerical vector or a matrix
(20 x 20). If a numerical matrix is provided, then the aminoacid indices are
computes as column averages.

alphabet Whether the alphabet is from the 20 aminoacid (AA) or four (DNA)/RNA base
alphabet. This would prevent mistakes, i.e., the strings "ACG" would be a base-
triplet on the DNA alphabet or simply the amino acid sequence of alanine, cys-
teine, and glutamic acid.

genetic.code, no.init.codon, if.fuzzy.codon
The same as given in function translation.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the function log to stdout.

Details

If a DNA sequence is given, then it is assumed that it is a DNA base-triplet sequence, i.e., the base
sequence must be multiple of 3.

Errors can be originated if the given sequences carry letter which are not from the DNA or aminoacid
alphabet.

Value

Depending on the user specifications, a mutation or contact potential matrix, a list of available
matrices (indices) ids or index names can be returned. More specifically:

aa_mutmat: Returns an aminoacid mutation matrix or a statistical protein contact potentials ma-
trix.

aa_index: Returns the specified aminoacid physicochemical indices.

Author(s)

Robersy Sanchez https://genomaths.com

Examples

Let's create DNAStringSet-class object
base <- DNAStringSet(x = c(seq1 ='ACGTCATAAAGT',

seq2 = 'GTGTAATACAGT',
seq3 = 'TCCTCATAAGGT'))

The stop condon 'TAA' yields NA
aa <- peptide_phychem_index(base, acc = "EISD840101")
aa

Description of the physicochemical index
slot(aa, 'phychem')

Get the aminoacid sequences. The stop codon 'TAA' is replaced by '*'.

https://genomaths.com

80 reexports

slot(aa, 'seqs')

aa <- peptide_phychem_index(base, acc = "MIYS850103", aaindex = "aaindex3")
aa

Description of the physicochemical index
slot(aa, 'phychem')

reexports Reexport useful functions to be available to users

Description

These objects are imported from other packages. Follow the links below to see their documentation.

BiocGenerics end, end<-, start, start<-, strand, strand<-, width

Biostrings AAMultipleAlignment, AAStringSet, DNAMultipleAlignment, DNAStringSet, GENETIC_CODE_TABLE,
getGeneticCode, readDNAMultipleAlignment, translate, unmasked

GenomicRanges GRangesList, makeGRangesFromDataFrame

matrixStats colMeans2, colSds, colSums2, colVars, rowMeans2, rowSds, rowSums2, rowVars

numbers modlin, modq

S4Vectors mcols, mcols<-, setValidity2

XVector subseq

Value

The same as in mcols.

The same as in mcols.

The same as in setValidity2.

The same as in DNAStringSet.

The same as in AAStringSet.

The same as in readDNAMultipleAlignment.

The same as in DNAMultipleAlignment.

The same as in AAMultipleAlignment.

The same as in subseq.

The same as in translate.

The same as in GENETIC_CODE_TABLE.

The same as in getGeneticCode.

The same as in unmasked.

The same as in width.

The same as in start.

The same as in start.

The same as in end.

seqranges 81

The same as in end.

The same as in strand.

The same as in strand.

The same as in GRangesList.

The same as in makeGRangesFromDataFrame.

The same as in modq.

The same as in modlin.

The same as in rowSums2.

The same as in colSums2.

The same as in colMeans2.

The same as in rowMeans2.

The same as in rowVars.

The same as in colVars.

The same as in colSds.

The same as in rowSds.

Examples

Load an Automorphism object and take its metacolumns
data("autm", package = "GenomAutomorphism")
mcols(autm)
See \code{\link[BiocGenerics]{start}}.

Load an Automorphism object and get some 'end' coordinates
data("autm", package = "GenomAutomorphism")
end(autm[20:50])

seqranges Get DNA sequence Ranges and Coordinates representation on a given
Abelian Group

Description

Extract the gene ranges and coordinates from a pairwise alignment of codon/base sequences repre-
sented on a given Abelian group.

Usage

seqranges(x, ...)

S4 method for signature 'CodonSeq'
seqranges(x, granges = TRUE)

S4 method for signature 'DNAStringSet_OR_NULL'
seqranges(
x,
granges = TRUE,

82 seqranges

base_seq = TRUE,
filepath = NULL,
start = NA,
end = NA,
chr = 1L,
strand = "+"

)

Arguments

x An object from a DNAStringSet or DNAMultipleAlignment class carrying the
DNA pairwise alignment of two sequences.

