
Package ‘DECIPHER’
March 31, 2025

Type Package

Title Tools for curating, analyzing, and manipulating biological
sequences

Version 3.2.0

Date 2024-10-28

Author Erik Wright

Maintainer Erik Wright <eswright@pitt.edu>

biocViews Clustering, Genetics, Sequencing, DataImport, Visualization,
Microarray, QualityControl, qPCR, Alignment, WholeGenome,
Microbiome, ImmunoOncology, GenePrediction

Description A toolset for deciphering and managing biological sequences.

Depends R (>= 3.5.0), Biostrings (>= 2.59.1), stats

Imports methods, DBI, S4Vectors, IRanges, XVector

Suggests RSQLite (>= 1.1)

LinkingTo Biostrings, S4Vectors, IRanges, XVector

License GPL-3

ByteCompile true

URL http://DECIPHER.codes

git_url https://git.bioconductor.org/packages/DECIPHER

git_branch RELEASE_3_20

git_last_commit 7d5caa2

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

Contents
DECIPHER-package . 3
AA_REDUCED . 6
Add2DB . 7
AdjustAlignment . 8
AlignDB . 10
AlignPairs . 13

1

http://DECIPHER.codes

2 Contents

AlignProfiles . 16
AlignSeqs . 20
AlignSynteny . 22
AlignTranslation . 24
AmplifyDNA . 26
Array2Matrix . 28
BLOSUM . 29
BrowseDB . 30
BrowseSeqs . 31
CalculateEfficiencyArray . 35
CalculateEfficiencyFISH . 37
CalculateEfficiencyPCR . 38
Clusterize . 40
Codec . 44
ConsensusSequence . 45
Cophenetic . 47
CorrectFrameshifts . 48
CreateChimeras . 51
DB2Seqs . 53
deltaGrules . 55
deltaGrulesRNA . 56
deltaHrules . 56
deltaHrulesRNA . 57
deltaSrules . 58
deltaSrulesRNA . 59
DesignArray . 60
DesignPrimers . 62
DesignProbes . 65
DesignSignatures . 68
DetectRepeats . 72
DigestDNA . 75
Disambiguate . 77
DistanceMatrix . 78
ExtractGenes . 81
FindChimeras . 82
FindGenes . 85
FindNonCoding . 87
FindSynteny . 88
FormGroups . 91
Genes . 92
HEC_MI . 94
IdConsensus . 95
IdentifyByRank . 96
IdLengths . 98
IdTaxa . 99
IndexSeqs . 101
InvertedIndex . 104
LearnNonCoding . 105
LearnTaxa . 106
MapCharacters . 110
MaskAlignment . 112
MeltDNA . 114

DECIPHER-package 3

MIQS . 116
MMLSUM . 117
MODELS . 118
NNLS . 120
NonCoding . 122
NonCodingRNA . 123
OrientNucleotides . 123
PAM . 125
PFASUM . 126
PredictDBN . 126
PredictHEC . 130
ReadDendrogram . 132
RemoveGaps . 133
RESTRICTION_ENZYMES . 134
ScoreAlignment . 135
SearchDB . 137
SearchIndex . 139
Seqs2DB . 142
StaggerAlignment . 144
Synteny . 145
Taxa . 148
TerminalChar . 150
TileSeqs . 151
TrainingSet_16S . 153
Treeline . 154
TrimDNA . 160
WriteDendrogram . 163
WriteGenes . 164

Index 166

DECIPHER-package Tools for curating, analyzing, and manipulating biological sequences

Description

DECIPHER is a software toolset that can be used for deciphering and managing biological se-
quences efficiently using the R statistical programming language. The program is designed to be
used with non-destructive workflows for importing, maintaining, analyzing, manipulating, and ex-
porting a massive amount of sequences.

Details

Package: DECIPHER
Type: Package
Depends: R (>= 3.5.0), Biostrings (>= 2.59.1), stats, parallel
Imports: methods, DBI, S4Vectors, IRanges, XVector
Suggests: RSQLite (>= 1.1)
LinkingTo: Biostrings, S4Vectors, IRanges, XVector
License: GPL-3
LazyLoad: yes

4 DECIPHER-package

Index:

AA_REDUCED Reduced amino acid alphabets
Add2DB Add Data to a Database
AdjustAlignment Improve An Existing Alignment By Adjusting Gap

Placements
AlignDB Align Two Sets of Aligned Sequences in a Sequence

Database
AlignPairs Align pairs of sequences
AlignProfiles Align Two Sets of Aligned Sequences
AlignSeqs Align a Set of Unaligned Sequences
AlignSynteny Pairwise Aligns Syntenic Blocks
AlignTranslation Align Sequences By Their Amino Acid Translation
AmplifyDNA Simulate Amplification of DNA by PCR
Array2Matrix Create a Matrix Representation of a Microarray
BLOSUM BLOSUM Amino Acid Substitution Matrices
BrowseDB View a Database Table in a Web Browser
BrowseSeqs View Sequences in a Web Browser
CalculateEfficiencyArray Predict the Hybridization Efficiency of

Probe/Target Sequence Pairs
CalculateEfficiencyFISH Predict Thermodynamic Parameters of Probe/Target

Sequence Pairs
CalculateEfficiencyPCR Predict Amplification Efficiency of Primer Sequences
Clusterize Cluster Sequences By Distance
Codec Compression/Decompression of Character Vectors
ConsensusSequence Create a Consensus Sequence
Cophenetic Compute cophenetic distances on dendrogram objects
CorrectFrameshifts Corrects Frameshift Errors In Protein Coding

Sequences
CreateChimeras Create Artificial Chimeras
DB2Seqs Export Database Sequences to a FASTA or FASTQ File
deltaGrules Free Energy of Hybridization of Probe/Target

Quadruplets
deltaHrules Change in Enthalpy of Hybridization of DNA/DNA

Quadruplets in Solution
deltaHrulesRNA Change in Enthalpy of Hybridization of RNA/RNA

Quadruplets in Solution
deltaSrules Change in Entropy of Hybridization of DNA/DNA

Quadruplets in Solution
deltaSrulesRNA Change in Entropy of Hybridization of RNA/RNA

Quadruplets in Solution
DesignArray Design a Set of DNA Microarray Probes for Detecting

Sequences
DesignPrimers Design Primers Targeting a Specific Group of

Sequences
DesignProbes Design FISH Probes Targeting a Specific Group of

Sequences
DesignSignatures Design PCR Primers for Amplifying Group-Specific

Signatures
DetectRepeats Detect Repeats in a Sequence

DECIPHER-package 5

DigestDNA Simulate Restriction Digestion of DNA
Disambiguate Expand Ambiguities into All Permutations of a

DNAStringSet
DistanceMatrix Calculate the Distance Between Sequences
ExtractGenes Extract Predicted Genes from a Genome
FindChimeras Find Chimeras in a Sequence Database
FindGenes Find Genes in a Genome
FindNonCoding Find Non-Coding RNAs in a Genome
FindSynteny Finds Synteny in a Sequence Database
FormGroups Forms Groups By Rank
Genes-class Genes objects and accessors
HEC_MI Mutual Information for Protein Secondary Structure

Prediction
IdConsensus Create Consensus Sequences by Groups
IdentifyByRank Identify By Taxonomic Rank
IdLengths Determine the Number of Characters in Each Sequence

of Each Sequence
IdTaxa Assign Sequences a Taxonomic Classification
IndexSeqs Build an inverted index
InvertedIndex-class InvertedIndex objects
LearnNonCoding Learn a Non-Coding RNA Model
LearnTaxa Train a Classifier for Assigning Taxonomy
MapCharacters Map Changes in Ancestral Character States
MaskAlignment Mask Highly Variable Regions of An Alignment
MeltDNA Simulate Melting of DNA
MIQS MIQS Amino Acid Substitution Matrix
MMLSUM MMLSUM Amino Acid Substitution Matrices
MODELS Available Models of Sequence Evolution
NNLS Sequential Coordinate-wise Algorithm for the

Non-negative Least Squares Problem
NonCoding NonCoding Models for Common Non-Coding RNA Families
NonCoding-class NonCoding Objects and Methods
OrientNucleotides Orient Nucleotide Sequences
PAM PAM Amino Acid Substitution Matrices
PFASUM PFASUM Amino Acid Substitution Matrices
PredictDBN Predict RNA Secondary Structure in Dot-Bracket

Notation
PredictHEC Predict Protein Secondary Structure
Read Dendrogram Read a Dendrogram from a Newick Formatted File
RemoveGaps Remove Gap Characters in Sequences
RESTRICTION_ENZYMES Common Restriction Enzyme's Cut Sites
ScoreAlignment Score a Multiple Sequence Alignment
SearchDB Obtain Specific Sequences from a Database
SearchIndex Search an inverted index
Seqs2DB Add Sequences from Text File to Database
StaggerAlignment Produce a Staggered Alignment
Synteny-class Synteny blocks and hits
Taxa-class Taxa training and testing objects
TerminalChar Determine the Number of Terminal Characters
TileSeqs Form a Set of Tiles for Each Group of Sequences
TrainingSet_16S Training Set for Classification of 16S rRNA Gene

Sequences

6 AA_REDUCED

Treeline Construct a Phylogenetic Tree
TrimDNA Trims DNA Sequences to the High Quality Region

Between Patterns
WriteDendrogram Write a Dendrogram to Newick Format
WriteGenes Write Genes to a File

Author(s)

Erik Wright

Maintainer: Erik Wright <eswright@pitt.edu>

AA_REDUCED Reduced amino acid alphabets

Description

The AA_REDUCED list contains reductions of the standard amino acid alphabet (AA_STANDARD).

Usage

AA_REDUCED

Details

Reduced amino alphabets can sometimes improve sensitivity and specificity of finding homologous
matches between amino acid sequences. The first 12 AA_REDUCED alphabets were optimized for
finding synteny between genomic sequences. The next 113 alphabets are from a review of published
amino acid alphabets (Solis, 2015). The following 17 alphabets were optimized for amino acid
classification. The subsequent 18 alphabets are progressive mergers based on average similarities
in PFASUM. The following 25 alphabets were optimized for protein search. The final 8 alphabets
were optimized for clustering.

References

Solis, A. (2015). Amino acid alphabet reduction preserves fold information contained in contact
interactions in proteins. Proteins: Structure, Function, and Genetics, 83(12), 2198-2216.

See Also

FindSynteny, LearnTaxa, PFASUM

Examples

str(AA_REDUCED)
AA_REDUCED[[1]]

Add2DB 7

Add2DB Add Data to a Database

Description

Adds a data.frame to a database table by its row.names.

Usage

Add2DB(myData,
dbFile,
tblName = "Seqs",
clause = "",
verbose = TRUE)

Arguments

myData Data frame containing information to be added to the dbFile.

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table in which to add the data.

clause An optional character string to append to the query as part of a “where clause”.

verbose Logical indicating whether to display each query as it is sent to the database.

Details

Data contained in myData will be added to the tblName by its respective row.names.

Value

Returns TRUE if the data was added successfully, or FALSE otherwise.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The R
Journal, 8(1), 352-359.

See Also

Seqs2DB, SearchDB, BrowseDB

8 AdjustAlignment

Examples

if (require("RSQLite", quietly=TRUE)) {
Create a sequence database
gen <- system.file("extdata", "Bacteria_175seqs.gen", package="DECIPHER")
dbConn <- dbConnect(dbDriver("SQLite"), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Bacteria")

Identify the sequence lengths
l <- IdLengths(dbConn)

Add lengths to the database
Add2DB(l, dbConn)

View the added lengths
BrowseDB(dbConn)

Change the value of existing columns
ids <- data.frame(identifier=rep("Bacteroidetes", 18), stringsAsFactors=FALSE)
rownames(ids) <- 10:27
Add2DB(ids, dbConn)
BrowseDB(dbConn)

Add data to a subset of rows using a clause
ids[[1]][] <- "Changed"
nrow(ids) # 18 rows
Add2DB(ids, dbConn, clause="accession like 'EU808318%'")
BrowseDB(dbConn) # only 1 row effected

dbDisconnect(dbConn)
}

AdjustAlignment Improve An Existing Alignment By Adjusting Gap Placements

Description

Makes small adjustments by shifting groups of gaps left and right to find their optimal positioning
in a multiple sequence alignment.

Usage

AdjustAlignment(myXStringSet,
perfectMatch = 2,
misMatch = -1,
gapLetter = -3,
gapOpening = -0.1,
gapExtension = 0,
substitutionMatrix = NULL,
shiftPenalty = -0.2,
threshold = 0.1,
weight = 1,
processors = 1)

AdjustAlignment 9

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-
ment. Only used for DNAStringSet or RNAStringSet inputs.

misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-
ment. Only used for DNAStringSet or RNAStringSet inputs.

gapLetter Numeric giving the cost for aligning gaps to letters. A lower value (more nega-
tive) encourages the overlapping of gaps across different sequences in the align-
ment.

gapOpening Numeric giving the cost for opening or closing a gap in the alignment.

gapExtension Numeric giving the cost for extending an open gap in the alignment.

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
(in third-bits) or the name of the amino acid substitution matrix to use in align-
ment. The default (NULL) will use the perfectMatch and misMatch penalties
for DNA/RNA or PFASUM50 for AA.

shiftPenalty Numeric giving the cost for every additional position that a group of gaps is
shifted.

threshold Numeric specifying the improvement in score required to permanently apply an
adjustment to the alignment.

weight A numeric vector of weights for each sequence, or a single number implying
equal weights.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

The process of multiple sequence alignment often results in the integration of small imperfections
into the final alignment. Some of these errors are obvious by-eye, which encourages manual refine-
ment of automatically generated alignments. However, the manual refinement process is inherently
subjective and time consuming. AdjustAlignment refines an existing alignment in a process sim-
ilar to that which might be applied manually, but in a repeatable and must faster fashion. This
function shifts all of the gaps in an alignment to the left and right to find their optimal positioning.
The optimal position is defined as the position that maximizes the alignment “score”, which is de-
termined by the input parameters. The resulting alignment will be similar to the input alignment but
with many imperfections eliminated. Note that the affine gap penalties here are different from the
more flexible penalties used in AlignProfiles, and have been optimized independently.

Value

An XStringSet of aligned sequences.

Author(s)

Erik Wright <eswright@pitt.edu>

10 AlignDB

References

Wright, E. S. (2015). DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment. BMC Bioinformatics, 16, 322. http://doi.org/10.1186/s12859-015-0749-z

Wright, E. S. (2020). RNAconTest: comparing tools for noncoding RNA multiple sequence align-
ment based on structural consistency. RNA 2020, 26, 531-540.

See Also

AlignSeqs, AlignTranslation, PFASUM, StaggerAlignment

Examples

a trivial example
aa <- AAStringSet(c("ARN-PK", "ARRP-K"))
aa # input alignment
AdjustAlignment(aa) # output alignment

specifying an alternative substitution matrix
AdjustAlignment(aa, substitutionMatrix="BLOSUM62")

a real example
fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
dna # input alignment
adjustedDNA <- AdjustAlignment(dna) # output alignment
BrowseSeqs(adjustedDNA, highlight=1)
adjustedDNA==dna # most sequences were adjusted (those marked FALSE)

AlignDB Align Two Sets of Aligned Sequences in a Sequence Database

Description

Merges the two separate sequence alignments in a database. The aligned sequences must have
separate identifiers in the same table or be located in different database tables.

Usage

AlignDB(dbFile,
tblName = "Seqs",
identifier = "",
type = "DNAStringSet",
add2tbl = "Seqs",
batchSize = 10000,
perfectMatch = 2,
misMatch = -1,
gapOpening = -12,
gapExtension = -3,
gapPower = -1,
terminalGap = -4,
normPower = c(1, 0),
standardize = TRUE,

AlignDB 11

substitutionMatrix = NULL,
processors = 1,
verbose = TRUE,
...)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table(s) where the sequences are located. If two
tblNames are provided then the sequences in both tables will be aligned.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected. If two identifiers are
provided then the set of sequences matching each identifier will be aligned.

type The type of XStringSet being processed. This should be (an abbreviation of)
one of "AAStringSet", "DNAStringSet", or "RNAStringSet".

add2tbl Character string specifying the table name in which to add the aligned sequences.
batchSize Integer specifying the number of sequences to process at a time.
perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-

ment. Only used when type is DNAStringSet or RNAStringSet.
misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-

ment. Only used when type is DNAStringSet or RNAStringSet.
gapOpening Numeric giving the cost for opening a gap in the alignment.
gapExtension Numeric giving the cost for extending an open gap in the alignment.
gapPower Numeric specifying the exponent to use in the gap cost function.
terminalGap Numeric giving the cost for allowing leading and trailing gaps ("-" or "." char-

acters) in the alignment. Either two numbers, the first for leading gaps and the
second for trailing gaps, or a single number for both.

normPower Numeric giving the exponent that controls the degree of normalization applied
to scores by column occupancy. If two numerics are provided, the first con-
trols the normalization power of terminal gaps, while the second controls that of
internal gaps. A normPower of 0 does not normalize the scores, which results
in all columns of the profiles being weighted equally, and is the optimal value
for aligning fragmentary sequences. A normPower of 1 normalizes the score
for aligning two positions by their column occupancy (1 - fraction of gaps).
A normPower greater than 1 more strongly discourages aligning with “gappy”
regions of the alignment.

standardize Logical determining whether scores are standardized to be in units of per match-
ing site. Standardization effectively divides the score of each possible alignment
by its length so that scores are relative rather than absolute.

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
(in third-bits) or the name of the amino acid substitution matrix to use in align-
ment. The default (NULL) will use the perfectMatch and misMatch penalties
for DNA/RNA or PFASUM50 for AA.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.
... Further arguments to be passed directly to Codec.

12 AlignDB

Details

Sometimes it is useful to align two large sets of sequences, where each set of sequences is already
aligned but the two sets are not aligned to each other. AlignDB first builds a profile of each sequence
set in increments of batchSize so that the entire sequence set is not required to fit in memory. Next
the two profiles are aligned using dynamic programming. Finally, the new alignment is applied to
all the sequences as they are incrementally added to the add2tbl.

Two identifiers or tblNames must be provided, indicating the two sets of sequences to align.
The sequences corresponding to the first identifier and tblName will be aligned to those of
the second identifier or tblName. The aligned sequences are added to add2tbl under a new
identifier formed from the concatenation of the two identifiers or tblNames. (See examples
section below.)

Value

Returns the number of newly aligned sequences added to the database.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E. S. (2015). DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment. BMC Bioinformatics, 16, 322. http://doi.org/10.1186/s12859-015-0749-z

Wright, E. S. (2020). RNAconTest: comparing tools for noncoding RNA multiple sequence align-
ment based on structural consistency. RNA 2020, 26, 531-540.

See Also

AlignProfiles, AlignSeqs, AlignTranslation, PFASUM

Examples

if (require("RSQLite", quietly=TRUE)) {
gen <- system.file("extdata", "Bacteria_175seqs.gen", package="DECIPHER")
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")

Align two tables and place result into a third
dbConn <- dbConnect(dbDriver("SQLite"), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Seqs1", tblName="Set1")
Seqs2DB(fas, "FASTA", dbConn, "Seqs2", tblName="Set2")
AlignDB(dbConn, tblName=c("Set1", "Set2"), add2tbl="AlignedSets")
l <- IdLengths(dbConn, "AlignedSets", add2tbl=TRUE)
BrowseDB(dbConn, tblName="AlignedSets") # all sequences have the same width
dbDisconnect(dbConn)

Align two identifiers and place the result in the same table
dbConn <- dbConnect(dbDriver("SQLite"), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Seqs1")
Seqs2DB(fas, "FASTA", dbConn, "Seqs2")
AlignDB(dbConn, identifier=c("Seqs1", "Seqs2"))
l <- IdLengths(dbConn, add2tbl=TRUE)
BrowseDB(dbConn) # note the sequences with a new identifier
dbDisconnect(dbConn)

AlignPairs 13

}

AlignPairs Align pairs of sequences

Description

Aligns pairs of sequences globally or locally using anchored adaptive banding.

Usage

AlignPairs(pattern,
subject,
pairs = NULL,
type = "values",
perfectMatch = 2,
misMatch = -1,
gapOpening = -16,
gapExtension = -1.2,
substitutionMatrix = NULL,
bandWidth = 50,
dropScore = -100,
processors = 1,
verbose = TRUE)

Arguments

pattern An AAStringSet, DNAStringSet, or RNAStringSet object of (unaligned) se-
quences.

subject A XStringSet object of (unaligned) sequences matching the type of the pattern.

pairs Either NULL or a data.frame with Pattern and Subject indices to align and,
optionally, a Position column containing matrices of anchor ranges. If Position
is provided then local alignment is performed around the anchors, unless virtual
anchors are provided to force global alignment with terminal gap penalties. If
pairs is NULL (the default) then global alignment of respective pattern and
subject sequences is performed without terminal gap penalties. (See examples
section below.)

type Character string indicating the type of output desired. This should be (an ab-
breviation of) one of "values", "sequences", or "both". (See value section
below.)

perfectMatch Numeric giving the reward for aligning matching nucleotides, which is used in
the absence of a substitutionMatrix when the pattern is a DNAStringSet
or RNAStringSet.

misMatch Numeric determining the cost for aligning mismatched nucleotides, which is
used in the absence of a substitutionMatrix when the pattern is a DNAStringSet
or RNAStringSet.

gapOpening Numeric giving the cost for opening a gap in the alignment.

gapExtension Numeric giving the cost for extending an open gap in the alignment.

