Package 'FEAST'

March 31, 2025

Type Package

Title FEAture SelcTion (FEAST) for Single-cell clustering

Version 1.14.0

Description Cell clustering is one of the most important and commonly performed tasks in single-cell RNA sequencing (scRNA-seq) data analysis.

An important step in cell clustering is to select a subset of genes (referred to as "features"), whose expression patterns will then

be used for downstream clustering. A good set of features should include the ones that distinguish different cell types,

and the quality of such set could have significant impact on the clustering accuracy.

FEAST is an R library for selecting most representative features before perform-

ing the core of scRNA-seq clustering. It can be used

as a plug-

in for the etablished clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps:

- 1. consensus clustering;
- 2. gene-level significance inference;
- 3. validation of an optimized feature set.

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 4.1), mclust, BiocParallel, SummarizedExperiment

biocViews Sequencing, SingleCell, Clustering, FeatureExtraction

BugReports https://github.com/suke18/FEAST/issues

Imports SingleCellExperiment, methods, stats, utils, irlba, TSCAN, SC3, matrixStats

Suggests rmarkdown, Seurat, ggpubr, knitr, testthat (>= 3.0.0), BiocStyle

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes

Author Kenong Su [aut, cre], Hao Wu [aut]

Maintainer Kenong Su <kenong.su@emory.edu>

2 align_CellType

git_url https://git.bioconductor.org/packages/FEAST
git_branch RELEASE_3_20
git_last_commit 995a034
git_last_commit_date 2024-10-29
Repository Bioconductor 3.20
Date/Publication 2025-03-31

Contents

	cal_F2	3
	cal_Fisher2	3
	cal_metrics	4
	cal_MSE	4
	Consensus	5
	eval_Cluster	6
	FEAST	6
	FEAST_fast	7
	Norm_Y	8
	process_Y	8
	Purity	9
	SC3_Clust	9
	Select_Model_short_SC3	10
	Select_Model_short_TSCAN	10
	setUp_BPPARAM	11
	trueclass	12
	TSCAN_Clust	12
	vector2matrix	13
	Visual_Rslt	14
	Y	14
Index		16

align_CellType Align the cell types from the prediction with the truth.

Description

Align the cell types from the prediction with the truth.

Usage

align_CellType(tt0)

Arguments

tt0 a N*N table.

cal_F2 3

Value

the matched (re-ordered) table

Examples

```
vec1 = rep(1:4, each=100)
vec2 = sample(vec1)
tb = table(vec1, vec2)
#tb_arg = align_CellType(tb)
```

cal_F2

Calculate the gene-level F score and corresponding significance level.

Description

Calculate the gene-level F score and corresponding significance level.

Usage

```
cal_F2(Y, classes)
```

Arguments

Y A gene expression matrix

classes The initial cluster labels NA values are allowed. This can directly from the

Consensus function.

Value

The score vector

Examples

```
data(Yan)
cal_F2(Y, classes = trueclass)
```

cal_Fisher2

Calculate the gene-level fisher score.

Description

Calculate the gene-level fisher score.

Usage

```
cal_Fisher2(Y, classes)
```

4 cal_MSE

Arguments

Y A gene expression matrix

classes The initial cluster labels NA values are allowed. This can directly from the

Consensus function.

Value

The score vector This is from the paper https://arxiv.org/pdf/1202.3725.pdf Vector based calculation

cal_metrics	Calculate 3 metrics and these methods are exported in C codes. flag = $1 - R$ and index, flag = $2 - R$ Fowlkes and Mallows's index, flag = $3 - R$
	— Jaccard index

Description

Calculate 3 metrics and these methods are exported in C codes. flag = 1 — Rand index, flag = 2 — Fowlkes and Mallows's index, flag = 3 — Jaccard index

Usage

```
cal_metrics(cl1, cl2, randMethod = c("Rand", "FM", "Jaccard"))
```

Arguments

cl1 a vector cl2 a vector

randMethod a string chosen from "Rand", "FM", or "Jaccard"

Value

a numeric vector including three values

cal_MSE	Standard way to preprocess the count matrix. It is the QC step for the
	genes.

Description

Standard way to preprocess the count matrix. It is the QC step for the genes.

Usage

```
cal_MSE(Ynorm, cluster, return_mses = FALSE)
```

Arguments

Ynorm A normalized gene expression matrix. If not, we will normalize it for you.

cluster The clustering outcomes. Specifically, they are cluster labels.

return_mses True or False indicating whether returning the MSE.

Consensus 5

Value

The MSE of the clustering centers with the predicted Y.