... Not in use.

granges Logical. Whether to return a GRanges-class object or a DataFrame.

base_seq Logical. Whether to return the base or codon coordinates on the selected Abelian
group. If codon coordinates are requested, then the number of the DNA bases in
the given sequences must be multiple of 3.

filepath A character vector containing the path to a file in fasta format to be read. This
argument must be given if codon & base arguments are not provided.

start, end, chr, strand
Optional parameters required to build a GRanges-class. If not provided the
default values given for the function definition will be used.

Details

This function provide an alternative way to get the codon coordinate and the information on the
codon sequence from a CodonSeq class objects. The function can either take the output from func-
tions codon_coord or to operate directly on a DNAStringSet or to retrieve the a DNA sequence
alignment from a file.

Value

A GRanges-class

Author(s)

Robersy Sanchez https://genomaths.com

References

1. Robersy Sanchez, Jesus Barreto (2021) Genomic Abelian Finite Groups. doi:10.1101/2021.06.01.446543

2. M. V Jose, E.R. Morgado, R. Sanchez, T. Govezensky, The 24 possible algebraic representa-
tions of the standard genetic code in six or in three dimensions, Adv. Stud. Biol. 4 (2012)
119-152.PDF.

3. R. Sanchez. Symmetric Group of the Genetic-Code Cubes. Effect of the Genetic-Code Ar-
chitecture on the Evolutionary Process MATCH Commun. Math. Comput. Chem. 79 (2018)
527-560.

See Also

matrices, codon_coord, and base_coord.

https://genomaths.com
https://doi.org/10.1101/2021.06.01.446543
https://is.gd/na9eap

show,CodonSeq-method 83

Examples

Load a pairwise alignment
data("aln", package = "GenomAutomorphism")
aln

A GRanges object carrying the aligned DNA sequence.
seqranges(

x = aln,
base_seq = TRUE,
filepath = NULL,

)

A GRanges object carrying the aligned codon sequence.
seqranges(

x = aln,
base_seq = FALSE,
filepath = NULL,

)

show,CodonSeq-method Show method for ’CodonSeq’ class object

Description

Show method for ’CodonSeq’ class object

Show method for ’ListCodonMatrix’ class object

Show method for ’MatrixList’ class object

Usage

S4 method for signature 'CodonSeq'
show(object)

S4 method for signature 'ListCodonMatrix'
show(object)

S4 method for signature 'MatrixList'
show(object)

Arguments

object An object from ’MatrixList’ class

Value

Print/show of a ListCodonMatrix-class object.

Print/show of a MatrixList-class object.

84 slapply

slapply Apply a function over a list-like object preserving its attributes

Description

This function apply a function over a list-like object preserving its attributes and simplify (if re-
quested) the list as sapply function does. slapply returns a list of the same length as ’x’, each
element of which is the result of applying FUN to the corresponding element of ’x’.

Usage

slapply(
x,
FUN,
keep.attr = FALSE,
class = NULL,
simplify = TRUE,
USE.NAMES = TRUE,
...

)

Arguments

x A list-like or vector-like object.

FUN, ... The same as described in lapply.

keep.attr Logic. If TRUE, then the original attributes from ’x’ are preserved in the re-
turned list. Default is FALSE.

class Name of the class to which the returned list belongs to. Default is NULL.
simplify, USE.NAMES

The same as described in sapply.

Value

Same as in ?base::lapply if keep.attr = FALSE. Otherwise same values preserving original at-
tributes from ’x’.

Author(s)

Robersy Sanchez (https://genomaths.com).

See Also

lapply and sapply

Examples

Create a list
x <- list(a = seq(10), beta = exp(seq(-3, 3)),

logic = c(TRUE, FALSE, FALSE, TRUE))
class(x) <- "nice"

https://genomaths.com

sortByChromAndStart 85

To compute the list mean for each list element using 'base::lapply'
class(slapply(x, mean, simplify = FALSE))

Simply 'base::lapply' preserving attributes
slapply(x, mean, keep.attr = TRUE, simplify = FALSE)

To preserve attributes and simplify
slapply(x, mean, keep.attr = TRUE, simplify = TRUE)

sortByChromAndStart Sorting GRanges-class objects

Description

Sorts a GRanges-class objects by seqname (chromosome), start, and position.