14 AlignPairs

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
(in third-bits) or the name of the amino acid substitution matrix to use in align-
ment. The default (NULL) will use the perfectMatch and misMatch penalties
for DNA/RNA or PFASUM50 for amino acids including “U” (selenocysteine) and
“O” (pyrrolysine) with scores of zero.

bandWidth Integer determining the number of positions included in the adaptive band, which
should be at least as large as the largest expected insertion or deletion (i.e., gap).
Smaller values will accelerate alignment, potentially at the expense of accuracy.

dropScore Numeric giving the decrease in score required to stop extending the region to
the left or right of flanking anchors when performing local alignment. Lower
values find longer alignments at the expense of speed.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Performs pairwise alignment of pattern and subject sequences, either in their respective pairs
or as specified by pairs. Uses adaptive banding and (optionally) anchoring to accelerate the
alignment. Unlike AlignProfiles, AlignPairs can perform local alignment around anchor posi-
tions to align local regions of the pattern and/or subject sequences. In the absence of anchors,
AlignPairs performs global alignment without terminal gap penalties or with terminal gap penal-
ties when virtual anchors are provided immediately outside the bounds of the sequences. (See
examples section below.)

AlignPairs is designed to maximize speed, and provides slightly less accuracy than using AlignProfiles
for pairwise alignment. Adaptive banding is applied with a fixed bandWidth to reduce memory
consumption, rather than the dynamic band width used by AlignProfiles. There are a few other
differences: AlignPairs applies affine rather than Zipfian gap penalties, there is no option to incor-
porate secondary structures, scores are not standardized by length, gap penalties are not modulated
around specific residues, and any anchors must be supplied in pairs rather than determined auto-
matically. For very dissimilar sequences, it is preferable to use AlignTranslation (best for coding
sequences), AlignSeqs (best for nucleotide/protein sequences), or AlignProfiles.

AlignPairs does not directly output the pairwise alignments. Instead, it outputs statistics about
the alignment and the position(s) of gaps in each sequence. This makes alignment more efficient
because no sequences are copied. For many applications only the percent identity or number of gaps
is needed, which can be calculated directly from the returned data.frame. However, the aligned
sequences can also easily be obtained from the output if desired. (See examples section below.)

Value

If type is "values" (the default), a data.frame is returned with one alignment per input pattern
or row of pairs if not NULL. Columns are defined as the sequences’ index in pattern (Pattern),
start position in the pattern sequence (PatternStart), end position in the pattern sequence
(PatternEnd), index in the subject sequence (Subject), start position in the subject sequence
(SubjectStart), end position in the subject sequence (SubjectEnd), number of matching posi-
tions in the alignment (Matches), number of mismatched positions in the alignment (Mismatches),
total number of positions in the alignment (AlignmentLength), alignment score (Score), and the
position/length of gaps in the pattern and subject (i.e., PatternGapPosition, PatternGapLength,
SubjectGapPosition, & SubjectGapLength).

If type is "sequences", a list containing two components: the aligned pattern and subject.

AlignPairs 15

If type is "both", a list with three components: the values, aligned pattern, and aligned
subject.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

AlignProfiles, IndexSeqs, SearchIndex

Examples

import target sequences and build an inverted index
fas <- system.file("extdata", "PlanctobacteriaNamedGenes.fas.gz", package="DECIPHER")
target <- readAAStringSet(fas)
index <- IndexSeqs(target, K=6L)
index

import query sequences and search the index
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
query <- translate(dna)
hits <- SearchIndex(query, index, scoreOnly=FALSE)
head(hits)
nrow(hits) # number of query/target pairs

locally pairwise align the query/target pairs representing each hit
aligned <- AlignPairs(query, target, hits) # local alignment around hits
head(aligned)

plot the percent identity of each alignment versus score
PIDs <- aligned$Matches/aligned$AlignmentLength
plot(PIDs, hits$Score) # versus the hit score
plot(PIDs, aligned$Score) # versus the alignment score

plot the number of pattern gaps versus subject gaps per alignment
subjectGaps <- sapply(aligned$SubjectGapLength, sum)
patternGaps <- sapply(aligned$PatternGapLength, sum)
plot(subjectGaps, patternGaps, pch=16, col="#00000011")
abline(a=0, b=1) # identity line (y = x)

extract the pairwise aligned regions
alignments <- AlignPairs(query, target, hits, type="sequences")
BrowseSeqs(c(alignments[[1]][1], alignments[[2]][1])) # view the first pair

perform global pairwise alignment by creating virtual endpoint anchors
virtual anchors are immediately out-of-bounds (positions 0 and width + 1)
this causes gap opening/extension penalties to be applied at each terminus
hits$Position <- mapply(function(x, y, z)

cbind(matrix(0L, 4), x, matrix(c(y, y, z, z), 4)),
hits$Position,
width(query)[hits$Pattern] + 1L,
width(target)[hits$Subject] + 1L,
SIMPLIFY=FALSE)

aligned <- AlignPairs(query, target, hits) # penalizes terminal gaps
head(aligned) # all alignments now span start to end of the sequences

16 AlignProfiles

perform global pairwise alignment of sequences without anchors (approach 1)
pattern <- query[rep(1, length(query))] # first sequence repeated
subject <- query
aligned1 <- AlignPairs(pattern, subject) # no terminal gap penalties
head(aligned1)
perform global pairwise alignment of sequences without anchors (approach 2)
pairs <- data.frame(Pattern=1L, Subject=seq_along(query))
aligned2 <- AlignPairs(query, query, pairs) # no terminal gap penalties
head(aligned2) # note the Pattern column is always 1 (first sequence)

AlignProfiles Align Two Sets of Aligned Sequences

Description

Aligns two sets of one or more aligned sequences by first generating representative profiles, then
aligning the profiles with dynamic programming, and finally merging the two aligned sequence sets.

Usage

AlignProfiles(pattern,
subject,
p.weight = 1,
s.weight = 1,
p.struct = NULL,
s.struct = NULL,
perfectMatch = 2,
misMatch = -1,
gapOpening = -12,
gapExtension = -3,
gapPower = -1,
terminalGap = -4,
restrict = c(-1000, 2, 10),
anchor = 0.7,
normPower = c(1, 0),
standardize = TRUE,
substitutionMatrix = NULL,
structureMatrix = NULL,
processors = 1)

Arguments

pattern An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences
to use as the pattern.

subject A XStringSet object of aligned sequences to use as the subject. Must match
the type of the pattern.

p.weight A numeric vector of weights for each sequence in the pattern to use in generating
a profile, or a single number implying equal weights.

s.weight A numeric vector of weights for each sequence in the subject to use in generating
a profile, or a single number implying equal weights.

AlignProfiles 17

p.struct Either NULL (the default), a matrix, or a list of matrices with one list element per
sequence in the pattern. (See details section below.)

s.struct Either NULL (the default), a matrix, or a list of matrices with one list element per
sequence in the subject. (See details section below.)

perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-
ment. Only applicable for DNAStringSet or RNAStringSet inputs.

misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-
ment. Only applicable for DNAStringSet or RNAStringSet inputs.

gapOpening Numeric giving the cost for opening a gap in the alignment.

gapExtension Numeric giving the cost for extending an open gap in the alignment.

gapPower Numeric specifying the exponent to use in the gap cost function. (See details
section below.)

terminalGap Numeric giving the cost for allowing leading and trailing gaps ("-" or "." char-
acters) in the alignment. Either two numbers, the first for leading gaps and the
second for trailing gaps, or a single number for both.

restrict Numeric vector of length three controlling the degree of restriction around ridge
lines in the dynamic programming matrix. The first element determines the span
of the region around a ridge that is considered during alignment. The default
(-1000) will align most inputs that can reasonably be globally aligned without
any loss in accuracy. Input sequences with high similarity could be more re-
stricted (e.g., -500), whereas a pattern and subject with little overlap should
be less restricted (e.g., -10000). The second element sets the minimum slope to
either side of a ridge that is required to allow restriction at any point. The third
element sets the minimum duration of the ridge required to begin restricting the
matrix around the ridge. The duration of the ridge is defined as the number
of consecutive positions meeting the first two conditions for restriction. (See
details section below.)

anchor Numeric giving the fraction of sequences with identical k-mers required to be-
come an anchor point, or NA to not use anchors. Alternatively, a matrix specify-
ing anchor regions. (See details section below.)

normPower Numeric giving the exponent that controls the degree of normalization applied
to scores by column occupancy. If two numerics are provided, the first con-
trols the normalization power of terminal gaps, while the second controls that of
internal gaps. A normPower of 0 does not normalize the scores, which results
in all columns of the profiles being weighted equally, and is the optimal value
for aligning fragmentary sequences. A normPower of 1 normalizes the score
for aligning two positions by their column occupancy (1 - fraction of gaps).
A normPower greater than 1 more strongly discourages aligning with “gappy”
regions of the alignment. (See details section below.)

standardize Logical determining whether scores are standardized to be in units of per match-
ing site. Standardization effectively divides the score of each possible alignment
by its length so that scores are relative rather than absolute.

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
(in third-bits) or the name of the amino acid substitution matrix to use in align-
ment. The default (NULL) will use the perfectMatch and misMatch penalties
for DNA/RNA or PFASUM50 for AA. (See examples section below.)

structureMatrix

A structure matrix if p.struct and s.struct are supplied, or NULL otherwise.

18 AlignProfiles

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

Profiles are aligned using dynamic programming, a variation of the Needleman-Wunsch algorithm
for global alignment. The dynamic programming method requires order N*M time and memory
space where N and M are the width of the pattern and subject. This method works by filling in
a matrix of the possible “alignment space” by considering all matches, insertions, and deletions
between two sequence profiles. The highest scoring alignment is then used to add gaps to each of
the input sequence sets.

Heuristics can be useful to improve performance on long input sequences. The restrict parameter
can be used to dynamically constrain the possible “alignment space” to only paths that will likely
include the final alignment, which in the best case can improve the speed from quadratic time
to nearly linear time. The degree of restriction is important, and the default value of restrict is
reasonable in the vast majority of cases. It is also possible to prevent restriction by setting restrict
to such extreme values that these requirements will never be met (e.g., c(-1e10, 1e10, 1e10)).

The argument anchor can be used to split the global alignment into multiple sub-alignments. This
can greatly decrease the memory requirement for long sequences when appropriate anchor points
can be found. Anchors are 15-mer (for DNA/RNA) or 7-mer (for AA) subsequences that are shared
between at least anchor fraction of pattern(s) and subject(s). Anchored ranges are extended
along the length of each sequence in a manner designed to split the alignment into sub-alignments
that can be separately solved. For most input sequences, the default anchoring has no effect on
accuracy, but anchoring can be disabled by setting anchor=NA.

Alternatively, anchor can be a matrix with 4 rows and one column per anchor. The first two rows
correspond to the anchor start and end positions in the pattern sequence(s), and the second two rows
are the equivalent anchor region in the subject sequence(s). Anchors specified in this manner must
be strictly increasing (non-overlapping) in both sequences, and have an anchor width of at least two
positions. Note that the anchors do not have to be equal length, in which case the anchor regions
will also be aligned. Manually splitting the alignment into more subtasks can sometimes make it
more efficient, but typically automatic anchoring is effective.

The argument normPower determines how the distribution of information is treated during align-
ment. Higher values of normPower encourage alignment between columns with higher occupancy
(1 - fraction of gaps), and de-emphasize the alignment of columns containing many gaps. A
normPower of 0 will treat all columns equally regardless of occupancy, which can be useful when
the pattern or subject contain many incomplete (fragment) sequences. For example, normPower
should be set to 0 when aligning many short reads to a longer reference sequence.

The arguments p.struct and s.struct may be used to provide secondary structure probabilities in
the form of a list containing matrices or a single matrix. If the input is a list, then each list element
must contain a matrix with dimensions q*w, where q is the number of possible secondary structure
states, and w is the width of the unaligned pattern sequence. Values in each matrix represent the
probability of the given state at that position in the sequence. Alternatively, a single matrix can be
used as input if w is the width of the entire pattern or subject alignment. A structureMatrix
must be supplied along with the structures. The functions PredictHEC and PredictDBN can be
used to predict secondary structure probabilities in the format required by AlignProfiles (for
amino acid and RNA sequences, respectively).

The gap cost function is based on the observation that gap lengths are best approximated by a
Zipfian distribution (Chang & Benner, 2004). The cost of inserting a gap of length L is equal to:
gapOpening + gapExtension*sum(seq_len(L - 1)^gapPower) when L > 1, and gapOpen when
L = 1. This function effectively penalizes shorter gaps significantly more than longer gaps when
gapPower < 0, and is equivalent to the affine gap penalty when gapPower is 0.

AlignProfiles 19

Value

An XStringSet of aligned sequences.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Chang, M. S. S., & Benner, S. A. (2004). Empirical Analysis of Protein Insertions and Deletions
Determining Parameters for the Correct Placement of Gaps in Protein Sequence Alignments. Jour-
nal of Molecular Biology, 341(2), 617-631.

Needleman, S., & Wunsch, C. (1970). A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453.

Wright, E. S. (2015). DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment. BMC Bioinformatics, 16, 322. http://doi.org/10.1186/s12859-015-0749-z

Wright, E. S. (2020). RNAconTest: comparing tools for noncoding RNA multiple sequence align-
ment based on structural consistency. RNA 2020, 26, 531-540.

Yu, Y.-K., et al. (2015). Log-odds sequence logos. Bioinformatics, 31(3), 324-331. http://doi.org/10.1093/bioinformatics/btu634

See Also

AlignDB, AlignSeqs, AlignSynteny, AlignTranslation, PFASUM, MIQS

Examples

align two sets of sequences
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna1 <- readDNAStringSet(fas, n=100) # the first 100 sequences
dna2 <- readDNAStringSet(fas, n=100, skip=100) # the rest
dna1 <- RemoveGaps(dna1, "common")
dna2 <- RemoveGaps(dna2, "common")
alignedDNA <- AlignProfiles(dna1, dna2)
BrowseSeqs(alignedDNA, highlight=1)

specify a DNA substitution matrix
subMatrix <- matrix(0,

nrow=4, ncol=4,
dimnames=list(DNA_BASES, DNA_BASES))

diag(subMatrix) <- 5 # perfectMatch
alignedDNA.defaultSubM <- AlignProfiles(dna1, dna2, substitutionMatrix=subMatrix)
all(alignedDNA.defaultSubM==alignedDNA)

specify a different DNA substitution matrix
subMatrix2 <- matrix(c(12, 3, 5, 3, 3, 12, 3, 6, 5, 3, 11, 3, 3, 6, 3, 9),

nrow=4, ncol=4,
dimnames=list(DNA_BASES, DNA_BASES))

alignedDNA.alterSubM <- AlignProfiles(dna1, dna2, substitutionMatrix=subMatrix2)
all(alignedDNA.alterSubM==alignedDNA)

anchors are found automatically by default, but it is also
possible to specify anchor regions between the sequences
anchors <- matrix(c(774, 788, 752, 766), nrow=4)
anchors

20 AlignSeqs

subseq(dna1, anchors[1, 1], anchors[2, 1])
subseq(dna2, anchors[3, 1], anchors[4, 1])
alignedDNA2 <- AlignProfiles(dna1, dna2, anchor=anchors)

AlignSeqs Align a Set of Unaligned Sequences

Description

Performs profile-to-profile alignment of multiple unaligned sequences following a guide tree.

Usage

AlignSeqs(myXStringSet,
guideTree = NULL,
iterations = 2,
refinements = 1,
gapOpening = c(-18, -10),
gapExtension = -3,
useStructures = TRUE,
structures = NULL,
FUN = AdjustAlignment,
levels = c(0.9, 0.7, 0.7, 0.4, 10, 5, 5, 2),
alphabet = AA_REDUCED[[1]],
processors = 1,
verbose = TRUE,
...)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of unaligned se-
quences.

guideTree Either NULL or a dendrogram giving the ordered tree structure in which to align
profiles. If NULL then a guide tree will be automatically constructed based on the
order of shared k-mers.

iterations Number of iteration steps to perform. During each iteration step the guide tree
is regenerated based on the alignment and the sequences are realigned.

refinements Number of refinement steps to perform. During each refinement step groups
of sequences are realigned to rest of the sequences, and the best of these two
alignments (before and after realignment) is kept.

gapOpening Single numeric giving the cost for opening a gap in the alignment, or two num-
bers giving the minimum and maximum costs. In the latter case the cost will
be varied depending upon whether the groups of sequences being aligned are
nearly identical or maximally distant.

gapExtension Single numeric giving the cost for extending an open gap in the alignment, or
two numbers giving the minimum and maximum costs. In the latter case the cost
will be varied depending upon whether the groups of sequences being aligned
are nearly identical or maximally distant.

AlignSeqs 21

useStructures Logical indicating whether to use secondary structure predictions during align-
ment. If TRUE (the default), secondary structure probabilities will be automati-
cally calculated for amino acid and RNA sequences if they are not provided (i.e.,
when structures is NULL).

structures Either a list of secondary structure probabilities matching the structureMatrix,
such as that output by PredictHEC or PredictDBN, or NULL to generate the
structures automatically. Only applicable if myXStringSet is an AAStringSet
or RNAStringSet.

FUN A function to be applied after each profile-to-profile alignment. (See details
section below.)

levels Numeric with eight elements specifying the levels at which to trigger events.
(See details section below.)

alphabet Character vector of amino acid groupings used to reduce the 20 standard amino
acids into smaller groups. Alphabet reduction helps to find more distant ho-
mologies between sequences. A non-reduced amino acid alphabet can be used
by setting alphabet equal to AA_STANDARD. Only applicable if myXStringSet
is an AAStringSet.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.
... Further arguments to be passed directly to AlignProfiles, including perfectMatch,

misMatch, gapPower, terminalGap, restrict, anchor, normPower, standardize,
substitutionMatrix, and structureMatrix.

Details

The profile-to-profile method aligns a sequence set by merging profiles along a guide tree until
all the input sequences are aligned. This process has three main steps: (1) If guideTree=NULL,
an initial single-linkage guide tree is constructed based on a distance matrix of shared k-mers.
Alternatively, a dendrogram can be provided as the initial guideTree. (2) If iterations is greater
than zero, then a UPGMA guide tree is built based on the initial alignment and the sequences are
re-aligned along this tree. This process repeated iterations times or until convergence. (3) If
refinements is greater than zero, then subsets of the alignment are re-aligned to the remainder
of the alignment. This process generates two alignments, the best of which is chosen based on its
sum-of-pairs score. This refinement process is repeated refinements times, or until convergence.

The purpose of levels is to speed-up the alignment process by not running time consuming
processes when they are unlikely to change the outcome. The first four levels control when
refinements occur and the function FUN is run on the alignment. The default levels specify
that these events should happen when above 0.9 (AA; levels[1]) or 0.7 (DNA/RNA; levels[3])
average dissimilarity on the initial tree, when above 0.7 (AA; levels[2]) or 0.4 (DNA/RNA;
levels[4]) average dissimilarity on the iterative tree(s), and after every tenth improvement made
during refinement. The sixth element of levels (levels[6]) prevents FUN from being applied at any
point to less than 5 sequences.

The FUN function is always applied before returning the alignment so long as there are at least
levels[6] sequences. The default FUN is AdjustAlignment, but FUN can be any function that takes
in an XStringSet as its first argument, as well as weights, processors, and substitutionMatrix
as optional arguments. For example, the default FUN could be altered to not perform any changes
by setting it equal to function(x, ...) return(x), where x is an XStringSet.

Secondary structures are automatically computed for amino acid and RNA sequences unless structures
are provided or useStructures is FALSE. Use of structures generally provides a moderate improve-
ment in average accuracy on difficult-to-align sequences. The default structureMatrix is used

22 AlignSynteny

unless an alternative is provided. For RNA sequences, consensus secondary structures are only
computed when the total length of the initial guide tree is at least 5 (levels[7]) or the length of
subsequent trees is at least 2 (levels[8]). Note that input RNAStringSets are assumed to be struc-
tured non-coding RNAs. Largely unstructured RNAs should be aligned with useStructures set to
FALSE or, ideally, aligned with AlignTranslation if coding sequences (i.e., mRNAs).

Value

An XStringSet of aligned sequences.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E. S. (2015). DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment. BMC Bioinformatics, 16, 322. http://doi.org/10.1186/s12859-015-0749-z

Wright, E. S. (2020). RNAconTest: comparing tools for noncoding RNA multiple sequence align-
ment based on structural consistency. RNA 2020, 26, 531-540.

See Also

AdjustAlignment, AlignDB, AlignProfiles, AlignSynteny, AlignTranslation, ReadDendrogram,
Treeline, StaggerAlignment

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
dna <- RemoveGaps(dna)
alignedDNA <- AlignSeqs(dna)
BrowseSeqs(alignedDNA, highlight=1)

use secondary structure with RNA sequences
alignedRNA <- AlignSeqs(RNAStringSet(dna))
BrowseSeqs(alignedRNA, highlight=1)

AlignSynteny Pairwise Aligns Syntenic Blocks

Description

Performs pairwise alignment of all blocks of synteny between sets of sequences.

Usage

AlignSynteny(synteny,
dbFile,
tblName = "Seqs",
identifier = "",
processors = 1,
verbose = TRUE,
...)

AlignSynteny 23

Arguments

synteny An object of class “Synteny”.

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table where the sequences are located that were
used to create the object synteny.

identifier Optional character string used to narrow the search results to those matching a
specific identifier, or an integer sequence corresponding to indices of rownames(synteny).
If "" (the default), then all identifiers are selected from synteny.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

... Further arguments to be passed directly to AlignProfiles, including perfectMatch,
misMatch, gapPower, terminalGap, restrict, normPower, and substitutionMatrix.

Details

AlignSynteny will extract all sequence regions belonging to syntenic blocks in synteny, and per-
form pairwise alignment with AlignProfiles. Hits are used to anchor the alignment such that only
the regions between anchors are aligned.