Examples

```
data(Yan)
Ynorm = Norm_Y(Y)
cluster = trueclass
MSE_res = cal_MSE(Ynorm, cluster)
```

Consensus

Consensus Clustering

Description

Consensus Clustering

Usage

```
Consensus(Y, num_pcs = 10, top_pctg = 0.33, k = 2, thred = 0.9, nProc = 1)
```

Arguments

Υ	A expression matrix. It is recommended to use the raw count matrix. Users can input normalized matrix directly.
num_pcs	The number of top pcs that will be investigated on through consensus clustering.
top_pctg	Top percentage of features for dimension reduction
k	The number of input clusters (best guess).
thred	For the final GMM clustering, the probability of a cell belonging to a certain cluster.
nProc	number of cores for BiocParallel environment.

Value

the clustering labels and the featured genes.

```
data(Yan)
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con = Consensus(Y, k=5)
```

FEAST

eval_Cluster

Calculate the a series of the evaluation statistics.

Description

Calculate the a series of the evaluation statistics.

Usage

```
eval_Cluster(vec1, vec2)
```

Arguments

```
vec1 a vector.

vec2 a vector. x and y are with the same length.
```

Value

a vector of evaluation metrics

Examples

```
vec2 = vec1 = rep(1:4, each = 100)
vec2[1:10] = 4
acc = eval_Cluster(vec1, vec2)
```

FEAST

FEAST main function

Description

FEAST main function

Usage

```
FEAST(
    Y,
    k = 2,
    num_pcs = 10,
    dim_reduce = c("irlba", "svd", "pca"),
    split = FALSE,
    batch_size = 1000,
    nProc = 1
)
```

FEAST_fast 7

Arguments

Y A expression matrix. Raw count matrix or normalized matrix.

k The number of input clusters (best guess).

num_pcs The number of top pcs that will be investigated through the consensus clustering.

dim_reduce dimension reduction methods chosen from pca, svd, or irlba.

split boolean. If T, using subsampling to calculate the gene-level significance. batch_size when split is true, need to claim the batch size for spliting the cells.

nProc number of cores for BiocParallel environment.

Value

the rankings of the gene-significance.

Examples

```
data(Yan)
k = length(unique(trueclass))
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
ixs = FEAST(Y, k=k)
```

FEAST_fast

FEAST main function (fast version)

Description

FEAST main function (fast version)

Usage

```
FEAST_fast(Y, k = 2, num_pcs = 10, split = FALSE, batch_size = 1000, nProc = 1)
```

Arguments

Y A expression matrix. Raw count matrix or normalized matrix.

k The number of input clusters (best guess).

num_pcs The number of top pcs that will be investigated through the consensus clustering.

split boolean. If T, using subsampling to calculate the gene-level significance. batch_size when split is true, need to claim the batch size for spliting the cells.

nProc number of cores for BiocParallel environment.

Value

the rankings of the gene-significance.

```
data(Yan)
k = length(unique(trueclass))
res = FEAST_fast(Y, k=k)
```

process_Y

Norm_Y

Normalize the count expression matrix by the size factor and take the log transformation.

Description

Normalize the count expression matrix by the size factor and take the log transformation.

Usage

```
Norm_Y(Y)
```

Arguments

Υ

a count expression matrix

Value

a normalized matrix

Examples

```
data(Yan)
Ynorm = Norm_Y(Y)
```

process_Y

Standard way to preprocess the count matrix. It is the QC step for the genes.

Description

Standard way to preprocess the count matrix. It is the QC step for the genes.

Usage

```
process_Y(Y, thre = 2)
```

Arguments

Y A gene expression data (Raw count matrix)

thre The threshold of minimum number of cells expressing a certain gene (default

=2)

Value

A processed gene expression matrix. It is not log transformed

```
data(Yan)
YY = process_Y(Y, thre=2)
```

Purity 9

Purity

Calculate the purity between two vectors.

Description

Calculate the purity between two vectors.

Usage

```
Purity(x, y)
```

Arguments

x a vector.

y a vector. x and y are with the same length.

Value

the purity score

SC3_Clust

SC3 Clustering

Description

SC3 Clustering

Usage

```
SC3_Clust(Y, k = NULL, input_markers = NULL)
```

Arguments

Y A expression matrix. It is recommended to use the raw count matrix.

k The number of clusters. If it is not provided, k is estimated by the default method

in SC3.

input_markers A character vector including the featured genes. If they are not presented, SC3

will take care of this.

Value

the clustering labels and the featured genes.

```
Select_Model_short_SC3
```

Using clustering results based on feature selection to perform model selection.

Description

Using clustering results based on feature selection to perform model selection.

Usage

```
Select_Model_short_SC3(Y, cluster, tops = c(500, 1000, 2000))
```

Arguments

Y A gene expression matrix

cluster The initial cluster labels NA values are allowed. This can directly from the

Consensus function.

tops A numeric vector containing a list of numbers corresponding to top genes; e.g.,

tops = c(500, 1000, 2000).

Value

mse and the SC3 clustering result.

Examples

```
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con_res = Consensus(Y, k=k)
# not run
# mod_res = Select_Model_short_SC3(Y, cluster = con_res$cluster, top = c(100, 200))
```

```
Select_Model_short_TSCAN
```

Using clustering results (from TSCAN) based on feature selection to perform model selection.