Usage

sortByChromAndStart(x)

sortByChromAndEnd(x)

Arguments

x GRanges object

Details

Objects that inherits from a GRanges-class can be sorted as well.

Value

GRanges-class object or from the original object class.

Examples

GR <- as(c("chr2:1-1", "chr1:1-1"), "GRanges")
GR <- sortByChromAndStart(GR)

86 str2chr

str2chr String to Character

Description

A simple function to transform a string into character vector.

Usage

str2chr(x, split = "", ...)

S4 method for signature 'character'
str2chr(x, split = "", ...)

S4 method for signature 'list'
str2chr(x, split = "", num.cores = 1L, tasks = 0L, verbose = FALSE, ...)

Arguments

x A character string or a list/vector of character strings.

split The same as in strsplit

... Further parameters for strsplit.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the function log to stdout.

Value

A character string

Author(s)

Robersy Sanchez https://genomaths.com

Examples

A character string
str2chr("ATCAGCGGGATCTT")

A list of character strings
str2chr(list(str1 = "ATCAGCGGGATCTT", str2 = "CTTCTTCGTCAGGC"))

https://genomaths.com

str2dig 87

str2dig String to Digits

Description

A simple function to transform a string of digits into a numeric vector.

Usage

str2dig(x, split = "", ...)

S4 method for signature 'character'
str2dig(x, split = "", ...)

S4 method for signature 'list'
str2dig(x, split = "", num.cores = 1L, tasks = 0L, verbose = FALSE, ...)

Arguments

x A character string or a list/ of character strings of numeric/digit symbols.

split The same as in strsplit

... Further parameters for strsplit.

num.cores, tasks
Parameters for parallel computation using package BiocParallel-package:
the number of cores to use, i.e. at most how many child processes will be run
simultaneously (see bplapply and the number of tasks per job (only for Linux
OS).

verbose If TRUE, prints the function log to stdout.

Value

A integer vector or a list of integer vectors.

Author(s)

Robersy Sanchez https://genomaths.com

Examples

A integer vector
str2dig("12231456247")

A list of integer vectors
str2dig(list(num1 = "12231456247", num2 = "521436897"))

https://genomaths.com

88 translation

translation Translation of DNA/RNA sequences

Description

This function extends translate function to include letters that are frequently found in the DNA
sequence databases to indicate missing information and are not part of the the DNA/RNA alphabet.
Also, it is able to process sequences as just simple ’character’ objects.

Usage

translation(x, ...)

S4 method for signature 'character'
translation(
x,
genetic.code = getGeneticCode("1"),
no.init.codon = FALSE,
if.fuzzy.codon = "error"

)

S4 method for signature 'BioString'
translation(
x,
genetic.code = getGeneticCode("1"),
no.init.codon = FALSE,
if.fuzzy.codon = "error"

)

Arguments

x A character string or the same arguments given to function translate.

... Not in use yet.

genetic.code The same as in translate

no.init.codon, if.fuzzy.codon
Used only if ’x’ is not a ’character’ object. The same as in translate.

Details

If argument ’x’ belong to any of the classes admitted by function translate, then this function is
called to make the translation.

Value

The translated amino acid sequence.

Author(s)

Robersy Sanchez https://genomaths.com

https://genomaths.com

valid.Automorphism.mcols 89

See Also

translate

Examples

Load a small DNA sequence alingment
data("aln", package = "GenomAutomorphism")

translation(aln)

Load a pairwise DNA sequence alingment of COVID-19 genomes
data("covid_aln", package = "GenomAutomorphism")

translation(covid_aln)

valid.Automorphism.mcols

Valid Automorphism mcols

Description

Valid Automorphism mcols

Valid Automorphism

Usage

valid.Automorphism.mcols(x)

valid.Automorphism(x)

Arguments

x A ’Automorphism object’

Value

An Error if the metacolumn does not have a valid format

An Error if the Automorphism-class object is not valid.