Value

A list with elements for each pair of identifiers in synteny. Each list element contains a
DNAStringSetList one pairwise alignment per syntenic block.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

FindSynteny, Synteny-class

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db, minScore=50)
DNA <- AlignSynteny(synteny, db)
names(DNA)
DNA[[1]] # the first set of pairwise alignments
DNA[[1]][[1]] # the first block of synteny between H9N2 & H5N1
unlist(DNA[[2]]) # a DNAStringSet of synteny between H9N2 & H2N2
}

24 AlignTranslation

AlignTranslation Align Sequences By Their Amino Acid Translation

Description

Performs alignment of a set of DNA or RNA sequences by aligning their corresponding amino acid
sequences.

Usage

AlignTranslation(myXStringSet,
sense = "+",
direction = "5' to 3'",
readingFrame = NA,
type = class(myXStringSet),
geneticCode = GENETIC_CODE,
...)

Arguments

myXStringSet A DNAStringSet or RNAStringSet object of unaligned sequences.

sense Single character specifying sense of the input sequences, either the positive
("+") coding strand or negative ("-") non-coding strand.

direction Direction of the input sequences, either "5' to 3'" or "3' to 5'".

readingFrame Numeric vector giving a single reading frame for all of the sequences, or an in-
dividual reading frame for each sequence in myXStringSet. The readingFrame
can be either 1, 2, 3 to begin translating on the first, second, and third nucleotide
position, or NA (the default) to guess the reading frame. (See details section
below.)

type Character string indicating the type of output desired. This should be (an ab-
breviation of) one of "DNAStringSet", "RNAStringSet", "AAStringSet", or
"both". (See value section below.)

geneticCode Either a character vector giving the genetic code in the same format as GENETIC_CODE
(the default), or a list containing one genetic code for each sequence in myXStringSet.

... Further arguments to be passed directly to AlignSeqs, including gapOpening,
gapExtension, gapPower, terminalGap, restrict, anchor, normPower, substitutionMatrix,
structureMatrix, standardize, alphabet, guideTree, iterations, refinements,
useStructures, structures, FUN, and levels.

Details

Alignment of proteins is often more accurate than alignment of their coding nucleic acid sequences.
This function aligns the input nucleic acid sequences via aligning their translated amino acid se-
quences. First, the input sequences are translated according to the specified sense, direction, and
readingFrame. The resulting amino acid sequences are aligned using AlignSeqs, and this align-
ment is (conceptually) reverse translated into the original sequence type, sense, and direction.
Not only is alignment of protein sequences generally more accurate, but aligning translations will
ensure that the reading frame is maintained in the nucleotide sequences.

AlignTranslation 25

If the readingFrame is NA (the default) then an attempt is made to guess the reading frame of each
sequence based on the number of stop codons in the translated amino acids. For each sequence, the
first reading frame will be chosen (either 1, 2, or 3) without stop codons, except in the final position.
If the number of stop codons is inconclusive for a sequence then the reading frame will default to 1.
The entire length of each sequence is translated in spite of any stop codons identified. Note that this
method is only constructive in circumstances where there is a substantially long coding sequence
with at most a single stop codon expected in the final position, and therefore it is preferable to
specify the reading frame of each sequence if it is known.

Value

An XStringSet of the class specified by type, or a list of two components (nucleotides and amino
acids) if type is "both". Note that incomplete starting and ending codons will be translated into
the mask character ("+") if the result includes an AAStringSet.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E. S. (2015). DECIPHER: harnessing local sequence context to improve protein multiple
sequence alignment. BMC Bioinformatics, 16, 322. http://doi.org/10.1186/s12859-015-0749-z

See Also

AlignDB, AlignProfiles, AlignSeqs, AlignSynteny, CorrectFrameshifts

Examples

first three sequences translate to MGFITP*
and the last sequence translates as MGF-TP*
rna <- RNAStringSet(c("AUGGGUUUCAUCACCCCCUAA", "AUGGGCUUCAUAACUCCUUGA",
"AUGGGAUUCAUUACACCGUAG", "AUGGGGUUUACCCCAUAA"))

RNA <- AlignSeqs(rna, verbose=FALSE)
RNA

RNA <- AlignTranslation(rna, verbose=FALSE)
RNA

AA <- AlignTranslation(rna, type="AAStringSet", verbose=FALSE)
AA

BOTH <- AlignTranslation(rna, type="both", verbose=FALSE)
BOTH

example of aligning many protein coding sequences:
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
DNA <- AlignTranslation(dna) # align the translation then reverse translate
DNA

using a mixture of standard and non-standard genetic codes
gC1 <- getGeneticCode(id_or_name2="1", full.search=FALSE, as.data.frame=FALSE)
Mollicutes use an alternative genetic code
gC2 <- getGeneticCode(id_or_name2="4", full.search=FALSE, as.data.frame=FALSE)

26 AmplifyDNA

w <- grep("Mycoplasma|Ureaplasma", names(dna))
gC <- vector("list", length(dna))
gC[-w] <- list(gC1)
gC[w] <- list(gC2)
AA <- AlignTranslation(dna, geneticCode=gC, type="AAStringSet")
BrowseSeqs(AA)

AmplifyDNA Simulate Amplification of DNA by PCR

Description

Predicts the amplification efficiency of theoretical PCR products (amplicons) given one or more
primer sequences.

Usage

AmplifyDNA(primers,
myDNAStringSet,
maxProductSize,
annealingTemp,
P,
ions = 0.2,
includePrimers=TRUE,
minEfficiency = 0.001,
...)

Arguments

primers A DNAStringSet object or character vector with one or more unaligned primer
sequences in 5’ to 3’ orientation.

myDNAStringSet A DNAStringSet object or character vector with unaligned template DNA se-
quences in 5’ to 3’ orientation.

maxProductSize Integer specifying the maximum length of PCR products (amplicons) in nu-
cleotides.

annealingTemp Numeric specifying the annealing temperature used in the PCR reaction.

P Numeric giving the molar concentration of primers in the reaction.

ions Numeric giving the molar sodium equivalent ionic concentration. Values may
range between 0.01M and 1M.

includePrimers Logical indicating whether to include the primer sequences in the theoretical
PCR products. (See details section below.)

minEfficiency Numeric giving the minimum amplification efficiency of PCR products to in-
clude in the output (default 0.1%). (See details section below.)

... Additional arguments to be passed directly to CalculateEfficiencyPCR, in-
cluding batchSize, taqEfficiency, maxDistance, maxGaps, and processors.

AmplifyDNA 27

Details

Exponential amplification in PCR requires the annealing and elongation of two primers from target
sites on opposing strands of the template DNA. If the template DNA sequence (e.g., chromosome)
is known then predictions of theoretical amplicons can be obtained from in silico simulations of
amplification. AmplifyDNA first searches for primer target sites on the template DNA, and then
calculates an amplification efficiency from each target site using CalculateEfficiencyPCR. Am-
biguity codes (IUPAC_CODE_MAP) are supported in the primers, but not in myDNAStringSet to
prevent trivial matches (e.g., runs of N’s).

If taqEfficiency is TRUE (the default), the amplification efficiency of each primer is defined as the
product of hybridization efficiency and elongation efficiency. Amplification efficiency must be at
least minEfficiency for a primer to be amplified in silico. Overall amplification efficiency of the
PCR product is then calculated as the geometric mean of the two (i.e., forward and reverse) primers’
efficiencies. Finally, amplicons are generated if the two primers are within maxProductSize nu-
cleotides downstream of each other.

Potential PCR products are returned, either with or without including the primer sequences in the
amplicon. The default (includePrimers=TRUE) is to incorporate the primer sequences as would
normally occur during amplification. The alternative is to return the complete template sequence
including the target sites, which may not exactly match the primer sequences. Note that amplicons
may be duplicated when different input primers can amplify the same region of DNA.

Value

A DNAStringSet object containing potential PCR products, sorted from highest-to-lowest amplifi-
cation efficiency. The sequences are named by their predicted amplification efficiency followed by
the index of each primer in primers and the name (or index if names are missing) of the amplified
sequence in myDNAStringSet. (See examples section below.)

Note

The program OligoArrayAux (http://www.unafold.org/Dinamelt/software/oligoarrayaux.
php) must be installed in a location accessible by the system. For example, the following code
should print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2013) "Exploiting Extension Bias in PCR to Improve Primer Specificity in
Ensembles of Nearly Identical DNA Templates." Environmental Microbiology, doi:10.1111/1462-
2920.12259.

See Also

CalculateEfficiencyPCR, DesignPrimers, DesignSignatures, MeltDNA

http://www.unafold.org/Dinamelt/software/oligoarrayaux.php
http://www.unafold.org/Dinamelt/software/oligoarrayaux.php

28 Array2Matrix

Examples

data(yeastSEQCHR1)

not run (must have OligoArrayAux installed first):

match a single primer that acts as both the forward and reverse
primer1 <- "TGGAAGCTGAAACG"
Not run: AmplifyDNA(primer1, yeastSEQCHR1, annealingTemp=55, P=4e-7, maxProductSize=500)

perform a typical amplification with two primer sequences:
primer2 <- c("GGCTGTTGTTGGTGTT", "TGTCATCAGAACACCAA")
Not run: AmplifyDNA(primer2, yeastSEQCHR1, annealingTemp=55, P=4e-7, maxProductSize=500)

perform a multiplex PCR amplification with multiple primers:
primers <- c(primer1, primer2)
Not run: AmplifyDNA(primers, yeastSEQCHR1, annealingTemp=55, P=4e-7, maxProductSize=500)

Array2Matrix Create a Matrix Representation of a Microarray

Description

Converts the output of DesignArray into the sparse matrix format used by NNLS.

Usage

Array2Matrix(probes,
verbose = TRUE)

Arguments

probes A set of microarray probes in the format output by DesignArray.

verbose Logical indicating whether to display progress.

Details

A microarray can be represented by a matrix of hybridization efficiencies, where the rows represent
each of the probes and the columns represent each the possible templates. This matrix is sparse
since microarray probes are designed to only target a small subset of the possible templates.

Value

A list specifying the hybridization efficiency of each probe to its potential templates.

i Element’s row index in the sparse matrix.

j Element’s column index in the sparse matrix.

x Non-zero elements’ values representing hybridization efficiencies.

dimnames A list of two components: the names of each probe, and the names of each
template.

BLOSUM 29

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2013) Identification of Bacterial and Archaeal Communities From Source to Tap.
Water Research Foundation, Denver, CO.

DR Noguera, et al. (2014). Mathematical tools to optimize the design of oligonucleotide probes
and primers. Applied Microbiology and Biotechnology. doi:10.1007/s00253-014-6165-x.

See Also

DesignArray, NNLS

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
names(dna) <- 1:length(dna)
probes <- DesignArray(dna)
A <- Array2Matrix(probes)

BLOSUM BLOSUM Amino Acid Substitution Matrices

Description

The BLOSUM amino acid substitution matrices defined by Henikoff, S., & Henikoff, J. (1992).

Usage

data("BLOSUM")

Format

The format is: num [1:24, 1:24, 1:15] 2.4 -0.6 0 0 -1.8 0.6 0 0 -1.2 0 ... - attr(*, "dimnames")=List
of 3 ..$: chr [1:24] "A" "R" "N" "D"$: chr [1:24] "A" "R" "N" "D"$: chr [1:15] "30"
"35" "40" "45" ...

Details

Substitution matrix values represent the log-odds of observing an aligned pair of amino acids versus
the likelihood of finding the pair by chance. The PFASUM substitution matrices are stored as an
array named by each sub-matrix’s similarity threshold. (See examples section below.) In all cases
values are in units of third-bits (log(odds ratio) ∗ 3/log(2)).

Source

Henikoff, S., & Henikoff, J. (1992). Amino Acid Substitution Matrices from Protein Blocks. PNAS,
89(22), 10915-10919.

30 BrowseDB

Examples

data(BLOSUM)
BLOSUM62 <- BLOSUM[,, "62"] # the BLOSUM62 matrix
BLOSUM62["A", "R"] # score for A/R pairing

data(PFASUM)
plot(PFASUM[1:20, 1:20, "62"], BLOSUM62[1:20, 1:20])
abline(a=0, b=1)

BrowseDB View a Database Table in a Web Browser

Description

Opens an html file in a web browser to show the contents of a table in a database.

Usage

BrowseDB(dbFile,
htmlFile = tempfile(fileext=".html"),
openURL = interactive(),
tblName = "Seqs",
identifier = "",
limit = -1,
orderBy = "row_names",
maxChars = 50,
title = "",
clause="")

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

htmlFile Character string giving the location where the html file should be written.

openURL Logical indicating whether the htmlFile should be opened in a web browser.

tblName Character string specifying the table to view.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

limit Number of results to display. The default (-1) does not limit the number of
results.

orderBy Character string giving the column name for sorting the results. Defaults to the
order of entries in the database. Optionally can be followed by " ASC" or "
DESC" to specify ascending (the default) or descending order.

maxChars Maximum number of characters to display in each column.

title Character string denoting a title that should appear at the top of the output or ""
(the default) for no title.

clause An optional character string to append to the query as part of a “where clause”.

BrowseSeqs 31

Value

Creates an html table containing all the fields of the database table and (if openURL is TRUE) opens
it in the web browser for viewing.

Returns htmlFile if the html file was written successfully.

Note

If viewing a table containing sequences, the sequences are purposefully not shown in the output.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The R
Journal, 8(1), 352-359.

See Also

BrowseSeqs

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
BrowseDB(db)
}

BrowseSeqs View Sequences in a Web Browser

Description

Opens an html file in a web browser to show the sequences in an XStringSet.

Usage

BrowseSeqs(myXStringSet,
htmlFile = tempfile(fileext=".html"),
openURL = interactive(),
colorPatterns = TRUE,
highlight = NA,
patterns = c("-", alphabet(myXStringSet, baseOnly=TRUE)),
colors = substring(rainbow(length(patterns),

v=0.8, start=0.9, end=0.7), 1, 7),
colWidth = Inf,
title = "",
...)

32 BrowseSeqs

Arguments

myXStringSet A XStringSet object of sequences.

htmlFile Character string giving the location where the html file should be written.

openURL Logical indicating whether the htmlFile should be opened in a web browser.

colorPatterns Logical specifying whether to color matched patterns, or an integer vector
providing pairs of start and stop boundaries for coloring.

highlight Numeric specifying which sequence in the set to use for comparison or NA to
color all sequences (default). If highlight is 0 then positions differing from
the consensus sequence are highlighted.

patterns Either an AAStringSet, DNAStringSet, or RNAStringSet object, a character
vector containing regular expressions, a list of numeric matrices, or NULL. (See
details section below.)

colors Character vector providing the color for each of the matched patterns. Typi-
cally a character vector with elements of 7 characters: “#” followed by the red,
blue, green values in hexadecimal (after rescaling to 0 ... 255). Ignored when
patterns is a list of matrices.

colWidth Integer giving the maximum number of nucleotides wide the display can be
before starting a new page. Must be a multiple of 20 (e.g., 100), or Inf (the
default) to display all the sequences in one set of rows.

title Character string denoting a title that should appear at the top of the output or ""
(the default) for no title.

... Additional arguments to adjust the appearance of the consensus sequence at the
base of the display. Passed directly to ConsensusSequence for an AAStringSet,
DNAStringSet, or RNAStringSet, or to consensusString for a BStringSet.

Details

BrowseSeqs converts an XStringSet into html format for viewing in a web browser. The sequences
are colored in accordance with the patterns that are provided, or left uncolored if colorPatterns
is FALSE or patterns is NULL. Character or XStringSet patterns are matched as regular expressions
and colored according to colors. If patterns is a list of matrices, then it must contain one element
per sequence. Each matrix is interpreted as providing the fraction red, blue, and green for each letter
in the sequence. Thus, colors is ignored when patterns is a list. (See examples section below.)

Patterns are not matched across column breaks, so multi-character patterns should be carefully
considered when colWidth is less than the maximum sequence length. Patterns are matched se-
quentially in the order provided, so it is feasible to use nested patterns such as c("ACCTG", "CC").
In this case the “CC” could be colored differently inside the previously colored “ACCTG”. Note that
patterns overlapping the boundaries of a previously matched pattern will not be matched. For ex-
ample, “ACCTG” would not be matched if patterns=c("CC", "ACCTG").

Some web browsers cannot quickly display a large amount colored text, so it is recommended to
use colorPatterns = FALSE or to highlight a sequence when viewing a large XStringSet. High-
lighting will only show all of the characters in the highlighted sequence, and convert all matching
positions in the other sequences into dots without color. Also, note that some web browsers display
small shifts between fixed-width characters that may become noticeable as color offsets between the
ends of long sequences.

BrowseSeqs 33

Value

Creates an html file containing sequence data and (if openURL is TRUE) opens it in a web browser
for viewing. The layout has the sequence name on the left, position legend on the top, cumulative
number of nucleotides on the right, and consensus sequence on the bottom.

Returns htmlFile if the html file was written successfully.

Note

Some web browsers do not display colored characters with equal widths. If positions do not align
across sequences then try opening the htmlFile with a different web browser.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The
R Journal, 8(1), 352-359. Kunzmann P., et al. (2020) "Substitution matrix based color schemes for
sequence alignment visualization". BMC Bioinformatics, 21(1):209.

See Also

BrowseDB, ConsensusSequence

Examples

load the example DNA sequences
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas) # non-coding ribosomal RNA gene sequences

example of using the defaults with DNA sequences
BrowseSeqs(dna) # view the XStringSet

color only "ACTG" and "CSC" patterns (where S is C or G)
BrowseSeqs(dna, patterns=DNAStringSet(c("ACTG", "CSC")))

highlight (i.e., only fully-color) the first sequence
BrowseSeqs(dna, highlight=1) # other sequences are dots where matching

highlight the consensus sequence at the bottom
BrowseSeqs(dna, highlight=0) # other sequences are dots where matching

split the wide view into multiple vertical pages (for printing)
BrowseSeqs(dna, colWidth=100, highlight=1)

specify an alternative color scheme for -, A, C, G, T
BrowseSeqs(dna, colors=c("#1E90FF", "#32CD32", "#9400D3", "black", "#EE3300"))

only color the positions within certain positional ranges (100-200 & 250-500)
BrowseSeqs(dna, colorPatterns=c(100, 200, 250, 500))

example of calling attention to letters by coloring gaps black
BrowseSeqs(dna, patterns="-", colors="black")

34 BrowseSeqs

add a title to the top of the page
BrowseSeqs(dna, title="Title")

Not run:
color according to base-pairing by supplying the fraction RGB for every position
dbn <- PredictDBN(dna, type="structures") # calculate the secondary structures
dbn now contains the scores for whether a base is paired (left/right) or unpaired
dbn[[1]][, 1] # the scores for the first position in the first sequence
dbn[[2]][, 10] # the scores for the tenth position in the second sequence
these positional scores can be used as shades of red, green, and blue:
BrowseSeqs(dna, patterns=dbn) # red = unpaired, green = left-pairing, blue = right
positions in black are not part of the consensus secondary structure

End(Not run)

color all restriction sites
data(RESTRICTION_ENZYMES) # load dataset containing restriction enzyme sequences
sites <- RESTRICTION_ENZYMES
sites <- gsub("[^A-Z]", "", sites) # remove non-letters
sites <- DNAStringSet(sites) # convert the character vector to a DNAStringSet
rc_sites <- reverseComplement(DNAStringSet(sites))
w <- which(sites != rc_sites) # find non-palindromic restriction sites
sites <- c(sites, rc_sites[w]) # append their reverse complement
sites <- sites[order(nchar(sites))] # match shorter sites first
BrowseSeqs(dna, patterns=sites)

color bases by quality score
fastq <- system.file("extdata", "s_1_sequence.txt", package="Biostrings")
reads <- readQualityScaledDNAStringSet(fastq, quality.scoring="solexa")
colors <- colorRampPalette(c("red", "yellow", "green"))(42)
colors <- col2rgb(colors)/255
quals <- as(quality(reads), "IntegerList")
quals <- lapply(quals, function(x) colors[, x])
BrowseSeqs(DNAStringSet(reads), patterns=quals) # green = high quality, red = low quality

load the example protein coding sequences
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

example of using the defaults with amino acid sequences
aa <- unique(translate(dna)) # the unique amino acid sequences
BrowseSeqs(aa)

example of highlighting the consensus amino acid sequence
AA <- AlignSeqs(aa)
BrowseSeqs(AA, highlight=0)

example of highlighting positions that differ from the majority consensus
BrowseSeqs(AA, highlight=0, threshold=0.5)

specify an alternative color scheme for amino acids (from Kunzmann et al.)
colors <- c(`-`="#000000", `A`="#BDB1E8", `R`="#EFA2C5", `N`="#F6602F",

`D`="#FD5559", `C`="#12C7FE", `Q`="#DDACB4", `E`="#FEA097", `G`="#F46802",
`H`="#FCA708", `I`="#369BD9", `L`="#2E95EC", `K`="#CF7690", `M`="#4B8EFE",
`F`="#76997D", `P`="#FD2AE3", `S`="#A08A9A", `T`="#9A84D5", `W`="#74C80D",
`Y`="#9BB896", `V`="#89B9F9")

BrowseSeqs(AA, colors=colors, patterns=names(colors))

CalculateEfficiencyArray 35

example of coloring in a reduced amino acid alphabet
alpha <- AA_REDUCED[[15]]
alpha # clustering of amino acids based on similarity
BrowseSeqs(AA, patterns=c("-", paste("[", alpha, "]", sep="")))

color amino acids according to their predicted secondary structure
hec <- PredictHEC(AA, type="probabilities") # calculate the secondary structures
hec now contains the probability that a base is in an alpha-helix or beta-sheet
hec[[3]][, 18] # the 18th position in sequence 3 is likely part of a beta-sheet (E)
the positional probabilities can be used as shades of red, green, and blue:
BrowseSeqs(AA, patterns=hec) # red = alpha-helix, green = beta-sheet, blue = coil

color codons according to their corresponding amino acid
DNA <- AlignTranslation(dna) # align the translation then reverse translate
colors <- rainbow(21, v=0.8, start=0.9, end=0.7) # codon colors
m <- match(GENETIC_CODE, unique(GENETIC_CODE)) # corresponding amino acid
codonBounds <- matrix(c(seq(1, width(DNA)[1], 3), # start of codons
seq(3, width(DNA)[1], 3)), # end of codons
nrow=2,
byrow=TRUE)

BrowseSeqs(DNA,
colorPatterns=codonBounds,
patterns=c("---", names(GENETIC_CODE)), # codons to color
colors=c("black", substring(colors[m], 1, 7)))

CalculateEfficiencyArray

Predict the Hybridization Efficiency of Probe/Target Sequence Pairs

Description

Calculates the Gibbs free energy and hybridization efficiency of probe/target pairs at varying con-
centrations of the denaturant formamide.