Description

Using clustering results (from TSCAN) based on feature selection to perform model selection.

setUp_BPPARAM 11

Usage

```
Select_Model_short_TSCAN(
   Y,
   cluster,
   minexpr_percent = 0.5,
   cvcutoff = 1,
   tops = c(500, 1000, 2000)
)
```

Arguments

Y A gene expression matrix

cluster The initial cluster labels NA values are allowed. This can directly from the

Consensus function.

minexpr_percent

The threshold used for processing data in TSCAN. Using it by default.

cvcutoff The threshold used for processing data in TSCAN. Using it by default.

tops A numeric vector containing a list of numbers corresponding to top genes; e.g.,

tops = c(500, 1000, 2000).

Value

mse and the TSCAN clustering result.

Examples

```
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con_res = Consensus(Y, k=k)
# not run
# mod_res = Select_Model_short_TSCAN(Y, cluster = con_res$cluster, top = c(100, 200))
```

setUp_BPPARAM

set up for the parallel computing for biocParallel.

Description

This function sets up the environment for parallel computing.

Usage

```
setUp_BPPARAM(nProc = 0, BPPARAM = NULL)
```

Arguments

nProc number of processors

BPPARAM bpparameter from bpparam

12 TSCAN_Clust

Value

BAPPARAM settings

Examples

```
setUp_BPPARAM(nProc=1)
```

trueclass

An example single cell dataset for the cell label information (Yan)

Description

The true cell type labels for Yan dataset. It includes 8 different cell types.

Usage

```
data("Yan")
```

Format

A character vector contains the cell type label

Source

```
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552
```

References

Yan, Liying, et al. "Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells." Nature structural & molecular biology 20.9 (2013): 1131.

Examples

```
data("Yan")
table(trueclass)
```

TSCAN_Clust

TSCAN Clustering

Description

TSCAN Clustering

Usage

```
TSCAN_Clust(Y, k, minexpr_percent = 0.5, cvcutoff = 1, input_markers = NULL)
```

vector2matrix 13

Arguments

Y A expression matrix. It is recommended to use the raw count matrix.

k The number of clusters. If it is not provided, k is estimated by the default method

in SC3.

minexpr_percent

minimum expression threshold (default = 0.5).

cvcutoff the cv cutoff to filter the genes (default = 1).

input_markers A character vector including the featured genes. If they are not presented, SC3

will take care of this.

Value

the clustering labels and the featured genes.

Examples

```
data(Yan)
k = length(unique(trueclass))
# TSCAN_res = TSCAN_Clust(Y, k=k)
```

vector2matrix

function for convert a vector to a binary matrix

Description

function for convert a vector to a binary matrix

Usage

```
vector2matrix(vec)
```

Arguments

vec

a vector.

Value

a n by n binary matrix indicating the adjacency.

14 Y

Visual_Rslt Using clustering results based on feature selection to perform model selection.	Visual_Rslt	Using clustering results based on feature selection to perform model selection.
---	-------------	---

Description

Using clustering results based on feature selection to perform model selection.

Usage

```
Visual_Rslt(model_cv_res, trueclass)
```

Arguments

Value

a list of mse dataframe, clustering accuracy dataframe, and ggplot object.

Examples

```
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, ]
con_res = Consensus(Y, k=k)
# Not run
# mod_res = Select_Model_short_SC3(Y, cluster = con_res$cluster, top = c(100, 200))
library(ggpubr)
# Visual_Rslt(model_cv_res = mod_res, trueclass = trueclass)
```

Υ

An example single cell count expression matrix (Yan)

Description

Y is a count expression matrix which belongs to "matrix" class. The data includes 124 cells about human preimplantation embryos and embryonic stem cells. It contains 19304 genes after removing genes with extreme high dropout rate.

Usage

```
data("Yan")
```

Format

An object of "matrix" class contains the count expressions

Y 15

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552

References

Yan, Liying, et al. "Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells." Nature structural & molecular biology 20.9 (2013): 1131.

```
data("Yan")
Y[1:10, 1:4]
```

Index

```
* datasets
    trueclass, 12
    Y, 14
* internal
    setUp_BPPARAM, 11
align_CellType, 2
cal_F2, 3
cal_Fisher2, 3
{\tt cal\_metrics}, 4
cal_MSE, 4
Consensus, 5
eval\_Cluster, 6
FEAST, 6
FEAST_fast, 7
\texttt{Norm\_Y}, \textcolor{red}{8}
process_Y, 8
Purity, 9
SC3\_Clust, 9
Select_Model_short_SC3, 10
Select_Model_short_TSCAN, 10
setUp_BPPARAM, 11
trueclass, 12
TSCAN_Clust, 12
vector2matrix, 13
Visual_Rslt, 14
Y, 14
```