90 valid.AutomorphismByCoefList

valid.AutomorphismByCoef

Valid AutomorphismByCoef mcols

Description

Valid AutomorphismByCoef mcols

Usage

valid.AutomorphismByCoef(x)

Arguments

x A ’AutomorphismByCoef object’

Value

An error if ’x’ is not a valid AutomorphismByCoef.

valid.AutomorphismByCoefList

Valid AutomorphismByCoefList mcols

Description

Valid AutomorphismByCoefList mcols

Usage

valid.AutomorphismByCoefList(x)

Arguments

x A ’AutomorphismByCoefList object’

Value

An error if ’x’ is not a valid AutomorphismByCoefList.

valid.AutomorphismList 91

valid.AutomorphismList

Valid AutomorphismList mcols

Description

Valid AutomorphismList mcols

Usage

valid.AutomorphismList(x)

Arguments

x A ’AutomorphismList object’

Value

An error if ’x’ is not a valid AutomorphismList class object.

valid.BaseGroup.elem Valid BaseGroup mcols

Description

Valid BaseGroup mcols

Valid ’BaseGroup’ inheritance from ’GRanges’ class

Valid BaseGroup

Usage

valid.BaseGroup.elem(x)

valid.GRanges(x)

valid.BaseGroup(x)

Arguments

x A ’BaseGroup object’

Value

If valid return NULL

If valid return NULL

If valid return NULL

92 valid.MatrixList

valid.CodonGroup.mcols

Valid CodonGroup mcols

Description

Valid CodonGroup mcols

Valid CodonGroup

Usage

valid.CodonGroup.mcols(x)

valid.CodonGroup(x)

Arguments

x A ’CodonGroup object’

Value

If valid return NULL

If valid return NULL

valid.MatrixList Valid MatrixList

Description

Valid MatrixList

Usage

valid.MatrixList(x)

Arguments

x A ’MatrixList object’

Value

If valid return NULL

Only used to specify signature in the S4 setMethod.

[,AutomorphismList,ANY,ANY-method 93

[,AutomorphismList,ANY,ANY-method

An S4 class to extract elements for objects created with GenomAuto-
morphism package

Description

First and second level subsetting of ’x’. Extraction using names can be done as x$name.

Usage

S4 method for signature 'AutomorphismList,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'ListCodonMatrix,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'MatrixSeq,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'AutomorphismList,ANY,ANY'
x[[i, j, ...]]

S4 method for signature 'ListCodonMatrix,ANY,ANY'
x[[i, j, ...]]

S4 method for signature 'AutomorphismList'
x$name

S4 method for signature 'ListCodonMatrix'
names(x)

S4 method for signature 'ListCodonMatrix'
x$name

S4 method for signature 'MatrixSeq'
x$name

S4 replacement method for signature 'MatrixSeq,ANY'
names(x) <- value

Arguments

x An object from AutomorphismList, ListCodonMatrix, or MatrixSeq.
i, j, ... As in Extract.
name Element name in the list ’x’.
value A character vector of up to the same length as x, or NULL.

Value

An object from AutomorphismList, ListCodonMatrix, or MatrixSeq class.

94 [,AutomorphismList,ANY,ANY-method

Author(s)

Robersy Sanchez https://genomaths.com

Robersy Sanchez (https://genomaths.com).

Examples

Load automorphisms found BRCA1 primate genes
data("brca1_autm", package = "GenomAutomorphism")

Extract AutomorphismList object with only one element
brca1_autm[1]

Extract Automorphism object with only one element
brca1_autm[[3]]

Extract Automorphism object using element name.
brca1_autm[["human_1.gorilla_1"]]

https://genomaths.com
https://genomaths.com

Index

∗ datasets
aaindex1, 4
aaindex2, 4
aaindex3, 5
aln, 7
autby_coef, 14
autm, 14
autm_3d, 15
autm_z125, 15
brca1_aln, 41
brca1_aln2, 42
brca1_autm, 42
brca1_autm2, 43
cdm_z64, 43
covid_aln, 56
covid_autm, 57
cyc_aln, 58
cyc_autm, 58
dna_phyche, 59

∗ internal
[,AutomorphismList,ANY,ANY-method,

93
Automorphism-class, 16
AutomorphismByCoef-class, 17
AutomorphismByCoefList-class, 18
AutomorphismList-class, 19
base_repl, 40
BaseGroup-class, 36
BaseGroup_OR_CodonGroup-class, 36
BaseSeq-class, 36
BaseSeqMatrix-class, 37
CodonGroup-class, 44
CodonMatrix-class, 44
CodonSeq-class, 45
ConservedRegion-class, 54
GenomAutomorphism, 62
GRanges_OR_NULL-class, 69
GRangesMatrixSeq-class, 68
is.url, 70
ListCodonMatrix-class, 70
MatrixList-class, 73
MatrixSeq-class, 73
modeq, 75

reexports, 80
show,CodonSeq-method, 83
valid.Automorphism.mcols, 89
valid.AutomorphismByCoef, 90
valid.AutomorphismByCoefList, 90
valid.AutomorphismList, 91
valid.BaseGroup.elem, 91
valid.CodonGroup.mcols, 92
valid.MatrixList, 92