Usage

CalculateEfficiencyArray(probe,
target,
FA = 0,
dGini = 1.96,
Po = 10^-2.0021,
m = 0.1731,
temp = 42,
deltaGrules = NULL)

Arguments

probe A DNAStringSet object or character vector with pairwise-aligned probe se-
quences in 5’ to 3’ orientation.

target A DNAStringSet object or character vector with pairwise-aligned target se-
quences in 5’ to 3’ orientation.

FA A vector of one or more formamide concentrations (as percent v/v).

36 CalculateEfficiencyArray

dGini The initiation free energy. The default is 1.96 [kcal/mol].

Po The effective probe concentration.

m The m-value defining the linear relationship of denaturation in the presence of
formamide.

temp Equilibrium temperature in degrees Celsius.

deltaGrules Free energy rules for all possible base pairings in quadruplets. If NULL, de-
faults to the parameters obtained using NimbleGen microarrays and a Linear
Free Energy Model developed by Yilmaz et al.

Details

This function calculates the free energy and hybridization efficiency (HE) for a given formamide
concentration ([FA]) using the linear free energy model given by:

HE = Po ∗ exp[−(dG0 +m ∗ FA)/RT]/(1 + Po ∗ exp[−(dG0 +m ∗ FA)/RT])

The probe and target input sequences must be aligned in pairs, such that the first probe is aligned
to the first target, second-to-second, and so on. Ambiguity codes in the IUPAC_CODE_MAP are ac-
cepted in probe and target sequences. Any ambiguities will default to perfect match pairings by
inheriting the nucleotide in the same position on the opposite sequence whenever possible. If the
ambiguity results in a mismatch then “T”, “G”, “C”, and “A” are substituted, in that order. For
example, if a probe nucleotide is “S” (“C” or “G”) then it will be considered a “C” if the target
nucleotide in the same position is a “C”, otherwise the ambiguity will be interpreted as a “G”.

If deltaGrules is NULL then the rules defined in data(deltaGrules) will be used. Note that
deltaGrules of the same format may be customized for any application and specified as an input.

Value

A matrix with the predicted Gibbs free energy (dG) and hybridization efficiency (HE) at each
concentration of formamide ([FA]).

Author(s)

Erik Wright <eswright@pitt.edu>

References

Yilmaz LS, Loy A, Wright ES, Wagner M, Noguera DR (2012) Modeling Formamide Denaturation
of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS
ONE 7(8): e43862. doi:10.1371/journal.pone.0043862.

See Also

deltaGrules

Examples

probes <- c("AAAAACGGGGAGCGGGGGGATACTG", "AAAAACTCAACCCGAGGAGCGGGGG")
targets <- c("CAACCCGGGGAGCGGGGGGATACTG", "TCGGGCTCAACCCGAGGAGCGGGGG")
result <- CalculateEfficiencyArray(probes, targets, FA=0:40)
dG0 <- result[, "dG_0"]
HE0 <- result[, "HybEff_0"]
plot(result[1, 1:40], xlab="[FA]", ylab="HE", main="Probe/Target # 1", type="l")

CalculateEfficiencyFISH 37

CalculateEfficiencyFISH

Predict Thermodynamic Parameters of Probe/Target Sequence Pairs

Description

Calculates the Gibbs free energy, formamide melt point, and hybridization efficiency of probe/target
(DNA/RNA) pairs.

Usage

CalculateEfficiencyFISH(probe,
target,
temp,
P,
ions,
FA,
batchSize = 1000)

Arguments

probe A DNAStringSet object or character vector with unaligned probe sequences in
5’ to 3’ orientation.

target A DNAStringSet object, RNAStringSet, or character vector with unaligned tar-
get or non-target sequences in 5’ to 3’ orientation. The DNA base Thymine will
be treated the same as Uracil.

temp Numeric specifying the hybridization temperature, typically 46 degrees Celsius.

P Numeric giving the molar concentration of probes during hybridization.

ions Numeric giving the molar sodium equivalent ionic concentration. Values may
range between 0.01M and 1M. Note that salt correction is not available for ther-
modynamic rules of RNA/RNA interactions, which were determined at 1 molar
concentration.

FA Numeric concentration (as percent v/v) of the denaturant formamide in the hy-
bridization buffer.

batchSize Integer specifying the number of probes to simulate hybridization per batch. See
the Description section below.

Details

Hybridization of pairwise probe/target (DNA/RNA) pairs is simulated in silico. Gibbs free en-
ergies are obtained from system calls to OligoArrayAux, which must be properly installed (see the
Notes section below). Probe/target pairs are sent to OligoArrayAux in batches of batchSize, which
prevents systems calls from being too many characters. Note that OligoArrayAux does not support
degeneracy codes (non-base letters), although they are accepted without error. Any sequences with
ambiguity should be expanded into multiple permutations with Disambiguate before input.

Value

A matrix of predicted hybridization efficiency (HybEff), formamide melt point (FAm), and free
energy (ddG1 and dG1) for each probe/target pair of sequences.

38 CalculateEfficiencyPCR

Note

The program OligoArrayAux (http://www.unafold.org/Dinamelt/software/oligoarrayaux.
php) must be installed in a location accessible by the system. For example, the following code
should print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2014) "Automated Design of Probes for rRNA-Targeted Fluorescence In Situ
Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification." Applied
and Environmental Microbiology, doi:10.1128/AEM.01685-14.

See Also

DesignProbes, TileSeqs

Examples

probe <- c("GGGCTTTCACATCAGACTTAAGAAACC", "CCCCACGCTTTCGCGCC")
target <- reverseComplement(DNAStringSet(probe))
not run (must have OligoArrayAux installed first):
Not run: CalculateEfficiencyFISH(probe, target, temp=46, P=250e-9, ions=1, FA=35)

CalculateEfficiencyPCR

Predict Amplification Efficiency of Primer Sequences

Description

Calculates the amplification efficiency of primers from their hybridization efficiency and elongation
efficiency at the target site.

Usage

CalculateEfficiencyPCR(primer,
target,
temp,
P,
ions,
batchSize = 1000,
taqEfficiency = TRUE,
maxDistance = 0.4,
maxGaps = 2,
processors = 1)

http://www.unafold.org/Dinamelt/software/oligoarrayaux.php
http://www.unafold.org/Dinamelt/software/oligoarrayaux.php

CalculateEfficiencyPCR 39

Arguments

primer A DNAStringSet object or character vector with unaligned primer sequences in
5’ to 3’ orientation.

target A DNAStringSet object or character vector with unaligned target or non-target
sequences in 5’ to 3’ orientation.

temp Numeric specifying the annealing temperature used in the PCR reaction.

P Numeric giving the molar concentration of primers in the reaction.

ions Numeric giving the molar sodium equivalent ionic concentration. Values may
range between 0.01M and 1M.

batchSize Integer specifying the number of primers to simulate hybridization per batch.
See the Description section below.

taqEfficiency Logical determining whether to make use of elongation efficiency and maxDis-
tance to increase predictive accuracy for Taq DNA Polymerase amplifying primers
with mismatches near the 3’ terminus. Note that this should be set to FALSE if
using a high-fidelity polymerase with 3’ to 5’ exonuclease activity.

maxDistance Numeric specifying the maximal fraction of mismatched base pairings on a
rolling basis beginning from the 3’ end of the primer. Only used if taqEfficiency
is TRUE.

maxGaps Integer specifying the maximum number of insertions or deletions (indels) in
the primer/target alignment. Only used if taqEfficiency is TRUE.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

Amplification of pairwise primer/target pairs is simulated in silico. A complex model of hy-
bridization is employed that takes into account the side reactions resulting from probe-folding,
target-folding, and primer-dimer formation. The resulting hybridization efficiency is multiplied by
the elongation efficiency to predict the overall efficiency of amplification.

Free energy is obtained from system calls to OligoArrayAux, which must be properly installed (see
the Notes section below). Primer/target pairs are sent to OligoArrayAux in batches of batchSize,
which prevents systems calls from being too many characters. Note that OligoArrayAux does not
support degeneracy codes (non-base letters), although they are accepted without error. Any se-
quences with ambiguity should be expanded into multiple permutations with Disambiguate before
input.

Value

A vector of predicted efficiencies for amplifying each primer/target pair of sequences.

Note

The program OligoArrayAux (http://www.unafold.org/Dinamelt/software/oligoarrayaux.
php) must be installed in a location accessible by the system. For example, the following code
should print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

Author(s)

Erik Wright <eswright@pitt.edu>

http://www.unafold.org/Dinamelt/software/oligoarrayaux.php
http://www.unafold.org/Dinamelt/software/oligoarrayaux.php

40 Clusterize

References

ES Wright et al. (2013) "Exploiting Extension Bias in PCR to Improve Primer Specificity in
Ensembles of Nearly Identical DNA Templates." Environmental Microbiology, doi:10.1111/1462-
2920.12259.

See Also

AmplifyDNA, DesignPrimers, DesignSignatures

Examples

primers <- c("AAAAACGGGGAGCGGGGGG", "AAAAACTCAACCCGAGGAGCGCGT")
targets <- reverseComplement(DNAStringSet(primers))
not run (must have OligoArrayAux installed first):
Not run: CalculateEfficiencyPCR(primers, targets, temp=75, P=4e-7, ions=0.225)

Clusterize Cluster Sequences By Distance

Description

Groups the sequences into approximate clusters of similarity.

Usage

Clusterize(myXStringSet,
cutoff = 0,
method = "overlap",
includeTerminalGaps = FALSE,
penalizeGapLetterMatches = NA,
minCoverage = 0.5,
maxPhase1 = 2e4,
maxPhase2 = 2e3,
maxPhase3 = 2e3,
maxAlignments = 200,
rareKmers = 50,
probability = 0.99,
invertCenters = FALSE,
singleLinkage = FALSE,
maskRepeats = FALSE,
maskLCRs = FALSE,
alphabet = AA_REDUCED[[186]],
processors = 1,
verbose = TRUE)

Arguments

myXStringSet The (unaligned) DNAStringSet, RNAStringSet, or AAStringSet to cluster.

cutoff A vector of maximum distances (approximately) separating sequences in the
same cluster (i.e., 1 - similarities). Multiple cutoffs may be provided in ascend-
ing or descending order. (See details section below.)

Clusterize 41

method Character string determining the region in which distance is calculated. This
should be (an unambiguous abbreviation of) one of "overlap", "shortest", or
"longest". The default method ("overlap") calculates distance from the over-
lapping region between terminal gaps when includeTerminalGaps is FALSE
and the entire alignment otherwise. Setting method to "shortest" or "longest"
will use the region between the start and end of the shortest or longest sequence,
respectively, for each pairwise distance. The method is only applicable when
includeTerminalGaps is TRUE.

includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("-" characters) in
the pairwise alignments into the calculation of distance.

penalizeGapLetterMatches

Logical specifying whether or not to consider gap-to-letter matches as mis-
matches. If FALSE, then gap-to-letter matches are not included in the total length
used to calculate distance, and if TRUE all gaps-to-letter pairs are considered
mismatches. The default (NA) is to penalize gap-to-letter mismatches once per
insertion or deletion, which treats runs of gaps (i.e., indels) as equivalent to a
single mismatch.

minCoverage Numeric giving the minimum fraction of sequence positions that must be over-
lapping for a sequence to be clustered with the cluster representative. If positive
then coverage is calculated relative to the sequence being clustered (i.e., the
shorter sequence). If negative then coverage is computed relative to the cluster
representative (i.e., the longest sequence in the cluster).

maxPhase1 An integer specifying the maximum number of related sequences to consider in
the initial partitioning of the sequences.

maxPhase2 An integer giving the maximum number of replicates to perform when sorting
sequences based on their k-mer similarity.

maxPhase3 An integer determining the number of comparisons per sequence to perform
when attempting to find cluster centers.

maxAlignments An integer designating the maximum number of alignments to perform when
attempting to assign a sequence to an existing cluster.

rareKmers An integer setting the number of rare k-mers to record per sequence. Larger val-
ues require more memory but may improve accuracy with diminishing returns.

probability Numeric between 0 and 1 (exclusive) defining the approximate probability of
clustering sequences that are exactly cutoff distant. Typically near, but always
less than, 1. Lower values result in faster clustering at the expense of effective-
ness.

invertCenters Logical controlling whether the cluster center is inverted (i.e., multiplied by -1),
which allows the centers to be determined from the results. The default (FALSE)
only returns positive cluster numbers. If TRUE, the center sequence(s) of each
cluster are negative.

singleLinkage Logical specifying whether to perform single-linkage clustering. The default
(FALSE) only establishes linkage to the cluster center. Single-linkage clustering
creates broader clusters that may better correspond to natural groups depending
on the application.

maskRepeats Logical specifying whether to mask repeats when clustering.
maskLCRs Logical indicating whether to mask low complexity regions when clustering.
alphabet Character vector of amino acid groupings used to reduce the 20 standard amino

acids into smaller groups. Alphabet reduction helps to find more distant ho-
mologies between sequences.

42 Clusterize

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Clusterize groups the input sequences into approximate clusters using a heuristic algorithm with
linear time and memory complexity. In phase 1, the sequences are partitioned into groups of sim-
ilarity. In phase 2, the sequences are ordered by k-mer similarity by relatedness sorting. In phase
3, the sequences are iteratively clustered in this order by their similarity to surrounding sequences
in the sorting. That is, the first sequence becomes the representative of cluster #1. If the second se-
quence is within cutoff distance then it is added to the cluster, otherwise it becomes a new cluster
representative. The remaining sequences are matched to cluster representatives in a similar fashion
until all sequences belong to a cluster. In the majority of cases, this process results in clusters with
members separated by less than cutoff distance, and all cluster members must be within cutoff
distance of their cluster representative.

The calculation of distance can be controlled in multiple ways, with each parameterization of dis-
tance having advantages and disadvantages. By default, distance is the fraction of positions that
are different, including gaps, within the overlapping region in a pairwise alignment. The defaults
will handle partial-length sequences well, but also cluster sequences with high similarity between
their opposite ends. For this reason, it is important to set minimumCoverage such that distances are
based off of considerable overlap between sequences in the pairwise alignment. The default (0.5)
requires sequences to share at least 50% of their positions with the cluster representative. This
distance parameterization works well, but there are reasonable alternatives.

If penalizeGapLetterMatches is FALSE, the distance will exclude gap regions. If includeTerminalGaps
is TRUE, the calculation of distance will use the entire (global) alignment. If method is "shortest"
and includeTerminalGaps is set to TRUE, then the distance is calculated for the region encom-
passed by the shorter sequence in each pair, which is the common definition of distance used by
other clustering programs. This common definition of distance will sometimes separate partly over-
lapping sequences, which is why it is not the default. Another option is to set minCoverage to a
negative fraction. This requires sequences to have substantial overlap with the cluster representa-
tive, which is the longest sequence in the cluster. For example, setting minCoverage to -0.5 would
require every clustered sequence to share at least 50% of positions with the cluster representative.

The algorithm requires time proportional to the number of input sequences in myXStringSet. The
phase 1, up to maxPhase1 sequences sharing a k-mer are tabulated while partitioning each sequence.
In phase 2, the sequences are compared with up to maxPhase2 passes that each take linear time.
Ordering of the sequences is performed in linear time using radix sorting. In phase 3, each sequence
is compared with up to maxPhase3 previous cluster representatives of sequences sharing rareKmers
or nearby sequences in the relatedness ordering. This is possible because the sequences are sorted
by relatedness, such that more recent cluster representatives are more similar. Hence, the complete
algorithm scales in linear time asymptotically and returns clusters of sequences within cutoff
distance of their center sequence.

Multiple cutoffs can be provided in sorted order, which saves time because phases 1 and 2 only need
to be performed once. If the cutoffs are provided in descending order then clustering at each new
value of cutoff is continued within the prior cutoff’s clusters. In this way clusters at lower values
of cutoff are completely contained within their “umbrella” clusters at higher values of cutoff.
This slightly accelerates the clustering process, because each subsequent group is only clustered
within the previous group. If multiple cutoffs are provided in ascending order then clustering at
each level of cutoff is independent of the prior level.

Note, the clustering algorithm is stochastic. Hence, clusters can vary from run-to-run unless the
random number seed is set for repeatability (i.e., with set.seed). Also, invertCenters can be

Clusterize 43

used to determine the center sequence of each cluster from the output. Since identical sequences
will always be assigned the same cluster numbers, it is possible for more than one input sequence
in myXStringSet to be assigned as the center of a cluster if they are identical.

Value

A data.frame is returned with dimensions N ∗ M , where each one of N sequences is assigned to
a cluster at the M -level of cutoff. The row.names of the data.frame correspond to the names of
myXStringSet.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E. S. (2024). Accurately clustering biological sequences in linear time by relatedness
sorting. Nature Communications, 15, 1-13. http://doi.org/10.1038/s41467-024-47371-9

See Also

AA_REDUCED, DistanceMatrix, Treeline

Examples

fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
aa <- translate(dna)

typical usage (e.g., clustering at >= 90 percent similarity)
clusters <- Clusterize(aa, cutoff=0.1) # set processors = NULL for max speed
head(clusters)

typical usage (e.g., obtaining cluster representatives)
clusters <- Clusterize(aa, cutoff=0.1, invertCenters=TRUE)
aa[clusters[[1]] < 0]

cluster each cutoff within the previous cluster (nested groups)
clusters <- Clusterize(aa, cutoff=seq(0.7, 0, -0.1))
head(clusters)
apply(clusters, 2, max) # number of clusters per cutoff

cluster each cutoff independently (possibly fewer clusters per cutoff)
clusters <- Clusterize(aa, cutoff=seq(0, 0.7, 0.1))
head(clusters)
apply(clusters, 2, max) # number of clusters per cutoff

make cluster center(s) negative for tracking
clusters <- Clusterize(aa, cutoff=0.5, invertCenters=TRUE)
head(clusters)
clusters[clusters$cluster < 0,, drop=FALSE]
unique(aa[clusters$cluster < 0]) # unique cluster centers
apply(clusters, 2, function(x) max(abs(x))) # number of clusters

cluster nucleotide sequences
clusters <- Clusterize(dna, cutoff=0.2, invertCenters=TRUE)

44 Codec

head(clusters)
apply(clusters, 2, function(x) max(abs(x))) # number of clusters

Codec Compression/Decompression of Character Vectors

Description

Compresses character vectors into raw vectors, or decompresses raw vectors into character vectors
using a variety of codecs.

Usage

Codec(x,
compression,
compressRepeats = FALSE,
processors = 1)

Arguments

x Either a character vector to be compressed, or a list of raw vectors to be decom-
pressed.

compression The type of compression algorithm to use when x is a character vector. This
should be (an unambiguous abbreviation of) one of "nbit" (for nucleotides),
"qbit" (for quality scores), "gzip", "bzip2", or "xz". If compression is
"nbit" or "qbit" then a second method can be provided for cases when x is
incompressible. Decompression type is determined automatically. (See details
section below.)

compressRepeats

Logical specifying whether to compress exact repeats and reverse complement
repeats in a character vector input (x). Only applicable when compression
is "nbit". Repeat compression in long DNA sequences generally increases
compression by about 2% while requiring three-fold more compression time.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

Codec can be used to compress/decompress character vectors using different algorithms. The
"nbit" and "qbit" methods are tailored specifically to nucleotides and quality scores, respectively.
These two methods will store the data as plain text ("ASCII" format) when it is incompressible. In
such cases, a second compression method can be given to use in lieu of plain text. For example
compression = c("nbit", "gzip") will use "gzip" compression when "nbit" compression is
inappropriate.

When performing the reverse operation, decompression, the type of compression is automatically
detected based on the unique signature ("magic number") added by each compression algorithm.

Value

If x is a character vector to be compressed, the output is a list with one element containing a raw
vector per character string. If x is a list of raw vectors to be decompressed, then the output is a
character vector with one string per list element.

ConsensusSequence 45

Author(s)

Erik Wright <eswright@pitt.edu>

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- as.character(readDNAStringSet(fas)) # aligned sequences
object.size(dna)

compression
system.time(x <- Codec(dna, compression="nbit"))
object.size(x)/sum(nchar(dna)) # bytes per position

system.time(g <- Codec(dna, compression="gzip"))
object.size(g)/sum(nchar(dna)) # bytes per position

decompression
system.time(y <- Codec(x))
stopifnot(dna==y)

system.time(z <- Codec(g))
stopifnot(dna==z)

ConsensusSequence Create a Consensus Sequence

Description

Forms a consensus sequence representing a set of sequences.

Usage

ConsensusSequence(myXStringSet,
threshold = 0.05,
ambiguity = TRUE,
noConsensusChar = "+",
minInformation = 1 - threshold,
includeNonLetters = FALSE,
includeTerminalGaps = FALSE)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

threshold Numeric specifying that less than threshold fraction of sequence information
can be lost at any position of the consensus sequence.

ambiguity Logical specifying whether to consider ambiguity as split between their respec-
tive nucleotides. Degeneracy codes are specified in the IUPAC_CODE_MAP.

noConsensusChar

Single character from the sequence’s alphabet giving the base to use when there
is no consensus in a position.

minInformation Minimum fraction of information required to form consensus in each position.