’[’
([,AutomorphismList,ANY,ANY-method),
93

’[[’
([,AutomorphismList,ANY,ANY-method),
93

’%%’ (mod), 74
’names<-’ (AutomorphismList-class), 19
[,AutomorphismList,ANY,ANY-method, 93
[,ListCodonMatrix,ANY,ANY-method

([,AutomorphismList,ANY,ANY-method),
93

[,MatrixSeq,ANY,ANY-method
([,AutomorphismList,ANY,ANY-method),
93

[[,AutomorphismList,ANY,ANY-method
([,AutomorphismList,ANY,ANY-method),
93

[[,ListCodonMatrix,ANY,ANY-method
([,AutomorphismList,ANY,ANY-method),
93

$ ([,AutomorphismList,ANY,ANY-method),
93

$,AutomorphismList-method
([,AutomorphismList,ANY,ANY-method),
93

$,ListCodonMatrix-method
([,AutomorphismList,ANY,ANY-method),
93

$,MatrixSeq-method
([,AutomorphismList,ANY,ANY-method),
93

aa_index (aa_phychem_index), 6
aa_mutmat, 5, 68

95

96 INDEX

aa_mutmat (aa_phychem_index), 6
aa_phychem_index, 6, 69
aaindex1, 4, 6, 7
aaindex2, 4, 4, 5–7, 68
aaindex3, 4, 5, 7, 68
AAMultipleAlignment, 80
AAMultipleAlignment (reexports), 80
AAStringSet, 80
AAStringSet (reexports), 80
aln, 7
aminoacid_dist, 8, 50, 65
aminoacid_dist,AAStringSet,ANY-method

(aminoacid_dist), 8
aminoacid_dist,character,character-method

(aminoacid_dist), 8
aminoacid_dist,CodonGroup_OR_Automorphisms,ANY-method

(aminoacid_dist), 8
aminoacid_dist,DNAStringSet,ANY-method

(aminoacid_dist), 8
as.AutomorphismList, 11, 19
as.AutomorphismList,GRangesList,GRanges_OR_NULL-method

(as.AutomorphismList), 11
as.AutomorphismList,list,GRanges_OR_NULL-method

(as.AutomorphismList), 11
as.list,AutomorphismList-method

(AutomorphismList-class), 19
aut3D, 12, 15
autby_coef, 14
autm, 14
autm_3d, 15
autm_z125, 15
Automorphism (Automorphism-class), 16
Automorphism-class, 16
automorphism_bycoef, 11, 14, 17, 23, 24, 27
automorphism_bycoef,Automorphism-method

(automorphism_bycoef), 24
automorphism_bycoef,AutomorphismList-method

(automorphism_bycoef), 24
automorphism_prob, 25
automorphism_prob,AutomorphismByCoef-method

(automorphism_prob), 25
automorphism_prob,AutomorphismByCoefList-method

(automorphism_prob), 25
AutomorphismByCoef, 23, 25, 55, 56
AutomorphismByCoef

(AutomorphismByCoef-class), 17
AutomorphismByCoef-class, 17
AutomorphismByCoefList, 14, 55
AutomorphismByCoefList

(AutomorphismByCoefList-class),
18

AutomorphismByCoefList-class, 18

automorphismByRanges, 18, 22, 23
automorphismByRanges,Automorphism-method

(automorphismByRanges), 18
automorphismByRanges,AutomorphismList-method

(automorphismByRanges), 18
AutomorphismList, 14, 15, 42, 43, 57, 58, 93
AutomorphismList

(AutomorphismList-class), 19
AutomorphismList-class, 19
automorphisms, 10, 11, 16, 19, 21, 23–25, 31,

36, 37, 44, 50
automorphisms,DNAStringSet_OR_NULL-method

(automorphisms), 21
autZ125, 15, 28
autZ5, 29
autZ64, 14, 23, 31, 42, 43, 57, 58

base2codon, 33
base2codon,character-method

(base2codon), 33
base2codon,DNAMultipleAlignment-method

(base2codon), 33
base2codon,DNAStringSet-method

(base2codon), 33
base2int, 34, 39, 48, 53
base2int,character-method (base2int), 34
base2int,data.frame-method (base2int),

34
base_coord, 35, 37, 39, 45, 47, 48, 53, 64, 72,

82
base_coord,DNAStringSet_OR_NULL-method

(base_coord), 37
base_matrix (base_coord), 37
base_matrix,DNAStringSet_OR_NULL-method

(base_coord), 37
base_methods (base_coord), 37
base_repl, 40
base_seq2string_set (base_coord), 37
base_seq2string_set,BaseSeq-method

(base_coord), 37
BaseGroup, 36, 39
BaseGroup (BaseGroup-class), 36
BaseGroup-class, 36
BaseGroup_OR_CodonGroup

(BaseGroup_OR_CodonGroup-class),
36

BaseGroup_OR_CodonGroup-class, 36
BaseSeq, 37, 67
BaseSeq (BaseSeq-class), 36
BaseSeq-class, 36
BaseSeqMatrix, 53
BaseSeqMatrix (BaseSeqMatrix-class), 37
BaseSeqMatrix-class, 37

INDEX 97

bplapply, 9, 13, 19, 22, 25, 28, 30, 32, 50, 53,
56, 67, 79, 86, 87

brca1_aln, 41, 42, 43, 56, 58
brca1_aln2, 41, 42, 43, 58
brca1_autm, 14, 41, 42, 57, 59
brca1_autm2, 42, 43, 43, 56, 57, 59

cdm_z64, 43
codon_coord, 10, 35, 39, 45, 46, 50, 53, 64, 82
codon_coord,BaseGroup-method

(codon_coord), 46
codon_coord,DNAStringSet_OR_NULL-method

(codon_coord), 46
codon_coord,matrix_OR_data_frame-method

(codon_coord), 46
codon_dist, 9, 10, 48, 51, 52
codon_dist,character-method

(codon_dist), 48
codon_dist,CodonGroup_OR_Automorphisms-method

(codon_dist), 48
codon_dist,DNAStringSet-method

(codon_dist), 48
codon_dist_matrix, 43, 50, 51, 65
codon_matrix, 44, 48, 52, 70
codon_matrix,BaseSeqMatrix-method

(codon_matrix), 52
codon_matrix,DNAMultipleAlignment-method

(codon_matrix), 52
codon_matrix,DNAStringSet-method

(codon_matrix), 52
CodonGroup, 36
CodonGroup (CodonGroup-class), 44
CodonGroup-class, 44
CodonMatrix (CodonMatrix-class), 44
CodonMatrix-class, 44
CodonSeq, 72, 82
CodonSeq (CodonSeq-class), 45
CodonSeq-class, 45
colMeans2, 80, 81
colMeans2 (reexports), 80
colSds, 80, 81
colSds (reexports), 80
colSums2, 80, 81
colSums2 (reexports), 80
colVars, 80, 81
colVars (reexports), 80
conserved_regions, 23, 55
conserved_regions,Automorphism-method

(conserved_regions), 55
conserved_regions,AutomorphismByCoef-method

(conserved_regions), 55
conserved_regions,AutomorphismByCoefList-method

(conserved_regions), 55

conserved_regions,AutomorphismList-method
(conserved_regions), 55

ConservedRegion
(ConservedRegion-class), 54

ConservedRegion-class, 54
ConservedRegionList

(ConservedRegion-class), 54
ConservedRegionList-class

(ConservedRegion-class), 54
coordList (CodonSeq-class), 45
coordList,CodonSeq-method

(CodonSeq-class), 45
covid_aln, 14, 15, 41, 56, 56, 57–59
covid_autm, 42, 43, 57, 59
cyc_aln, 42, 56, 58, 58
cyc_autm, 57, 58

data.frame, 16, 20
DataFrame, 11, 72, 82
DataFrame_OR_data.frame-class

(Automorphism-class), 16
dist, 68
dna_phyche, 59, 61
dna_phychem, 35, 60
dna_phychem,character-method

(dna_phychem), 60
dna_phychem,DNAStringSet_OR_DNAMultipleAlignment-method

(dna_phychem), 60
DNAMultipleAlignment, 12, 22, 28, 30, 31,

38, 41, 42, 47, 53, 56, 58, 61, 64, 67,
71, 78, 80, 82

DNAMultipleAlignment (reexports), 80
DNAStringSet, 7, 8, 12, 22, 28, 30, 31, 37, 38,