46 ConsensusSequence

includeNonLetters

Logical specifying whether to count gap ("-"), mask ("+"), and unknown (".")
characters towards the consensus.

includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("-" or "." characters
on each end of the sequence) into the formation of consensus.

Details

ConsensusSequence removes the least frequent characters at each position, so long as they rep-
resent less than threshold fraction of the sequences in total. If necessary, ConsensusSequence
represents the remaining characters using a degeneracy code from the IUPAC_CODE_MAP. Degener-
acy codes are always used in cases where multiple characters are equally abundant.

Two key parameters control the degree of consensus: threshold and minInformation. The default
threshold (0.05) means that at less than 5% of sequences will not be represented by the consensus
sequence at any given position. The default minInformation (1 - 0.05) specifies that at least 95%
of sequences must contain the information in the consensus, otherwise the noConsensusChar is
used. This enables an alternative character (e.g., "+") to be substituted at positions that would
otherwise yield an ambiguity code.

If ambiguity = TRUE (the default) then degeneracy codes in myXStringSet are split between their
respective bases according to the IUPAC_CODE_MAP for DNA/RNA and AMINO_ACID_CODE for AA.
For example, an “R” in a DNAStringSet would count as half an “A” and half a “G”. If ambiguity
= FALSE then degeneracy codes are not considered in forming the consensus. For an AAStringSet
input, the lack of degeneracy codes generally results in “X” at positions with mismatches, unless
the threshold is set to a higher value than the default.

If includeNonLetters = TRUE (the default) then gap ("-"), mask ("+"), and unknown (".") char-
acters are counted towards the consensus, otherwise they are omitted from calculation of the con-
sensus. Note that gap ("-") and unknown (".") characters are treated interchangeably as gaps when
forming the consensus sequence. For this reason, the consensus of a position with all unknown
(".") characters will be a gap ("-"). Also, note that if consensus is formed between different length
sequences then it will represent only the longest sequences at the end. For this reason the consen-
sus sequence is generally based on a sequence alignment such that all of the sequences have equal
lengths.

Value

An XStringSet with a single consensus sequence matching the input type.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Disambiguate, IdConsensus

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas, n=10) # limit 10 sequences for visability
BrowseSeqs(dna) # consensus at bottom
BrowseSeqs(dna, threshold=0.5) # consensus at bottom

Cophenetic 47

controlling the degree of consensus
AAAT <- DNAStringSet(c("A", "A", "A", "T"))
ConsensusSequence(AAAT) # "W"
ConsensusSequence(AAAT, threshold=0.3) # "A"
ConsensusSequence(AAAT, threshold=0.3, minInformation=0.8) # "+"
ConsensusSequence(AAAT, threshold=0.3, minInformation=0.8, noConsensusChar="N") # "N"

switch between degenerate-based and majority-based consensus
majority <- DNAStringSet(c("GTT", "GAA", "CTG"))
ConsensusSequence(majority) # degenerate-based
ConsensusSequence(majority, threshold=0.5) # majority-based
ConsensusSequence(majority, threshold=0.5, minInformation=0.75)

behavior in the case of a tie
ConsensusSequence(DNAStringSet(c("A", "T"))) # "W"
ConsensusSequence(DNAStringSet(c("A", "T")), threshold=0.5) # "W"
ConsensusSequence(AAStringSet(c("A", "T"))) # "X"
ConsensusSequence(AAStringSet(c("A", "T")), threshold=0.5) # "X"
ConsensusSequence(AAStringSet(c("I", "L"))) # "J"
ConsensusSequence(AAStringSet(c("I", "L")), threshold=0.5) # "J"

handling terminal gaps
dna <- DNAStringSet(c("ANGCT-","-ACCT-"))
ConsensusSequence(dna) # "ANSCT-"
ConsensusSequence(dna, includeTerminalGaps=TRUE) # "+NSCT-"

the "." character is treated is a "-"
aa <- AAStringSet(c("ANQIH-", "ADELW."))
ConsensusSequence(aa) # "ABZJX-"

internal non-bases are included by default
ConsensusSequence(DNAStringSet(c("A-+.A", "AAAAA")), noConsensusChar="N") # "ANNNA"
ConsensusSequence(DNAStringSet(c("A-+.A", "AAAAA")), includeNonLetters=TRUE) # "AAAAA"

degeneracy codes in the input are considered by default
ConsensusSequence(DNAStringSet(c("AWNDA", "AAAAA"))) # "AWNDA"
ConsensusSequence(DNAStringSet(c("AWNDA", "AAAAA")), ambiguity=FALSE) # "AAAAA"

Cophenetic Compute cophenetic distances on dendrogram objects

Description

Calculates the matrix of cophenetic distances represented by a dendrogram object.

Usage

Cophenetic(x)

Arguments

x A dendrogram object.

48 CorrectFrameshifts

Details

The cophenetic distance between two observations is defined here as the branch length separat-
ing them on a dendrogram, also known as the patristic distance. This function differs from the
cophenetic function in that it does not assume the tree is ultrametric and outputs the branch length
separating pairs of observations rather than the height of their merger. A dendrogram that better pre-
serves a distance matrix will show higher correlation between the distance matrix and its cophenetic
distances.

Value

An object of class ’dist’.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Treeline

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
d1 <- DistanceMatrix(dna, type="dist")
dend <- Treeline(myDistMatrix=d1)
d2 <- Cophenetic(dend)
cor(d1, d2)

CorrectFrameshifts Corrects Frameshift Errors In Protein Coding Sequences

Description

Corrects the reading frame to mitigate the impact of frameshift errors caused by insertions or dele-
tions in unaligned nucleotide sequences.

Usage

CorrectFrameshifts(myXStringSet,
myAAStringSet,
type = "indels",
acceptDistance = 0.01,
rejectDistance = 0.60,
maxComparisons = 10,
gapOpening = -13,
gapExtension = -1,
frameShift = -15,
geneticCode = GENETIC_CODE,
substitutionMatrix = "PFASUM50",
verbose = TRUE,
processors = 1)

CorrectFrameshifts 49

Arguments

myXStringSet A DNAStringSet or RNAStringSet of unaligned protein coding sequences in 5’
to 3’ orientation.

myAAStringSet An AAStringSet of reference protein sequences. Ideally this would consist of
a small set of diverse amino acid sequences belonging to the same group of
protein coding sequences as myXStringSet.

type Character string indicating the type of result desired. This should be (an ab-
breviation of) one of "indels", "sequences", or "both". (See details section
below.)

acceptDistance Numeric giving the maximum distance from a reference sequence that is accept-
able to skip any remaining comparisons.

rejectDistance Numeric giving the maximum distance from a reference sequence that is al-
lowed when correcting frameshifts. Sequences in myXStringSet that are greater
than rejectDistance from the nearest reference sequence will only have their
length trimmed from the 3’-end to a multiple of three nucleotides without any
frameshift correction.

maxComparisons The number of reference comparisons to make before stopping the search for a
closer reference sequence.

gapOpening Numeric giving the cost for opening a gap between the query and reference
sequences.

gapExtension Numeric giving the cost for extending an open gap between the query and refer-
ence sequences.

frameShift Numeric giving the cost for shifting between frames of the query sequence.

geneticCode Named character vector in the same format as GENETIC_CODE (the default),
which represents the standard genetic code.

substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
(in third-bits) or the name of the amino acid substitution matrix to use in align-
ment.

verbose Logical indicating whether to display progress.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

Accurate translation of protein coding sequences can be greatly disrupted by one or two nucleotide
phase shifts that occasionally occur during DNA sequencing. These frameshift errors can poten-
tially be corrected through comparison with other unshifted protein sequences. This function uses a
set of reference amino acid sequences (AAStringSet) to find and correct frameshift errors in a set of
nucleotide sequences (myXStringSet). First, three frame translation of the nucleotide sequences is
performed, and the nearest reference sequence is selected. Then the optimal reading frame at each
position is determined based on a variation of the Guan & Uberbacher (1996) method. Putative
insertions and/or deletions (indels) are returned in the result, typically with close proximity to the
true indel locations. For a comparison of this method to others, see Wang et al. (2013).

If type is "sequences" or "both", then frameshifts are corrected by adding N’s and/or removing
nucleotides. Note that this changes the nucleotide sequence, and the new sequence often has mi-
nor errors because the exact location of the indel(s) cannot be determined. However, the original
frameshifts that disrupted the entire downstream sequence are reduced to local perturbations. All

50 CorrectFrameshifts

of the returned nucleotide sequences will have a reading frame starting from the first position. This
allows direct translation, and in practice works well if there is a similar reference myAAStringSet
with the correct reading frame. Hence it is more important that myAAStringSet contain a wide
variety of sequences than it is that it contain a lot of sequences.

Multiple inputs control the time required for frameshift correction. The number of sequences in
the reference set (myAAStringSet) will affect the speed of the first search for similar sequences.
Assessing frameshifts in the second step requires order N*M time, where N and M are the lengths
of the query (myXStringSet) and reference sequences. Two parameters control the number of as-
sessments that are made for each sequence: (1) maxComparisons determines the maximum number
of reference sequences to compare to each query sequence, and (2) acceptDist defines the maxi-
mum distance between a query and reference that is acceptable before continuing to the next query
sequence. A lower value for maxComparisons or a higher value for acceptDist will accelerate
frameshift correction, potentially at the expense of some accuracy.

Value

If type is "indels" then the returned object is a list with the same length as myXStringSet. Each
element is a list with four components:

"insertions" Approximate positions of inserted nucleotides, which could be removed to cor-
rect the reading frame, or excess nucleotides at the 3’-end that make the length
longer than a multiple of three.

"deletions" Approximate positions of deleted nucleotides, which could be added back to
correct the reading frame.

"distance" The amino acid distance from the nearest reference sequence, between 0 and 1.

"index" The integer index of the reference sequence that was used for frame correction,
or 0 if no reference sequence was within rejectDistance.

Note that positions in insertions and deletions are sometimes repeated to indicate that the same
position needs to be shifted successively more than once to correct the reading frame.

If type is "sequences" then the returned object is an XStringSet of the same type as the input
(myXStringSet). Nucleotides are added or deleted as necessary to correct for frameshifts. The
returned sequences all have a reading frame starting from position 1, so that they can be translated
directly.

If type is "both" then the returned object is a list with two components: one for the "indels" and
the other for the "sequences".

Author(s)

Erik Wright <eswright@pitt.edu>

References

Guan, X., & Uberbacher, E. C. (1996). Alignments of DNA and protein sequences containing
frameshift errors. Computer Applications in the Biosciences : CABIOS, 12(1), 31-40.

Wang, Q., et al. (2013). Ecological Patterns of nifH Genes in Four Terrestrial Climatic Zones
Explored with Targeted Metagenomics Using FrameBot, a New Informatics Tool. mBio, 4(5),
e00592-13-e00592-13.

See Also

AlignTranslation, OrientNucleotides, PFASUM

CreateChimeras 51

Examples

fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

introduce artificial indels
n_ins <- 2 # insertions per sequence
shifted <- replaceAt(dna,
lapply(width(dna),
sample,
n_ins),
sample(DNA_BASES,
n_ins,
replace=TRUE))

n_dels <- 1 # deletions per sequence
shifted <- replaceAt(shifted,
as(lapply(width(shifted),
function(x) {
IRanges(sample(x,

n_dels),
width=1)

}), "IRangesList"))

to make frameshift correction more challenging,
only supply 20 reference amino acid sequences
s <- sample(length(dna), 20)
x <- CorrectFrameshifts(shifted,
translate(dna[s]),
type="both")

there was a wide range of distances
to the nearest reference sequence
quantile(unlist(lapply(x[[1]], `[`, "distance")))

none of the sequences were > rejectDistance
from the nearest reference sequence
length(which(unlist(lapply(x[[1]], `[`, "index"))==0))

the number of indels was generally correct
table(unlist(lapply(x[[1]], function(x) {
length(x$insertions)})))/length(shifted)

table(unlist(lapply(x[[1]], function(x) {
length(x$deletions)})))/length(shifted)

align and display the translations
AA <- AlignTranslation(x$sequences,
readingFrame=1,
type="AAStringSet")

BrowseSeqs(AA)

CreateChimeras Create Artificial Chimeras

Description

Creates artificial random chimeras from a set of sequences.

52 CreateChimeras

Usage

CreateChimeras(myDNAStringSet,
numChimeras = 10,
numParts = 2,
minLength = 80,
maxLength = Inf,
minChimericRegionLength = 30,
randomLengths = TRUE,
includeParents = TRUE,
processors = 1,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object with aligned sequences.

numChimeras Number of chimeras desired.

numParts Number of chimeric parts from which to form a single chimeric sequence.

minLength Minimum length of the complete chimeric sequence.

maxLength Maximum length of the complete chimeric sequence.
minChimericRegionLength

Minimum length of the chimeric region of each sequence part.

randomLengths Logical specifying whether to create random length chimeras in addition to ran-
dom breakpoints.

includeParents Whether to include the parents of each chimera in the output.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Forms a set of random chimeras from the input set of (typically good quality) sequences. The
chimeras are created by merging random sequences at random breakpoints. These chimeras can be
used for testing the accuracy of the FindChimeras or other chimera finding functions.

Value

A DNAStringSet object containing chimeras. The names of the chimeras are specified as "parent
#1 name [chimeric region] (distance from parent to chimera), ...".

If includeParents = TRUE then the parents of the chimeras are included at the end of the result.
The parents are trimmed to the same length as the chimera if randomLengths = TRUE. The names
of the parents are specified as "parent #1 name [region] (distance to parent #2, ...)".

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

FindChimeras, Seqs2DB

DB2Seqs 53

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
chims <- CreateChimeras(dna)
BrowseSeqs(chims)

DB2Seqs Export Database Sequences to a FASTA or FASTQ File

Description

Exports a database containing sequences to a FASTA or FASTQ formatted file of sequence records.

Usage

DB2Seqs(file,
dbFile,
tblName = "Seqs",
identifier = "",
type = "BStringSet",
limit = -1,
replaceChar = NA,
nameBy = "description",
orderBy = "row_names",
removeGaps = "none",
append = FALSE,
width = 80,
compress = FALSE,
chunkSize = 1e5,
sep = "::",
clause = "",
processors = 1,
verbose = TRUE)

Arguments

file Character string giving the location where the file should be written.

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table in which to extract the data.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

type The type of XStringSet (sequences) to export to a FASTA formatted file or
QualityScaledXStringSet to export to a FASTQ formatted file. This should
be (an unambiguous abbreviation of) one of "DNAStringSet", "RNAStringSet",
"AAStringSet", "BStringSet", "QualityScaledDNAStringSet", "QualityScaledRNAStringSet",
"QualityScaledAAStringSet", or "QualityScaledBStringSet". (See de-
tails section below.)

limit Number of results to display. The default (-1) does not limit the number of
results.

54 DB2Seqs

replaceChar Optional character used to replace any characters of the sequence that are not
present in the XStringSet’s alphabet. Not applicable if type=="BStringSet".
The default (NA) results in an error if an incompatible character exist. (See details
section below.)

nameBy Character string giving the column name(s) for identifying each sequence record.
If more than one column name is provided, the information in each column is
concatenated, separated by sep, in the order specified.

orderBy Character string giving the column name for sorting the results. Defaults to the
order of entries in the database. Optionally can be followed by " ASC" or "
DESC" to specify ascending (the default) or descending order.

removeGaps Determines how gaps ("-" or "." characters) are removed in the sequences. This
should be (an unambiguous abbreviation of) one of "none", "all" or "common".

append Logical indicating whether to append the output to the existing file.

width Integer specifying the maximum number of characters per line of sequence. Not
applicable when exporting to a FASTQ formatted file.

compress Logical specifying whether to compress the output file using gzip compression.

chunkSize Number of sequences to write to the file at a time. Cannot be less than the total
number of sequences if removeGaps is "common".

sep Character string providing the separator between fields in each sequence’s name,
by default pairs of colons (“::”).

clause An optional character string to append to the query as part of a “where clause”.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display status.

Details

Sequences are exported into either a FASTA or FASTQ file as determined by the type of sequences.
If type is an XStringSet then sequences are exported to FASTA format. Quality information
for QualityScaledXStringSets are interpreted as PredQuality scores before export to FASTQ
format.

If type is "BStringSet" (the default) then sequences are exported to a FASTA file exactly the
same as they were when imported. If type is "DNAStringSet" then all U’s are converted to T’s
before export, and vise-versa if type is "RNAStringSet". All remaining characters not in the
XStringSet’s alphabet are converted to replaceChar or removed if replaceChar is "". Note that
if replaceChar is NA (the default), it will result in an error when an unexpected character is found.

Value

Writes a FASTA or FASTQ formatted file containing the sequence records in the database.

Returns the number of sequence records written to the file.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The R
Journal, 8(1), 352-359.

deltaGrules 55

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
tf <- tempfile()
DB2Seqs(tf, db, limit=10)
file.show(tf) # press 'q' to exit
unlink(tf)

}

deltaGrules Free Energy of Hybridization of Probe/Target Quadruplets on Mi-
croarrays

Description

An 8D array with four adjacent base pairs of the probe and target sequences at a time. Each di-
mension has five elements defining the nucleotide at that position ("A", "C", "G", "T", or "-"). The
array contains the standard Gibbs free energy change of probe binding (dG, [kcal/mol]) for every
quadruple base pairing.

Usage

data(deltaGrules)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.141 0 0 0 0 ... - attr(*, "dimnames")=List
of 8 ..$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G"
"T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C"
"G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T" ...

Details

The first four dimensions correspond to the four probe positions from 5’ to 3’. The fifth to eighth
dimensions correspond to the four positions from 5’ to 3’ of the target sequence.

Source

Data obtained using NimbleGen microarrays and a Linear Free Energy Model developed by Yilmaz
et al.

References

Yilmaz LS, Loy A, Wright ES, Wagner M, Noguera DR (2012) Modeling Formamide Denaturation
of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS
ONE 7(8): e43862. doi:10.1371/journal.pone.0043862.

Examples

data(deltaGrules)
dG of probe = AGCT / target = A-CT pairing
deltaGrules["A", "G", "C", "T", "A", "-", "C", "T"]

56 deltaHrules

deltaGrulesRNA Pseudoenergy Parameters for RNA Quadruplets

Description

An 8D array with four adjacent base pairs of the RNA duplex. Each dimension has five elements
defining the nucleotide at that position ("A", "C", "G", "U", or "-"). The array contains the pseu-
doenergy of duplex formation for every quadruple base pairing.

Usage

data("deltaGrulesRNA")

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.776 -0.197 -0.197 -0.291 0 ... - attr(*,
"dimnames")=List of 8 ..$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr
[1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$:
chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U" ...

Details

The first four dimensions correspond to the four top strand positions from 5’ to 3’. The fifth to
eighth dimensions correspond to the four bottom strand positions from 5’ to 3’.

Source

Psuedoenergy values of ungapped quadruplets are inferred from their log-odds of being found in
palindromes within hairpin regions across thousands of non-coding RNA alignments. Each value
represents the log-odds of in vivo folding relative to chance.

Examples

data(deltaGrulesRNA)
dG of the duplex AGCU / ACCU pairing (1 mismatch)
deltaGrulesRNA["A", "G", "C", "U", "A", "C", "C", "U"]

deltaHrules Change in Enthalpy of Hybridization of DNA/DNA Quadruplets in So-
lution

Description

An 8D array with four adjacent base pairs of the DNA duplex. Each dimension has five elements
defining the nucleotide at that position ("A", "C", "G", "T", or "-"). The array contains the standard
enthalpy change of probe binding (dH, [kcal/mol]) for every quadruple base pairing.

Usage

data(deltaHrules)

deltaHrulesRNA 57

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -7.97 0 0 0 0 ... - attr(*, "dimnames")=List
of 8 ..$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G"
"T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C"
"G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T" ...

Details

The first four dimensions correspond to the four top strand positions from 5’ to 3’. The fifth to
eighth dimensions correspond to the four bottom strand positions from 5’ to 3’.

Source

Data from a variety of publications by SantaLucia et al.

References

SantaLucia, J., Jr., & Hicks, D. (2004) The Thermodynamics of DNA Structural Motifs. Annual Re-
view of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800.

Examples

data(deltaHrules)
dH of the duplex AGCT / A-CT pairing
deltaHrules["A", "G", "C", "T", "A", "-", "C", "T"]

deltaHrulesRNA Change in Enthalpy of Hybridization of RNA/RNA Quadruplets in So-
lution

Description

An 8D array with four adjacent base pairs of the RNA duplex. Each dimension has five elements
defining the nucleotide at that position ("A", "C", "G", "U", or "-"). The array contains the standard
enthalpy change of probe binding (dH, [kcal/mol]) for every quadruple base pairing.

Usage

data(deltaHrulesRNA)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -6.55 0 0 0 0 ... - attr(*, "dimnames")=List
of 8 ..$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G"
"U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C"
"G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U" ...

Details

The first four dimensions correspond to the four top strand positions from 5’ to 3’. The fifth to
eighth dimensions correspond to the four bottom strand positions from 5’ to 3’.

58 deltaSrules

Source

Data from a variety of publications by SantaLucia et al.

References

SantaLucia, J., Jr., & Hicks, D. (2004) The Thermodynamics of DNA Structural Motifs. Annual Re-
view of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800.

Examples

data(deltaHrulesRNA)
dH of the duplex AGCU / A-CU pairing
deltaHrulesRNA["A", "G", "C", "U", "A", "-", "C", "U"]

deltaSrules Change in Entropy of Hybridization of DNA/DNA Quadruplets in So-
lution

Description

An 8D array with four adjacent base pairs of the DNA duplex. Each dimension has five elements
defining the nucleotide at that position ("A", "C", "G", "T", or "-"). The array contains the standard
entropy change of probe binding (dS, [kcal/mol]) for every quadruple base pairing.

Usage

data(deltaSrules)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.0226 0 0 0 0 ... - attr(*, "dim-
names")=List of 8 ..$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$:
chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$
: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T"$: chr [1:5] "A" "C" "G" "T" ...

Details

The first four dimensions correspond to the four top strand positions from 5’ to 3’. The fifth to
eighth dimensions correspond to the four bottom strand positions from 5’ to 3’.

Source

Data from a variety of publications by SantaLucia et al.

References

SantaLucia, J., Jr., & Hicks, D. (2004) The Thermodynamics of DNA Structural Motifs. Annual Re-
view of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800.

Examples

data(deltaSrules)
dS of the duplex AGCT / A-CT pairing
deltaSrules["A", "G", "C", "T", "A", "-", "C", "T"]

deltaSrulesRNA 59

deltaSrulesRNA Change in Entropy of Hybridization of RNA/RNA Quadruplets in So-
lution

Description

An 8D array with four adjacent base pairs of the RNA duplex. Each dimension has five elements
defining the nucleotide at that position ("A", "C", "G", "T", or "-"). The array contains the standard
entropy change of probe binding (dS, [kcal/mol]) for every quadruple base pairing.

Usage

data(deltaSrulesRNA)

Format

The format is: num [1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5] -0.0182 0 0 0 0 ... - attr(*, "dim-
names")=List of 8 ..$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$:
chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U" ...
..$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"$: chr [1:5] "A" "C" "G" "U"
...

Details

The first four dimensions correspond to the four top strand positions from 5’ to 3’. The fifth to
eighth dimensions correspond to the four bottom strand positions from 5’ to 3’.

Source

Data from a variety of publications by SantaLucia et al.

References

SantaLucia, J., Jr., & Hicks, D. (2004) The Thermodynamics of DNA Structural Motifs. Annual Re-
view of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800.

Examples

data(deltaSrulesRNA)
dS of the duplex AGCU / A-CU pairing
deltaSrulesRNA["A", "G", "C", "U", "A", "-", "C", "U"]

60 DesignArray

DesignArray Design a Set of DNA Microarray Probes for Detecting Sequences

Description

Chooses the set of microarray probes maximizing sensitivity and specificity to each target consensus
sequence.

Usage

DesignArray(myDNAStringSet,
maxProbeLength = 24,
minProbeLength = 20,
maxPermutations = 4,
numRecordedMismatches = 500,
numProbes = 10,
start = 1,
end = NULL,
maxOverlap = 5,
hybridizationFormamide = 10,
minMeltingFormamide = 15,
maxMeltingFormamide = 20,
minScore = -1e+12,
processors = 1,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object of aligned consensus sequences.

maxProbeLength The maximum length of probes, not including the poly-T spacer. Ideally less
than 27 nucleotides.

minProbeLength The minimum length of probes, not including the poly-T spacer. Ideally more
than 18 nucleotides.

maxPermutations

The maximum number of probe permutations required to represent a target site.
For example, if a target site has an ’N’ then 4 probes are required because probes
cannot be ambiguous. Typically fewer permutations are preferably because this
requires less space on the microarray and simplifies interpretation of the results.

numRecordedMismatches

The maximum number of recorded potential cross-hybridizations for any target
site.

numProbes The target number of probes on the microarray per input consensus sequence.

start Integer specifying the starting position in the alignment where potential forward
primer target sites begin. Preferably a position that is included in most sequences
in the alignment.

end Integer specifying the ending position in the alignment where potential reverse
primer target sites end. Preferably a position that is included in most sequences
in the alignment.

maxOverlap Maximum overlap in nucleotides between target sites on the sequence.

DesignArray 61

hybridizationFormamide

The formamide concentration (%, vol/vol) used in hybridization at 42 degrees
Celsius. Note that this concentration is used to approximate hybridization effi-
ciency of cross-amplifications.

minMeltingFormamide

The minimum melting point formamide concentration (%, vol/vol) of the de-
signed probes. The melting point is defined as the concentration where half of
the template is bound to probe.

maxMeltingFormamide

The maximum melting point formamide concentration (%, vol/vol) of the de-
signed probes. Must be greater than the minMeltingFormamide.

minScore The minimum score of designed probes before exclusion. A greater minScore
will accelerate the code because more target sites will be excluded from con-
sideration. However, if the minScore is too high it will prevent any target sites
from being recorded.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

The algorithm begins by determining the optimal length of probes required to meet the input con-
straints while maximizing sensitivity to the target consensus sequence at the specified hybridization
formamide concentration. This set of potential target sites is then scored based on the possibility of
cross-hybridizing to the other non-target sequences. The set of probes is returned with the minimum
possibility of cross-hybridizing.

Value

A data.frame with the optimal set of probes matching the specified constraints. Each row lists
the probe’s target sequence (name), start position, length in nucleotides, start and end position
in the sequence alignment, number of permutations, score, melt point in percent formamide
at 42 degrees Celsius, hybridization efficiency (hyb_eff), target site, and probe(s). Probes are
designed such that the stringency is determined by the equilibrium hybridization conditions and not
subsequent washing steps.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2013) Identification of Bacterial and Archaeal Communities From Source to Tap.
Water Research Foundation, Denver, CO.

DR Noguera, et al. (2014). Mathematical tools to optimize the design of oligonucleotide probes
and primers. Applied Microbiology and Biotechnology. doi:10.1007/s00253-014-6165-x.

See Also

Array2Matrix, NNLS

62 DesignPrimers

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
names(dna) <- 1:length(dna)
probes <- DesignArray(dna)
probes[1,]

DesignPrimers Design PCR Primers Targeting a Specific Group of Sequences

Description

Assists in the design of primer sets targeting a specific group of sequences while minimizing the
potential to cross-amplify other groups of sequences.

Usage

DesignPrimers(tiles,
identifier = "",
start = 1,
end = NULL,
minLength = 17,
maxLength = 26,
maxPermutations = 4,
minCoverage = 0.9,
minGroupCoverage = 0.2,
annealingTemp = 64,
P = 4e-07,
monovalent = 0.07,
divalent = 0.003,
dNTPs = 8e-04,
minEfficiency = 0.8,
worstScore = -Inf,
numPrimerSets = 0,
minProductSize = 75,
maxProductSize = 1200,
maxSearchSize = 1500,
batchSize = 1000,
maxDistance = 0.4,
primerDimer = 1e-07,
ragged5Prime = TRUE,
taqEfficiency = TRUE,
induceMismatch = FALSE,
processors = 1,
verbose = TRUE)

Arguments

tiles A set of tiles representing each group of sequences, as in the format created by
the function TileSeqs.

DesignPrimers 63

identifier Optional character string used to narrow the search results to those matching
a specific identifier. Determines the target group(s) for which primers will be
designed. If "" then all identifiers are selected.

start Integer specifying the starting position in the alignment where potential forward
primer target sites begin. Preferably a position that is included in most sequences
in the alignment.

end Integer specifying the ending position in the alignment where potential reverse
primer target sites end. Preferably a position that is included in most sequences
in the alignment.

minLength Integer providing the minimum length of primers to consider in the design.

maxLength Integer providing the maximum length of primers to consider in the design,
which must be less than or equal to the maxLength of tiles.

maxPermutations

Integer providing the maximum number of permutations considered as part of a
forward or reverse primer set.

minCoverage Numeric giving the minimum fraction of the target group’s sequences that must
be covered with the primer set.

minGroupCoverage

Numeric giving the minimum fraction of the target group that must have se-
quence information (not terminal gaps) in the region covered by the primer set.

annealingTemp Numeric indicating the desired annealing temperature that will be used in the
PCR experiment.

P Numeric giving the molar concentration of primers in the reaction.

monovalent The molar concentration of monovalent ([Na] and [K]) ions in solution that will
be used to determine a sodium equivalent concentration.

divalent The molar concentration of divalent ([Mg]) ions in solution that will be used to
determine a sodium equivalent concentration.

dNTPs Numeric giving the molar concentration of free nucleotides added to the solution
that will be used to determine a sodium equivalent concentration.

minEfficiency Numeric giving the minimum efficiency of hybridization desired for the primer
set. Note that an efficiency of 99% (0.99) will greatly lower predicted specificity
of the primer set, however an efficiency of 50% (0.5) may be too low in actuality
to amplify the target group due to error in melt temperature predictions.

worstScore Numeric specifying the score cutoff to remove target sites from consideration.
For example, a worstScore of -5 will remove all primer sets scoring below -5,
although this may eventually result in no primer sets meeting the design criteria.

numPrimerSets Integer giving the optimal number of primer sets (forward and reverse primer
sets) to design. If set to zero then all possible forward and reverse primers are
returned, but the primer sets minimizing potential cross-amplifications are not
chosen.

minProductSize Integer giving the minimum number of nucleotides desired in the PCR product.

maxProductSize Integer giving the maximum number of nucleotides desired in the PCR product.

maxSearchSize Integer giving the maximum number of nucleotides to search for false priming
upstream and downstream of the expected binding site.

batchSize Integer specifying the number of primers to simulate hybridization per batch
that is passed to CalculateEfficiencyPCR.

64 DesignPrimers

maxDistance Numeric specifying the maximal fraction of mismatched base pairings on a
rolling basis beginning from the 3’ end of the primer.

primerDimer Numeric giving the maximum amplification efficiency of potential primer-dimer
products.

ragged5Prime Logical specifying whether the 5’ end or 3’ end of primer permutations targeting
the same site should be varying lengths.

taqEfficiency Logical determining whether to make use of elongation efficiency and maxDis-
tance to increase predictive accuracy for Taq DNA Polymerase amplifying primers
with mismatches near the 3’ terminus. Note that this should be set to FALSE if
using a high-fidelity polymerase with 3’ to 5’ exonuclease activity.

induceMismatch Logical or integer specifying whether to induce a mismatch in the primer with
the template DNA. If TRUE then a mismatch is induced at the 6th primer position.
If an integer value is provided between 2 and 6 then a mismatch is induced in
that primer position, where the 3’-end is defined as position 1.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Primers are designed for use with Taq DNA Polymerase to maximize sensitivity and specificity for
the target group of sequences. The design makes use of Taq’s bias against certain 3’ terminal mis-
match types in order to increase specificity further than can be achieve with hybridization efficiency
alone.

Primers are designed from a set of tiles to target each identifier while minimizing affinity for
all other tiled groups. Arguments provide constraints that ensure the designed primer sets meet
the specified criteria as well as being optimized for the particular experimental conditions. A
search is conducted through all tiles in the same alignment position to estimate the chance of cross-
amplification with a non-target group.

If numPrimers is greater than or equal to one then the set of forward and reverse primers that
minimizes potential false positive overlap is returned. This will also initiate a thorough search
through all target sites upstream and downstream of the expected binding sites to ensure that the
primers do not bind to nearby positions. Lowering the maxSearchSize will speed up the thorough
search at the expense of potentially missing an unexpected target site. The number of possible
primer sets assessed is increased with the size of numPrimers.

Value

A different data.frame will be returned depending on number of primer sets requested. If no
primer sets are required then columns contain the forward and reverse primers for every possible
position scored by their potential to amplify other identified groups. If one or more primer sets are
requested then columns contain information for the optimal set of forward and reverse primers that
could be used in combination to give the fewest potential cross-amplifications.

Note

The program OligoArrayAux (http://www.unafold.org/Dinamelt/software/oligoarrayaux.
php) must be installed in a location accessible by the system. For example, the following code
should print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

http://www.unafold.org/Dinamelt/software/oligoarrayaux.php
http://www.unafold.org/Dinamelt/software/oligoarrayaux.php

DesignProbes 65

To install OligoArrayAux from the downloaded source folder on Unix-like platforms, open the shell
(or Terminal on Mac OS) and type:

cd oligoarrayaux # change directory to the correct folder name

./configure

make

sudo make install

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2013) "Exploiting Extension Bias in PCR to Improve Primer Specificity in
Ensembles of Nearly Identical DNA Templates." Environmental Microbiology, doi:10.1111/1462-
2920.12259.

See Also

AmplifyDNA, CalculateEfficiencyPCR, DesignSignatures, TileSeqs

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
not run (must have OligoArrayAux installed first):
Not run: tiles <- TileSeqs(db,
identifier=c("Rhizobiales", "Sphingomonadales"))

End(Not run)
Not run: primers <- DesignPrimers(tiles, identifier="Rhizobiales",
start=280, end=420, minProductSize=50, numPrimerSets=1)

End(Not run)
}

DesignProbes Design FISH Probes Targeting a Specific Group of Sequences

Description

Assists in the design of single or dual probes targeting a specific group of sequences while mini-
mizing the potential to cross-hybridize with other groups of sequences.

Usage

DesignProbes(tiles,
identifier = "",
start = 1,
end = NULL,
minLength = 17,
maxLength = 26,
maxPermutations = 4,

66 DesignProbes

minCoverage = 0.9,
minGroupCoverage = 0.2,
hybTemp = 46,
P = 2.5e-07,
Na = 1,
FA = 35,
minEfficiency = 0.5,
worstScore = -Inf,
numProbeSets = 0,
batchSize = 1000,
target = "SSU",
verbose = TRUE)

Arguments

tiles A set of tiles representing each group of sequences, as in the format created by
the function TileSeqs.

identifier Optional character string used to narrow the search results to those matching
a specific identifier. Determines the target group(s) for which probes will be
designed. If "" then all identifiers are selected.

start Integer specifying the starting position in the alignment where potential target
sites begin. Preferably a position that is included in most sequences in the align-
ment.

end Integer specifying the ending position in the alignment where potential target
sites end. Preferably a position that is included in most sequences in the align-
ment.

minLength Integer providing the minimum length of probes to consider in the design.

maxLength Integer providing the maximum length of probes to consider in the design, which
must be less than or equal to the maxLength of tiles.

maxPermutations

Integer providing the maximum number of probe permutations required to reach
the desired coverage of a target site.

minCoverage Numeric giving the minimum fraction of the target group’s sequences that must
be covered by the designed probe(s).

minGroupCoverage

Numeric giving the minimum fraction of the target group that must have se-
quence information (not terminal gaps) in the target site’s region.

hybTemp Numeric specifying the hybridization temperature, typically 46 degrees Celsius.

P Numeric giving the molar concentration of probes during hybridization.

Na Numeric giving the molar sodium concentration in the hybridization buffer. Val-
ues may range between 0.01M and 1M. Note that salt correction from 1 molar
is not available for the thermodynamic rules of RNA/RNA interactions.

FA Numeric concentration (as percent v/v) of the denaturant formamide in the hy-
bridization buffer.

minEfficiency Numeric giving the minimum equilibrium hybridization efficiency desired for
designed probe(s) at the defined experimental conditions.

worstScore Numeric specifying the score cutoff to remove target sites from consideration.
For example, a worstScore of -5 will remove all probes scoring below -5, al-
though this may eventually result in no probes meeting the design criteria.

DesignProbes 67

numProbeSets Integer giving the optimal number of dual probe sets to design. If set to zero then
all potential single probes are returned, and the probe sets minimizing potential
false cross-hybridizations are not chosen.

batchSize Integer specifying the number of probes to simulate hybridization per batch that
is passed to CalculateEfficiencyFISH.

target The target molecule used in the generation of tiles. Either "SSU" for the small-
subunit rRNA, "LSU" for the large-subunit rRNA, or "Other". Used to determine
the domain for dG3 calculations, which is plus or minus 200 nucleotides of the
target site if "Other".

verbose Logical indicating whether to display progress.

Details

Probes are designed to maximize sensitivity and specificity to the target group(s) (identifier(s)).
If numProbeSets > 0 then that many pairs of probes with minimal cross-hybridization overlap are
returned, enabling increased specificity with a dual-color approach.

Probes are designed from a set of tiles to target each identifier while minimizing affinity for all
other tiled groups. Arguments provide constraints that ensure the designed probes meet the specified
criteria as well as being optimized for the particular experimental conditions. A search is conducted
through all tiles in the same alignment position to estimate the chance of cross-hybridization with a
non-target group.

Two models are used in design, both of which were experimentally calibrated using denaturation
profiles from 5 organisms belonging to all three domains of life. Probe lengths are chosen to meet
the minEfficiency using a fast model of probe-target hybridization. Candidate probes are then
confirmed using a slower model that also takes into account probe-folding and target-folding. Fi-
nally, probes are scored for their inability to cross-hybridize with non-target groups by using the
fast model and taking into account any mismatches.

Value

A different data.frame will be returned depending on number of primer sets requested. If no
probe sets are required then columns contain the designed probes for every possible position scored
by their potential to cross-hybridize with other identified groups. If one or more probe sets are
requested then columns contain information for the optimal set of probes (probe one and probe
two) that could be used in combination to give the fewest potential cross-hybridizations.

Note

The program OligoArrayAux (http://www.unafold.org/Dinamelt/software/oligoarrayaux.
php) must be installed in a location accessible by the system. For example, the following code
should print the installed OligoArrayAux version when executed from the R console:

system("hybrid-min -V")

To install OligoArrayAux from the downloaded source folder on Unix-like platforms, open the shell
(or Terminal on Mac OS) and type:

cd oligoarrayaux # change directory to the correct folder name

./configure

make

sudo make install

http://www.unafold.org/Dinamelt/software/oligoarrayaux.php
http://www.unafold.org/Dinamelt/software/oligoarrayaux.php

68 DesignSignatures

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2014) "Automated Design of Probes for rRNA-Targeted Fluorescence In Situ
Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification." Applied
and Environmental Microbiology, doi:10.1128/AEM.01685-14.

See Also

CalculateEfficiencyFISH, TileSeqs

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
not run (must have OligoArrayAux installed first):
Not run: tiles <- TileSeqs(db,
identifier=c("Rhizobiales", "Sphingomonadales"))

End(Not run)
Not run: probes <- DesignProbes(tiles, identifier="Rhizobiales",
start=280, end=420)

End(Not run)
}

DesignSignatures Design PCR Primers for Amplifying Group-Specific Signatures

Description

Aids the design of pairs of primers for amplifying a unique “signature” from each group of se-
quences. Signatures are distinct PCR products that can be differentiated by their length, melt tem-
perature, or sequence.

Usage

DesignSignatures(dbFile,
tblName = "Seqs",
identifier = "",
focusID = NA,
type = "melt",
resolution = 0.5,
levels = 10,
enzymes = NULL,
minLength = 17,
maxLength = 26,
maxPermutations = 4,
annealingTemp = 64,
P = 4e-07,
monovalent = 0.07,
divalent = 0.003,

DesignSignatures 69

dNTPs = 8e-04,
minEfficiency = 0.8,
ampEfficiency = 0.5,
numPrimerSets = 100,
minProductSize = 70,
maxProductSize = 400,
kmerSize = 8,
searchPrimers = 500,
maxDictionary = 20000,
primerDimer = 1e-07,
pNorm = 1,
taqEfficiency = TRUE,
processors = 1,
verbose = TRUE)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table where the DNA sequences are located.

identifier Optional character string used to narrow the search results to those matching
a specific identifier. Determines the target group(s) for which primers will be
designed. If "" then all identifiers are selected.

focusID Optional character string specifying which of the identifiers will be used in
the initial step of designing primers. If NA (the default), then the identifier
with the most sequence information is used as the focusID.

type Character string indicating the type of signature being used to differentiate the
PCR products from each group. This should be (an abbreviation of) one of
"melt", "length", or "sequence".

resolution Numeric specifying the “resolution” of the experiment, or a vector giving the
boundaries of bins. (See details section below.)

levels Numeric giving the number of “levels” that can be distinguished in each bin.
(See details section below.)

enzymes Named character vector providing the cut sites of one or more restriction en-
zymes. Cut sites must be delineated in the same format as RESTRICTION_ENZYMES.

minLength Integer providing the minimum length of primers to consider in the design.

maxLength Integer providing the maximum length of primers to consider in the design.
maxPermutations

Integer providing the maximum number of permutations allowed in a forward
or reverse primer to attain greater coverage of sequences.

annealingTemp Numeric indicating the desired annealing temperature that will be used in the
PCR experiment.

P Numeric giving the molar concentration of primers in the reaction.

monovalent The molar concentration of monovalent ([Na] and [K]) ions in solution that will
be used to determine a sodium equivalent concentration.

divalent The molar concentration of divalent ([Mg]) ions in solution that will be used to
determine a sodium equivalent concentration.

dNTPs Numeric giving the molar concentration of free nucleotides added to the solution
that will be used to determine a sodium equivalent concentration.

70 DesignSignatures

minEfficiency Numeric giving the minimum efficiency of hybridization desired for the primer
set.

ampEfficiency Numeric giving the minimum efficiency required for theoretical amplification of
the primers. Note that ampEfficiency must be less than or equal to minEfficiency.
Lower values of ampEfficiency will allow for more PCR products, although
very low values are unrealistic experimentally.

numPrimerSets Integer giving the optimal number of primer sets (forward and reverse primer
sets) to design.

minProductSize Integer giving the minimum number of nucleotides desired in the PCR product.

maxProductSize Integer giving the maximum number of nucleotides desired in the PCR product.

kmerSize Integer giving the size of k-mers to use in the preliminary search for potential
primers.

searchPrimers Numeric specifying the number of forward and reverse primers to use in search-
ing for potential PCR products. A lower value will result in a faster search, but
potentially neglect some useful primers.

maxDictionary Numeric giving the maximum number of primers to search for simultaneously
in any given step.

primerDimer Numeric giving the maximum amplification efficiency of potential primer-dimer
products.

pNorm Numeric specifying the power (p > 0) used in calculating the Lp-norm when
scoring primer pairs. By default (p = 1), the score is equivalent to the average
difference between pairwise signatures. When p < 1, many small differences
will be preferred over fewer large differences, and vise-versa when p > 1. This
enables prioritizing primer pairs that will yield a greater number of unique sig-
natures (p < 1), or fewer distinct, but more dissimilar, signatures (p > 1).

taqEfficiency Logical determining whether to make use of elongation efficiency to increase
predictive accuracy for Taq DNA Polymerase amplifying primers with mis-
matches near the 3’ terminus. Note that this should be set to FALSE if using
a high-fidelity polymerase with 3’ to 5’ exonuclease activity.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Signatures are group-specific PCR products that can be differentiated by either their melt tempera-
ture profile, length, or sequence. DesignSignatures assists in finding the optimal pair of forward
and reverse primers for obtaining a distinguishable signature from each group of sequences. Groups
are delineated by their unique identifier in the database. The algorithm works by progressively
narrowing the search for optimal primers: (1) the most frequent k-mers are found; (2) these are used
to design primers initially matching the focusID group; (3) the most common forward and reverse
primers are selected based on all of the groups, and ambiguity is added up to maxPermutations;
(4) a final search is performed to find the optimal forward and reverse primer. Pairs of primers are
scored by the distance between the signatures generated for each group, which depends on the type
of experiment.