47, 53, 61, 64, 67, 71, 72, 78, 80, 82
DNAStringSet (reexports), 80
DNAStringSet_OR_DNAMultipleAlignment-class

(GRangesMatrixSeq-class), 68
DNAStringSet_OR_NULL-class

(valid.MatrixList), 92

end, 80, 81
end (reexports), 80
end<- (reexports), 80
Extract, 93
extract

([,AutomorphismList,ANY,ANY-method),
93

extract-methods
([,AutomorphismList,ANY,ANY-method),
93

GENETIC_CODE_TABLE, 9, 12, 28, 32, 51, 80
GENETIC_CODE_TABLE (reexports), 80

98 INDEX

GenomAutomorphism, 62
GenomAutomorphism-package

(GenomAutomorphism), 62
get_coord, 45, 63, 64
get_coord,BaseGroup_OR_CodonGroup-method

(get_coord), 63
get_coord,DNAStringSet_OR_NULL-method

(get_coord), 63
get_mutscore, 5–7, 65
get_mutscore,BaseSeq,missing-method

(get_mutscore), 65
get_mutscore,character,character-method

(get_mutscore), 65
get_mutscore,DNAMultipleAlignment,missing-method

(get_mutscore), 65
get_mutscore,DNAStringSet,missing-method

(get_mutscore), 65
getAutomorphisms, 23, 62
getAutomorphisms,AutomorphismList-method

(getAutomorphisms), 62
getAutomorphisms,DataFrame_OR_data.frame-method

(getAutomorphisms), 62
getAutomorphisms,list-method

(getAutomorphisms), 62
getGeneticCode, 12, 28, 32, 80
getGeneticCode (reexports), 80
GRanges, 37, 69
GRanges-class, 85
GRanges_OR_NULL-class, 69
GRangesList, 20, 80, 81
GRangesList (reexports), 80
GRangesMatrixSeq

(GRangesMatrixSeq-class), 68
GRangesMatrixSeq-class, 68

is.url, 70

lapply, 84
ListCodonMatrix, 53, 93
ListCodonMatrix

(ListCodonMatrix-class), 70
ListCodonMatrix-class, 70

makeCluster, 51, 67
makeGRangesFromDataFrame, 80, 81
makeGRangesFromDataFrame (reexports), 80
matrices, 71, 72, 82
matrices,CodonSeq-method (matrices), 71
matrices,DNAStringSet_OR_NULL-method

(matrices), 71
matrices,MatrixList-method (matrices),

71
MatrixList, 64, 72

MatrixList (MatrixList-class), 73
MatrixList-class, 73
MatrixSeq, 61, 69, 93
MatrixSeq (MatrixSeq-class), 73
MatrixSeq-class, 73
mcols, 80
mcols (reexports), 80
mcols<- (reexports), 80
mean, 9
mod, 74
mod,matrix,numeric-method (mod), 74
modeq, 75
modlin, 75, 76, 80, 81
modlin (reexports), 80
modlineq, 76
modq, 80, 81
modq (reexports), 80
modulo (mod), 74
MulticoreParam, 19, 25, 56
mut_type, 25, 77

names,AutomorphismList-method
(AutomorphismList-class), 19

names,ListCodonMatrix-method
([,AutomorphismList,ANY,ANY-method),
93

names<-,AutomorphismList,ANY-method
(AutomorphismList-class), 19

names<-,MatrixSeq,ANY-method
([,AutomorphismList,ANY,ANY-method),
93

optim, 27

peptide_phychem_index, 61, 78
peptide_phychem_index,character-method

(peptide_phychem_index), 78
peptide_phychem_index,DNAStringSet_OR_DNAMultipleAlignment-method

(peptide_phychem_index), 78

readDNAMultipleAlignment, 80
readDNAMultipleAlignment (reexports), 80
reexports, 80
rowMeans2, 80, 81
rowMeans2 (reexports), 80
rowSds, 80, 81
rowSds (reexports), 80
rowSums2, 80, 81
rowSums2 (reexports), 80
rowVars, 80, 81
rowVars (reexports), 80

sapply, 84

INDEX 99

scale, 34
seq2granges (base_coord), 37
seq2granges,DNAStringSet_OR_NULL-method

(base_coord), 37
seqRanges (CodonSeq-class), 45
seqranges, 72, 81
seqRanges,CodonSeq-method