The arguments resolution and levels control the theoretical resolving power of the experiment.
The signature for a group is discretized or grouped into “bins” each with a certain magnitude of
the signal. Here resolution determines the separation between distinguishable “bins”, and levels
controls the range of values in each bin. A high-accuracy experiment would have many bins and/or

DesignSignatures 71

many levels. While levels is interpreted similarly for every type of experiment, resolution is
treated differently depending on type. If type is "melt", then resolution can be either a vector
of different melt temperatures, or a single number giving the change in temperatures that can be
differentiated. A high-resolution melt (HRM) assay would typically have a resolution between 0.25
and 1 degree Celsius. If type is "length" then resolution is either the number of bins between
the minProductSize and maxProductSize, or the bin boundaries. For example, resolution can
be lower (wider bins) at long lengths, and higher (narrower bins) at shorter lengths. If type is
"sequence" then resolution sets the k-mer size used in differentiating amplicons. Oftentimes, 4
to 6-mers are used for the classification of amplicons.

The signatures can be diversified by using a restriction enzyme to digest the PCR products when
type is "melt" or "length". If enzymes are supplied then the an additional search is made to find
the best enzyme to use with each pair of primers. In this case, the output includes all of the primer
pairs, as well as any enzymes that will digest the PCR products of that primer pair. The output is re-
scored to rank the top primer pair and enzyme combination. Note that enzymes is inapplicable when
type is "sequence" because restriction enzymes do not alter the sequence of the DNA. Also, it is
recommended that only a subset of the available RESTRICTION_ENZYMES are used as input enzymes
in order to accelerate the search for the best enzyme.

Value

A data.frame with the top-scoring pairs of forward and reverse primers, their score, the total
number of PCR products, and associated columns for the restriction enzyme (if enzyme is not NULL).

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E.S. & Vetsigian, K.H. (2016) "DesignSignatures: a tool for designing primers that yields
amplicons with distinct signatures." Bioinformatics, doi:10.1093/bioinformatics/btw047.

See Also

AmplifyDNA, CalculateEfficiencyPCR, DesignPrimers, DigestDNA, Disambiguate, MeltDNA,
RESTRICTION_ENZYMES

Examples

if (require("RSQLite", quietly=TRUE)) {
below are suggested inputs for different types of experiments
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")

Not run:
High Resolution Melt (HRM) assay:
primers <- DesignSignatures(db,

resolution=seq(75, 100, 0.25), # degrees Celsius
minProductSize=55, # base pairs
maxProductSize=400)

Primers for next-generation sequencing:
primers <- DesignSignatures(db,

type="sequence",
minProductSize=300, # base pairs
maxProductSize=700,

72 DetectRepeats

resolution=5, # 5-mers
levels=5)

Primers for community fingerprinting:
primers <- DesignSignatures(db,

type="length",
levels=2, # presence/absence
minProductSize=200, # base pairs
maxProductSize=1400,
resolution=c(seq(200, 700, 3),

seq(705, 1000, 5),
seq(1010, 1400, 10)))

Primers for restriction fragment length polymorphism (RFLP):
data(RESTRICTION_ENZYMES)
myEnzymes <- RESTRICTION_ENZYMES[c("EcoRI", "HinfI", "SalI")]
primers <- DesignSignatures(db,

type="length",
levels=2, # presence/absence
minProductSize=200, # base pairs
maxProductSize=600,
resolution=c(seq(50, 100, 3),

seq(105, 200, 5),
seq(210, 600, 10)),

enzymes=myEnzymes)

End(Not run)
}

DetectRepeats Detect Repeats in a Sequence

Description

Detects approximate copies of sequence patterns that likely arose from duplication events and there-
fore share a common ancestor.

Usage

DetectRepeats(myXStringSet,
type = "tandem",
minScore = 10,
allScores = FALSE,
maxCopies = 1000,
maxPeriod = 1000,
maxFailures = 3,
maxShifts = 5,
alphabet = AA_REDUCED[[47]],
useEmpirical = TRUE,
correctBackground = TRUE,
processors = 1,
verbose = TRUE,
...)

DetectRepeats 73

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of unaligned se-
quences.

type Character string indicating the type of repeats to detect. This should be (an ab-
breviation of) one of "tandem", "interspersed", or "both". Only "tandem"
is possible when myXStringSet is an AAStringSet. (See details section below.)

minScore Numeric giving the minimum score of repeats in myXStringSet to report.

allScores Logical specifying whether all repeats should be returned (TRUE) or only the top
scoring repeat when there are multiple overlapping matches in the same region.

maxCopies Numeric defining the maximum copy number of tandem repeat. Since alignment
complexity is quadratic in the number of repeat copies, setting a limit on the
repeat copy number prevents very long repeats from becoming rate limiting.

maxPeriod Numeric indicating the maximum periodicity of tandem repeats to consider. In-
terspersed repeats will only be detected that are at least maxPeriod nucleotides
apart.

maxFailures Numeric determining the maximum number of failing attempts to extend a re-
peat that are permitted. Numbers greater than zero may increase accuracy at the
expense of speed, with decreasing marginal returns as maxFailures gets higher.

maxShifts Numeric determining the maximum number of failing attempts to shift a repeat
left or right that are permitted. Numbers greater than zero may increase accuracy
at the expense of speed, with decreasing marginal returns as maxShifts gets
higher.

alphabet Character vector of amino acid groupings used to reduce the 20 standard amino
acids into smaller groups. Alphabet reduction helps to find more distant ho-
mologies between sequences. A non-reduced amino acid alphabet can be used
by setting alphabet equal to AA_STANDARD. Only applicable if myXStringSet
is an AAStringSet.

useEmpirical Logical specifying whether to use empirical signals of structurally-determined
tandem repeats when scoring. Empirical signals include the number of repeats,
their periodicity, and their amino acid composition when myXStringSet is an
AAStringSet.

correctBackground

Logical controlling whether to correct the substitution matrix for the background
distribution of letter frequencies on a per sequence basis.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

... Further arguments to be passed directly to FindSynteny if type is "interspersed"
or "both".

Details

Many sequences are composed of a substantial fraction of repetitive sequence. Two main forms of
repetition are tandem repeats and interspersed repeats, which can be caused by duplication events
followed by divergence. Detecting duplications is challenging because of variability in repeat length
and composition due to evolution. The significance of a repeat can be quantified by its time since
divergence from a common ancestor. DetectRepeats uses a seed-and-extend approach to identify
candidate repeats, and tests whether a set of repeats is statistically significant using a background-
corrected substitution matrix and gap (i.e., insertion and deletion) penalties. A higher score implies

74 DetectRepeats

the repeats are more conserved and, therefore, are more likely to have diverged within a finite
amount of time from a common ancestor. When myXStringSet is an AAStringSet, similarity
includes agreement among predicted secondary structures.

Two possible types of repeats are detectable: * type is "tandem" (the default) or "both" Contiguous
approximate copies of a nucleotide or amino acid sequence. First, repeated k-mers are identified
along the length of the input sequence(s). Once a k-mer seed is identified, repeated attempts are
made to extend the repeat left and right, as well as optimize the beginning and ending positions. *
type is "interspersed" or "both" Dispersed approximate copies of a nucleotide sequence on the same
strand or opposite strands. These are identified with FindSynteny, aligned with AlignSynteny, and
then scored using the same statistical framework as tandem repeats.

The highest scoring repeat in each region is returned, unless allScores is TRUE, in which case
overlapping repeats are permitted in the result.

Value

If type is "tandem", a data.frame giving the "Index" of the sequence in myXStringSet, "Begin"
and "End" positions of tandem repeats, "Left" and "Right" positions of each repeat, and its
"Score".

If type is "interspersed", a data.frame similar to the matrix in the lower diagonal of Synteny
objects (see Synteny-class).

If type is "both", a list with the above two elements.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Schaper, E., et al. (2012). Repeat or not repeat?-Statistical validation of tandem repeat prediction
in genomic sequences. Nucleic Acids Research, 40(20), 10005-17.

See Also

ScoreAlignment

Examples

fas <- system.file("extdata", "Human_huntingtin_cds.fas.gz", package="DECIPHER")
dna <- readDNAStringSet(fas)

x <- DetectRepeats(dna)
x

number of tandem repeats
lengths(x[, "Left"])

average periodicity of tandem repeats
per <- mapply(function(a, b) b - a + 1,
x[, "Left"],
x[, "Right"],
SIMPLIFY=FALSE)
sapply(per, mean)

extract a tandem repeat

DigestDNA 75

i <- 1
reps <- extractAt(dna[[x[i, "Index"]]],
IRanges(x[[i, "Left"]], x[[i, "Right"]]))

reps
reps <- AlignSeqs(reps, verbose=FALSE) # align the repeats
reps
BrowseSeqs(reps)

highlight tandem repeats in the sequence
colors <- c("deeppink", "deepskyblue")
colors <- lapply(colors, function(x) col2rgb(x)/255)
cols <- vector("list", length(dna))
for (i in seq_along(cols)) {
cols[[i]] <- matrix(0, nrow=3, ncol=width(dna)[i])
for (j in which(x[, "Index"] == i)) {
left <- x[[j, "Left"]]
right <- x[[j, "Right"]]
n <- 0
for (k in seq_along(left)) {
r <- left[k]:right[k]
n <- n + 1
if (n > length(colors))
n <- 1
cols[[i]][, r] <- colors[[n]]
}
}

}
BrowseSeqs(dna, patterns=cols)

find interspersed (rather than tandem) repeats
data(yeastSEQCHR1)
chr1 <- DNAStringSet(yeastSEQCHR1)

if (require("RSQLite", quietly=TRUE)) {
z <- DetectRepeats(chr1, type="interspersed")
z

}

DigestDNA Simulate Restriction Digestion of DNA

Description

Restriction enzymes can be used to cut double-stranded DNA into fragments at specific cut sites.
DigestDNA performs an in-silico restriction digest of the input DNA sequence(s) given one or more
restriction sites.

Usage

DigestDNA(sites,
myDNAStringSet,
type = "fragments",
strand = "both")

76 DigestDNA

Arguments

sites A character vector of DNA recognition sequences and their enzymes’ corre-
sponding cut site(s).

myDNAStringSet A DNAStringSet object or character vector with one or more sequences in 5’ to
3’ orientation.

type Character string indicating the type of results desired. This should be (an abbre-
viation of) either "fragments" or "positions".

strand Character string indicating the strand(s) to cut. This should be (an abbreviation
of) one of "both", "top", or "bottom". The top strand is defined as the input
DNAStringSet sequence, and the bottom strand is its reverse complement.

Details

In the context of a restriction digest experiment with a known DNA sequence, it can be useful to
predict the expected DNA fragments in-silico. Restriction enzymes make cuts in double-stranded
DNA at specific positions near their recognition site. The recognition site may be somewhat am-
biguous, as represented by the IUPAC_CODE_MAP. Cuts that occur at different positions on the top
and bottom strands result in sticky-ends, whereas those that occur at the same position result in
fragments with blunt-ends. Multiple restriction sites can be supplied to simultaneously digest the
DNA. In this case, sites for the different restriction enzymes may be overlapping, which could
result in multiple close-proximity cuts that would not occur experimentally. Also, note that cut sites
will not be matched to non-DNA_BASES in myDNAStringSet.

Value

DigestDNA can return two types of results: cut positions or the resulting DNA fragments corre-
sponding to the top, bottom, or both strands. If type is "positions" then the output is a list with
the cut location(s) in each sequence in myDNAStringSet. The cut location is defined as the position
after the cut relative to the 5’-end. For example, a cut at 6 would occur between positions 5 and 6,
where the respective strand’s 5’ nucleotide is defined as position 1.

If type is "fragments" (the default), then the result is a DNAStringSetList. Each element of the
list contains the top and/or bottom strand fragments after digestion of myDNAStringSet, or the
original sequence if no cuts were made. Sequences are named by whether they originated from
the top or bottom strand, and list elements are named based on the input DNA sequences. The
top strand is defined by myDNAStringSet as it is input, whereas the bottom strand is its reverse
complement.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

DesignSignatures, RESTRICTION_ENZYMES

Examples

digest hypothetical DNA sequences with BamHI
data(RESTRICTION_ENZYMES)
site <- RESTRICTION_ENZYMES[c("BamHI")]
dna <- DNAStringSet(c("AAGGATCCAA", "GGGATCAT"))
dna # top strand

Disambiguate 77

reverseComplement(dna) # bottom strand
names(dna) <- c("hyp1", "hyp2")
d <- DigestDNA(site, dna)
d # fragments in a DNAStringSetList
unlist(d) # all fragments as one DNAStringSet

Restriction digest of Yeast Chr. 1 with EcoRI and EcoRV
data(yeastSEQCHR1)
sites <- RESTRICTION_ENZYMES[c("EcoRI", "EcoRV")]
seqs <- DigestDNA(sites, yeastSEQCHR1)
seqs[[1]]

pos <- DigestDNA(sites, yeastSEQCHR1, type="positions")
str(pos)

Disambiguate Expand Ambiguities into All Permutations of a DNAStringSet

Description

Performs the inverse function of ConsensusSequence by expanding any ambiguities present in
sequences.

Usage

Disambiguate(myXStringSet)

Arguments

myXStringSet A DNAStringSet or RNAStringSet object of sequences.

Details

Ambiguity codes in the IUPAC_CODE_MAP can be used to represent multiple nucleotides at a single
position. Using these letters, multiple oligonucleotide permutations can be represented with a single
ambiguous sequence. This function expands each sequence in the DNAStringSet input into all of
its permutations. Note that sequences with many ambiguities can result in a very large number of
potential permutations.

Value

A DNAStringSetList or RNAStringSetList with one element for each sequence in myXStringSet.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

ConsensusSequence

78 DistanceMatrix

Examples

dna <- DNAStringSet(c("ACST", "NNN"))
dna_list <- Disambiguate(dna)
dna_list[[1]]
dna_list[[2]]
unlist(dna_list)

rna <- RNAStringSet(c("ACGU", "AGAU")) # 2 permutations
rna <- ConsensusSequence(rna) # "ASRU"
Disambiguate(rna) # 4 permutations

DistanceMatrix Calculate the Distances Between Sequences

Description

Calculates a distance matrix for an XStringSet. Each element of the distance matrix corresponds
to the dissimilarity between two sequences in the XStringSet.

Usage

DistanceMatrix(myXStringSet,
method = "overlap",
type = "matrix",
includeTerminalGaps = FALSE,
penalizeGapLetterMatches = TRUE,
minCoverage = 0,
correction = "none",
processors = 1,
verbose = TRUE)

Arguments

myXStringSet A DNAStringSet, RNAStringSet, or AAStringSet object of aligned sequences.

type Character string indicating the type of output desired. This should be either
"matrix" or "dist". (See value section below.)

method Character string determining the region in which distance is calculated. This
should be (an unambiguous abbreviation of) one of "overlap", "shortest", or
"longest". The default method ("overlap") calculates distance in the overlap-
ping region between terminal gaps when includeTerminalGaps is FALSE and
the entire alignment otherwise. Setting method to "shortest" or "longest"
will use the region between the start and end of the shortest or longest se-
quence, respectively, for each pairwise distance. The method is only relevant
when includeTerminalGaps is TRUE.

includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("-" or "." characters
on each end of the sequence) into the calculation of distance.

penalizeGapLetterMatches

Logical specifying whether or not to consider gap-to-letter matches as mis-
matches. If FALSE, then gap-to-letter matches are not included in the total length

DistanceMatrix 79

used to calculate distance. The default (TRUE) is to penalize gap-to-letter mis-
matches the same as letter-to-letter mismatches. If NA then gap-to-letter mis-
matches are only penalized once per insertion or deletion, i.e., when changing
to gap-to-letter or letter-to-gap.

minCoverage Numeric giving the minimum fraction of sequence positions (not gap or mask)
that must be overlapping in each pair. If positive then coverage is relative to
the shortest sequence. If negative then coverage is relative to both sequences.
Sequences failing to meet minCoverage will be assigned NA distances. Note that
completely non-overlapping sequences are always given NA distances, regardless
of minCoverage, unless includeTerminalGaps is TRUE (i.e., distance = 100%).

correction The evolutionary model used for distance correction. This should be (an abbre-
viation of) either "none", "Jukes-Cantor" (i.e., "JC69"), "F81", or "Poisson".
For "F81" letter frequencies are derived from myXStringSet.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

The uncorrected (correction = "none") distance matrix represents the hamming distance between
each of the sequences in myXStringSet. Ambiguity can be represented using the characters of the
IUPAC_CODE_MAP for DNAStringSet and RNAStringSet inputs, or using the AMINO_ACID_CODE for
an AAStringSet input. For example, the distance between an ’N’ and any other nucleotide base
is zero. The letters B (N or D), J (I or L), Z (Q or E), and X (any letter) are degenerate in the
AMINO_ACID_CODE.

If includeTerminalGaps = FALSE then terminal gaps ("-" or "." characters) are not included in
sequence length. This can be faster since only the positions common to each pair of sequences are
compared. Sequences with no overlapping region in the alignment are given a value of NA, unless
includeTerminalGaps = TRUE, in which case distance is 100%. Masked characters ("+") in either
sequence are not considered in distance.

Penalizing gap-to-letter mismatches specifies whether to penalize these special mismatch types and
include them in the total length when calculating distance. Both "-" and "." characters are interpreted
as gaps. The default behavior is to calculate distance as the fraction of positions that differ across
the region of the alignment shared by both sequences (not including gap-to-gap matches).

Three correction factors are available to transform distances into an expected number of changes
per site. All can be applied to nucleotides or amino acids, but two are intended for nucleotides
and one for amino acids. The two nucleotide correction factors are "JC69" and "F81", which are
described in MODELS. Both transform raw distance (d) by

−E ∗ log (1− d/E)

, where
E = 1−

∑
i∈sym

f2
i

and (f) is the relative frequency of each symbol (sym). In the "JC69" model symbols are assumed
to have equal frequency, whereas in the "F81" model the symbol frequencies are empirically derived
from the input myXStringSet. The correction factor intended for amino acids is "Poisson", which
assumes the number of substitutions per site follows the Poisson distribution. The raw distance (d)
is transformed by

− log (1− d)

80 DistanceMatrix

. Note that gaps are treated as an additional symbol when penalizeGapLetterMatches is TRUE,
and all correction factors will result in an infinite distance when the sequences are 100% different
(i.e., d = 1).

Value

If type is "matrix", a symmetric matrix where each element is the distance between the sequences
referenced by the respective row and column. The dimnames of the matrix correspond to the names
of the XStringSet.

If type is "dist", an object of class "dist" that contains one triangle of the distance matrix as a
vector. Since the distance matrix is symmetric, storing only one triangle is more memory efficient.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Treeline

Examples

example of using the defaults:
dna <- DNAStringSet(c("ACTG", "ACCG"))
dna
DistanceMatrix(dna)

changing the output type to "dist":
d <- DistanceMatrix(dna, type="dist")
d
length(d) # minimal memory space required
m <- as.matrix(d)
length(m) # more memory space required

supplying an AAStringSet
aa <- AAStringSet(c("ASYK", "ATYK", "CTWN"))
aa
DistanceMatrix(aa)

correct for multiple substitutions per site:
DistanceMatrix(aa, correction="Poisson")

defaults compare intersection of internal ranges:
dna <- DNAStringSet(c("ANGCT-", "-ACCT-"))
dna
d <- DistanceMatrix(dna)
d
d[1,2] is 1 base in 4 = 0.25

compare union of internal positions, without terminal gaps:
dna <- DNAStringSet(c("ANGCT-", "-ACCT-"))
dna
d <- DistanceMatrix(dna, includeTerminalGaps=TRUE)
d
d[1,2] is now 2 bases in 5 = 0.40

ExtractGenes 81

gap ("-") and unknown (".") characters are interchangeable:
dna <- DNAStringSet(c("ANGCT.", ".ACCT-"))
dna
d <- DistanceMatrix(dna, includeTerminalGaps=TRUE)
d
d[1,2] is still 2 bases in 5 = 0.40

compare different methods for calculating distance:
dna <- DNAStringSet(c("--ACTG", "TGAGT-"))
dna
DistanceMatrix(dna, method="overlap") # 1/3
DistanceMatrix(dna, method="shortest",

includeTerminalGaps=FALSE) # 1/3
DistanceMatrix(dna, method="shortest",

includeTerminalGaps=TRUE) # 2/4
DistanceMatrix(dna, method="shortest",

includeTerminalGaps=TRUE,
penalizeGapLetterMatches=FALSE) # 1/3

DistanceMatrix(dna, method="longest",
includeTerminalGaps=FALSE) # 1/3

DistanceMatrix(dna, method="longest",
includeTerminalGaps=TRUE) # 3/5

DistanceMatrix(dna, method="longest",
includeTerminalGaps=TRUE,
penalizeGapLetterMatches=FALSE) # 1/3

DistanceMatrix(dna, method="overlap",
minCoverage=1) # NA (insufficient overlap)

DistanceMatrix(dna, method="overlap",
minCoverage=0.75) # 3/4 sites covered in shorter

DistanceMatrix(dna, method="overlap",
minCoverage=-0.75) # 3/5 sites covered in longer

neither internal nor external gap/gap matches are considered:
dna <- DNAStringSet(c("--A-CTA", "-AG-C--"))
dna
DistanceMatrix(dna) # 1/2
DistanceMatrix(dna, includeTerminalGaps=TRUE) # 4/5
DistanceMatrix(dna, includeTerminalGaps=TRUE,

method="shortest") # 2/3
DistanceMatrix(dna, includeTerminalGaps=TRUE,

method="longest") # 3/4

ExtractGenes Extract Predicted Genes from a Genome

Description

Extracts predicted genes from the genome used for prediction.