(CodonSeq-class), 45
seqranges,CodonSeq-method (seqranges),

81
seqranges,DNAStringSet_OR_NULL-method

(seqranges), 81
setValidity2, 80
setValidity2 (reexports), 80
show,AutomorphismList-method

(AutomorphismList-class), 19
show,CodonSeq-method, 83
show,ListCodonMatrix-method

(show,CodonSeq-method), 83
show,MatrixList-method

(show,CodonSeq-method), 83
show,MatrixSeq-method

(MatrixSeq-class), 73
show-AutomorphismList

(AutomorphismList-class), 19
show-CodonSeq (show,CodonSeq-method), 83
show-ListCodonMatrix

(show,CodonSeq-method), 83
show-MatrixList (show,CodonSeq-method),

83
show-MatrixSeq (MatrixSeq-class), 73
slapply, 84
sortByChromAndEnd

(sortByChromAndStart), 85
sortByChromAndStart, 85
start, 80
start (reexports), 80
start<- (reexports), 80
str2chr, 86
str2chr,character-method (str2chr), 86
str2chr,list-method (str2chr), 86
str2dig, 87
str2dig,character-method (str2dig), 87
str2dig,list-method (str2dig), 87
strand, 80, 81
strand (reexports), 80
strand<- (reexports), 80
strsplit, 86, 87
subseq, 80
subseq (reexports), 80

translate, 80, 88, 89
translate (reexports), 80

translation, 79, 88
translation,BioString-method

(translation), 88
translation,character-method

(translation), 88

unmasked, 80
unmasked (reexports), 80

valid.Automorphism
(valid.Automorphism.mcols), 89

valid.Automorphism.mcols, 89
valid.AutomorphismByCoef, 90
valid.AutomorphismByCoefList, 90
valid.AutomorphismList, 91
valid.BaseGroup (valid.BaseGroup.elem),

91
valid.BaseGroup.elem, 91
valid.CodonGroup

(valid.CodonGroup.mcols), 92
valid.CodonGroup.mcols, 92
valid.ConservedRegion

(ConservedRegion-class), 54
valid.ConservedRegionList

(ConservedRegion-class), 54
valid.GRanges (valid.BaseGroup.elem), 91
valid.ListCodonMatrix

(ListCodonMatrix-class), 70
valid.MatrixList, 92

width, 80
width (reexports), 80

	aaindex1
	aaindex2
	aaindex3
	aa_phychem_index
	aln
	aminoacid_dist
	as.AutomorphismList
	aut3D
	autby_coef
	autm
	autm_3d
	autm_z125
	Automorphism-class
	AutomorphismByCoef-class
	AutomorphismByCoefList-class
	automorphismByRanges
	AutomorphismList-class
	automorphisms
	automorphism_bycoef
	automorphism_prob
	autZ125
	autZ5
	autZ64
	base2codon
	base2int
	BaseGroup-class
	BaseGroup_OR_CodonGroup-class
	BaseSeq-class
	BaseSeqMatrix-class
	base_coord
	base_repl
	brca1_aln
	brca1_aln2
	brca1_autm
	brca1_autm2
	cdm_z64
	CodonGroup-class
	CodonMatrix-class
	CodonSeq-class
	codon_coord
	codon_dist
	codon_dist_matrix
	codon_matrix
	ConservedRegion-class
	conserved_regions
	covid_aln
	covid_autm
	cyc_aln
	cyc_autm
	dna_phyche
	dna_phychem
	GenomAutomorphism
	getAutomorphisms
	get_coord
	get_mutscore
	GRangesMatrixSeq-class
	GRanges_OR_NULL-class
	is.url
	ListCodonMatrix-class
	matrices
	MatrixList-class
	MatrixSeq-class
	mod
	modeq
	modlineq
	mut_type
	peptide_phychem_index
	reexports
	seqranges
	show,CodonSeq-method
	slapply
	sortByChromAndStart
	str2chr
	str2dig
	translation
	valid.Automorphism.mcols
	valid.AutomorphismByCoef
	valid.AutomorphismByCoefList
	valid.AutomorphismList
	valid.BaseGroup.elem
	valid.CodonGroup.mcols
	valid.MatrixList
	[,AutomorphismList,ANY,ANY-method
	Index