Usage

ExtractGenes(x,
myDNAStringSet,
type = "DNAStringSet",
...)

82 FindChimeras

Arguments

x An object of class Genes.

myDNAStringSet The DNAStringSet object used in generating x.

type The class of sequences to return. This should be (an unambiguous abbreviation
of) one of "AAStringSet", "DNAStringSet" (the default), or "RNAStringSet".

... Other parameters passed directly to translate.

Details

Extracts a set of gene predictions as either DNA, mRNA, or proteins.

Value

An "AAStringSet", "DNAStringSet", or "RNAStringSet" determined by type.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

FindGenes, Genes-class, WriteGenes

Examples

import a test genome
fas <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

genome <- readDNAStringSet(fas)

x <- FindGenes(genome)
genes <- ExtractGenes(x, genome)
proteins <- ExtractGenes(x, genome, type="AAStringSet")

FindChimeras Find Chimeras in a Sequence Database

Description

Finds chimeras present in a database of sequences. Makes use of a reference database of (presumed
to be) good quality sequences.

Usage

FindChimeras(dbFile,
tblName = "Seqs",
identifier = "",
dbFileReference,
tblNameReference = "Seqs",
batchSize = 100,

FindChimeras 83

minNumFragments = 20000,
tb.width = 5,
multiplier = 20,
minLength = 30,
minCoverage = 0.6,
overlap = 100,
minSuspectFragments = 4,
showPercentCoverage = FALSE,
add2tbl = FALSE,
maxGroupSize = -1,
minGroupSize = 25,
excludeIDs = NULL,
processors = 1,
verbose = TRUE)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file to be checked for chimeric sequences.

tblName Character string specifying the table in which to check for chimeras.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

dbFileReference

A database connection object or a character string specifying the path to a
SQLite reference database file of (presumed to be) good quality sequences. A
16S reference database is available from http://DECIPHER.codes.

tblNameReference

Character string specifying the table with reference sequences.

batchSize Number sequences to tile with fragments at a time.
minNumFragments

Number of suspect fragments to accumulate before searching through other
groups.

tb.width A single integer [1..14] giving the number of nucleotides at the start of each
fragment that are part of the trusted band.

multiplier A single integer specifying the multiple of fragments found out-of-group greater
than fragments found in-group in order to consider a sequence a chimera.

minLength Minimum length of a chimeric region in order to be considered as a chimera.

minCoverage Minimum fraction of coverage necessary in a chimeric region.

overlap Number of nucleotides at the end of the sequence that the chimeric region must
overlap in order to be considered a chimera.

minSuspectFragments

Minimum number of suspect fragments belonging to another group required to
consider a sequence a chimera.

showPercentCoverage

Logical indicating whether to list the percent coverage of suspect fragments in
each chimeric region in the output.

add2tbl Logical or a character string specifying the table name in which to add the result.

maxGroupSize Maximum number of sequences searched in a group. A value of less than 0
means the search is unlimited.

http://DECIPHER.codes

84 FindChimeras

minGroupSize The minimum number of sequences in a group to be considered as part of the
search for chimeras. May need to be set to a small value for reference databases
with mostly small groups.

excludeIDs Optional character vector of identifier(s) to exclude from database searches,
or NULL (the default) to not exclude any.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

FindChimeras works by finding suspect fragments that are uncommon in the group where the
sequence belongs, but very common in another group where the sequence does not belong. Each
sequence in the dbFile is tiled into short sequence segments called fragments. If the fragments
are infrequent in their respective group in the dbFileReference then they are considered suspect.
If enough suspect fragments from a sequence meet the specified constraints then the sequence is
flagged as a chimera.

The default parameters are optimized for full-length 16S sequences (> 1,000 nucleotides). Shorter
16S sequences require two parameters that are different than the defaults: minCoverage = 0.2, and
minSuspectFragments = 2.

Groups are determined by the identifier present in each database. For this reason, the groups in the
dbFile should exist in the groups of the dbFileReference. The reference database is assumed to
contain many sequences of only good quality.

If a reference database is not present then it is feasible to create a reference database by using the
input database as the reference database. Removing chimeras from the reference database and then
iteratively repeating the process can result in a clean reference database.

For non-16S sequences it may be necessary to optimize the parameters for the particular sequences.
The simplest way to perform an optimization is to experiment with different input parameters on ar-
tificial chimeras such as those created using CreateChimeras. Adjusting input parameters until the
maximum number of artificial chimeras are identified is the easiest way to determine new defaults.

Value

A data.frame containing only the sequences that meet the specifications for being chimeric. The
chimera column contains information on the chimeric region and to which group it belongs. The
row.names of the data.frame correspond to those of the sequences in the dbFile.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright et al. (2012) "DECIPHER: A Search-Based Approach to Chimera Identification for 16S
rRNA Sequences." Applied and Environmental Microbiology, doi:10.1128/AEM.06516-11.

See Also

CreateChimeras, Add2DB

FindGenes 85

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
It is necessary to set dbFileReference to the file path of the
16S reference database available from http://DECIPHER.codes
chimeras <- FindChimeras(db, dbFileReference=db)

}

FindGenes Find Genes in a Genome

Description

Predicts the start and stop positions of protein coding genes in a genome.

Usage

FindGenes(myDNAStringSet,
geneticCode = getGeneticCode("11"),
minGeneLength = 60,
includeGenes = NULL,
allowEdges = TRUE,
allScores = FALSE,
showPlot = FALSE,
processors = 1,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet object of unaligned sequences representing a genome.
geneticCode A named character vector defining the translation from codons to amino acids.

Optionally, an "alt_init_codons" attribute can be used to specify alternative
initiation codons. By default, the bacterial and archaeal genetic code is used,
which has seven possible initiation codons: ATG, GTG, TTG, CTG, ATA, ATT,
and ATC.

minGeneLength Integer specifying the minimum length of genes to find in the genome.
includeGenes A Genes object to include as potential genes or NULL (the default) to predict all

genes de novo.
allowEdges Logical determining whether to allow genes that run off the edge of the se-

quences. If TRUE (the default), genes can be identified with implied starts or
ends outside the boundaries of myDNAStringSet, although the boundary will be
set to the last possible codon position. This is useful when genome sequences
are circular or incomplete.

allScores Logical indicating whether to return information about all possible open reading
frames or only the predicted genes (the default).

showPlot Logical determining whether a plot is displayed with the distribution of gene
lengths and scores. (See details section below.)

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to print information about the predictions on each
iteration. (See details section below.)

86 FindGenes

Details

Protein coding genes are identified by learning their characteristic signature directly from the genome,
i.e., ab initio prediction. Gene signatures are derived from the content of the open reading frame
and surrounding signals that indicate the presence of a gene. Genes are assumed to not contain
introns or frame shifts, making the function best suited for prokaryotic genomes.

If showPlot is TRUE then a plot is displayed with four panels. The upper left panel shows the
fitted distribution of background open reading frame lengths. The upper right panel shows this
distribution on top of the fitted distribution of predicted gene lengths. The lower left panel shows
the fitted distribution of scores for the intergenic spacing between genes on the same and opposite
genome strands. The bottom right panel shows the total score of open reading frames and predicted
genes by length.

If verbose is TRUE, information is shown about the predictions at each iteration of gene finding.
The mean score difference between genes and non-genes is updated at each iteration, unless it
is negative, in which case the score is dropped and a "-" is displayed. The columns denote the
number of iterations ("Iter"), number of codon scoring models ("Models"), start codon scores
("Start"), upstream k-mer motif scores ("Motif"), mRNA folding scores ("Fold"), initial codon
bias scores ("Init"), upstream nucleotide bias scores ("UpsNt"), termination codon bias scores
("Term"), ribosome binding site scores ("RBS"), codon autocorrelation scores ("Auto"), stop codon
scores ("Stop"), and number of predicted genes ("Genes").

Value

An object of class Genes.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

ExtractGenes, FindNonCoding, Genes-class, WriteGenes

Examples

import a test genome
fas <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")
genome <- readDNAStringSet(fas)

z <- FindGenes(genome)
z
genes <- ExtractGenes(z, genome)
genes
proteins <- ExtractGenes(z, genome, type="AAStringSet")
proteins

FindNonCoding 87

FindNonCoding Find Non-Coding RNAs in a Genome

Description

Searches for conserved patterns representing a family of non-coding RNAs. Returns the start and
end boundaries of potential matches along with their log-odds score.

Usage

FindNonCoding(x,
myXStringSet,
minScore = 16,
allScores = FALSE,
processors = 1,
verbose = TRUE)

Arguments

x A NonCoding object or a list of NonCoding objects for searching.

myXStringSet A DNAStringSet or RNAStringSet object of unaligned sequences, typically
representing a genome.

minScore Numeric giving the minimum log-odds score of matches to x in myXStringSet
to report, or a vector of numerics specifying the minimum score per NonCoding
object in x. The maximum false discovery rate is approximately exp(-minScore)
per nucleotide per object in x.

allScores Logical specifying whether all matches should be returned (TRUE) or only the
top matches when there are multiple matches in the same region.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Non-coding RNAs are identified by the location of representative sequence patterns relative to the
beginning and end of the non-coding RNA. Potential matches to each NonCoding object in x are
scored based on their log-odds relative to a background that is derived from the input sequence
(myXStringSet). Matches of at least minScore are returned as a Genes object with the "Gene"
column set to the negative index of the list element of x that was identified.

Value

An object of class Genes.

Author(s)

Erik Wright <eswright@pitt.edu>

88 FindSynteny

References

Wright, E. S. (2021). FindNonCoding: rapid and simple detection of non-coding RNAs in genomes.
Bioinformatics. https://doi.org/10.1093/bioinformatics/btab708

See Also

LearnNonCoding, NonCoding-class, ExtractGenes, Genes-class, WriteGenes

Examples

data(NonCodingRNA_Bacteria)
x <- NonCodingRNA_Bacteria
names(x)

import a test genome
fas <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

genome <- readDNAStringSet(fas)

z <- FindNonCoding(x, genome)
z

annotations <- attr(z, "annotations")
m <- match(z[, "Gene"], annotations)
sort(table(names(annotations)[m]))

genes <- ExtractGenes(z, genome, type="RNAStringSet")
genes

FindSynteny Finds Synteny in a Sequence Database

Description

Finds syntenic blocks between groups of sequences in a database.

Usage

FindSynteny(dbFile,
tblName = "Seqs",
identifier = "",
useFrames = TRUE,
alphabet = AA_REDUCED[[172]],
geneticCode = GENETIC_CODE,
sepCost = -2,
sepPower = 0.5,
gapCost = -10,
gapPower = 0.5,
shiftCost = 0,
codingCost = 0,
maxSep = 200,

FindSynteny 89

maxGap = 20,
minScore = 100,
N = 10,
dropScore = -5,
maskRepeats = TRUE,
maskLCRs = TRUE,
allowOverlap = FALSE,
storage = 0.5,
processors = 1,
verbose = TRUE)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file. The database should contain DNA sequences, typically
with a distinct identifier for sequences belonging to each genome or chro-
mosome.

tblName Character string specifying the table where the sequences are located.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected. Repeated identifiers will
find synteny between a sequence and itself, while blocking identical positions
from matching in both sequences.

useFrames Logical specifying whether to use 6-frame amino acid translations to help find
more distant hits. Using the alphabet is helpful when the genome is largely
composed of coding DNA. If FALSE then faster but less sensitive to distant ho-
mology.

alphabet Character vector of amino acid groupings used to reduce the 20 standard amino
acids into smaller groups. Alphabet reduction helps to find more distant ho-
mologies between sequences. A non-reduced amino acid alphabet can be used
by setting alphabet equal to AA_STANDARD.

geneticCode Either a character vector giving the genetic code to use in translation, or a list
containing one genetic code for each identifier. If a list is provided then it must
be named by the corresponding identifiers in the database.

sepCost Cost per nucleotide separation between hits to apply when chaining hits into
blocks.

sepPower Positive numeric specifying the power applied to the separation between hits
before multiplying by sepCost.

gapCost Cost for gaps between hits to apply when chaining hits into blocks.

gapPower Positive numeric specifying the power applied to the number of gaps between
hits before multiplying by gapCost.

shiftCost Cost for shifting between different reading frames when chaining reduced amino
acid hits into blocks.

codingCost Cost for switching between coding and non-coding hits when chaining hits into
blocks.

maxSep Maximal separation (in nucleotides) between hits in the same block.

maxGap The maximum number of gaps between hits in the same block.

minScore The minimum score required for a chain of hits to become a block. Higher
values of minScore are less likely to yield false positives.

90 FindSynteny

N Numeric indicating the approximate number of k-mers that can be randomly
selected before one is found by chance on average. For example, the default
value of 10 will set k-mer length such that every 10th k-mer is expected to have
a match by chance.

dropScore The change from maximal score required to stop extending blocks.

maskRepeats Logical specifying whether to mask repeats when searching for hits.

maskLCRs Logical indicating whether to mask low complexity regions when searching for
hits.

allowOverlap Logical specifying whether to permit blocks to overlap on the same sequence.

storage Excess gigabytes available to store objects so that they do not need to be re-
computed in later steps. This should be a number between zero and a (modest)
fraction of the available system memory. Note that more than storage giga-
bytes may be required, but will not be stored for later reuse.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Long nucleotide sequences, such as genomes, are often not collinear or may be composed of many
smaller segments (e.g., contigs). FindSynteny searches for “hits” between sequences that can be
chained into collinear “blocks” of synteny. Hits are defined as k-mer exact nucleotide matches or k-
mer matches in a reduced amino acid alphabet (if useFrames is TRUE). Hits are chained into blocks
as long as they are: (1) within the same sequence, (2) within maxSep and maxGap distance, and (3)
help maintain the score above minScore. Blocks are extended from their first and last hit until their
score drops below dropScore from the maximum that was reached. This process results in a set of
hits and blocks stored in an object of class “Synteny”.

Value

An object of class “Synteny”.

Note

FindSynteny is intended to be used on sets of sequences with up to ~200 million nucleotides total
per identifier. For this reason, better performance can sometimes be achieved by assigning a unique
identifier to each chromosome belonging to a large genome.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

AlignSynteny, Synteny-class

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db)
synteny

FormGroups 91

pairs(synteny) # scatterplot matrix
}

FormGroups Forms Groups By Rank

Description

Agglomerates sequences into groups within a specified size range based on taxonomic rank.

Usage

FormGroups(dbFile,
tblName = "Seqs",
goalSize = 50,
minGroupSize = 25,
maxGroupSize = 5000,
includeNames = FALSE,
add2tbl = FALSE,
verbose = TRUE)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table where the taxonomic rank (i.e., “organ-
ism”) information is located.

goalSize Number of sequences required in each group to stop adding more sequences.
minGroupSize Minimum number of sequences in each group required to stop trying to recom-

bine with a larger group.
maxGroupSize Maximum number of sequences in each group allowed to continue agglomera-

tion.
includeNames Logical indicating whether to include the formal scientific name in the group

name.
add2tbl Logical or a character string specifying the table name in which to add the result.
verbose Logical indicating whether to display progress.

Details

FormGroups uses the “organism” field in the dbFile table to group sequences with similar taxo-
nomic rank. Taxonomic rank information must be present in the tblName, such as that created by
default when importing sequences from a GenBank formatted file.

Organism information contains the formal scientific name on the first line, followed by the tax-
onomic lineage on subsequent lines. When includeNames is TRUE the formal scientific name is
appended to the end of the group name, otherwise only the taxonomic lineage is used as the group
name.

The algorithm ascends the taxonomic tree, agglomerating taxa into groups until the goalSize is
reached. If the group size is below minGroupSize then further agglomeration is attempted with
a larger group. If additional agglomeration results in a group larger than maxGroupSize then the
agglomeration is undone so that the group is smaller. Setting minGroupSize to goalSize avoids
the creation of polyphyletic groups. Note that this approach may often result in paraphyletic groups.

92 Genes

Value

A data.frame with the organism and corresponding group name as identifier. Note that quotes
are stripped from group names to prevent problems that they may cause. The origin gives the
organism preceding the identifier. The count denotes number of sequences corresponding to
each organism. If add2tbl is not FALSE then the “identifier” and “origin” columns are updated in
dbFile.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

IdentifyByRank

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
g <- FormGroups(db, goalSize=10, minGroupSize=5, maxGroupSize=20)
head(g)
tapply(g$count, g$identifier, sum)

}

Genes Genes objects and accessors

Description

Gene prediction consist of delimiting the boundaries of regions that function as genes within a
genome. Class Genes provides objects and functions for storing the boundaries of genes and asso-
ciated information resulting from gene prediction.

Usage

S3 method for class 'Genes'
plot(x,

xlim = c(1, 1e4),
ylim = c(-100, 500),
interact = FALSE,
colorBy="Strand",
colorRamp=colorRampPalette(c("darkblue", "darkred")),
colorGenes="green4",
...)

S3 method for class 'Genes'
print(x, ...)

S3 method for class 'Genes'
x[i, j, ...]

Genes 93

Arguments

x An object of class Genes.

xlim Numeric vector of length 2 specifying the x-axis limits for plotting.

ylim Numeric vector of length 2 specifying the y-axis limits for plotting.

interact Logical determining whether the plot is interactive. If TRUE, clicking the plot on
the right or left side will scroll one frame in that direction. To end interaction,
either right-click, press the escape key, or press the stop button depending on the
graphics device in use.

colorBy Character string indicating the name of the column in x that should be used for
coloring. Unambiguous abbreviations are also permitted.

colorRamp A function that will return n colors when given a number n. Examples are
rainbow, heat.colors, terrain.colors, cm.colors, or (the default) colorRampPalette.

colorGenes Character string specifying the color of genes, or NA to color genes according to
colorBy.

i Numeric or character vector of row indices to extract from x.

j Numeric or character vector of column indices to extract from x. If j is missing,
all columns are included and the returned object will also belong to class Genes.

... Other optional parameters.

Details

Objects of class Genes are stored as numeric matrices containing information pertaining to gene
predictions. The matrix columns include the index ("Index") of the corresponding sequence in the
original genome, the strand ("Strand") where the gene is located (either "+" (0) or "-" (1), the
beginning ("Begin") and ending ("End") positions of the gene, scores acquired during prediction,
and whether (!= 0) or not (0) the region was predicted to be a gene. Note that the start of the gene
is at the beginning position when the strand is "+" and end when the strand is "-". By convention,
rows with negative values in the "Gene" column represent non-coding RNAs and rows with positive
values represent protein coding genes.

The plot method will show the total score of each prediction along the genome. This is most use-
ful when displaying the result of setting allScores to TRUE in FindGenes. Here, possible genes
on either strand will be shown (by default), with the predicted genes highlighted. The beginning
(solid) and ending (dashed) positions are denoted by vertical lines. Note that the x-axis is cumula-
tive genome position, and changes between genome sequences indices are demarcated by dashed
vertical lines.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

ExtractGenes, FindGenes, WriteGenes

Examples

import a test genome
fas <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

94 HEC_MI

genome <- readDNAStringSet(fas)

x <- FindGenes(genome, allScores=TRUE)
x
head(unclass(x)) # the underlying structure

plot(x) # default coloring by "Strand"
color by RBS score (blue is weak/low, red is strong/high)
plot(x, colorBy="RibosomeBindingSiteScore", colorGenes=NA)
color by fraction of times a gene was chosen
plot(x, colorBy="FractionReps", colorGenes=NA)
color by which codon model was selected for each ORF
plot(x, colorBy="CodonModel", xlim=c(1, 3e4))

HEC_MI Mutual Information for Protein Secondary Structure Prediction

Description

Arrays containing values of mutual information for single residues (HEC_MI1) and pairs of residues
(HEC_MI2) located within 10 residues of the position being predicted (position "0"). The arrays have
dimensions corresponding to the 20 (standard) amino acids, positions (-10 to 10), and states (helix
("H"), sheet ("E"), or coil ("C")).

Usage

data("HEC_MI1")
data("HEC_MI2")

Format

The format of HEC_MI1 is: num [1:20, 1:21, 1:3] 0.04264 -0.00117 0.02641 0.08264 -0.04876 ...
- attr(*, "dimnames")=List of 3 ..$: chr [1:20] "A" "R" "N" "D"$: chr [1:21] "-10" "-9" "-8"
"-7"$: chr [1:3] "H" "E" "C"

The format of HEC_MI2 is: num [1:20, 1:20, 1:21, 1:21, 1:3] 2.56 -Inf -Inf -Inf -Inf ... - attr(*,
"dimnames")=List of 5 ..$: chr [1:20] "A" "R" "N" "D"$: chr [1:20] "A" "R" "N" "D"$:
chr [1:21] "-10" "-9" "-8" "-7"$: chr [1:21] "-10" "-9" "-8" "-7"$: chr [1:3] "H" "E" "C"

Details

The values in each matrix were derived based on a set of 15,201 proteins in the ASTRAL Com-
pendium (Chandonia, 2004). The 8-states assigned by the Dictionary of Protein Secondary Struc-
ture (DSSP) were reduced to 3-states via H = G, H, or I; E = E; and C = B, S, C, or T.

References

Chandonia, J. M. (2004). The ASTRAL Compendium in 2004. Nucleic Acids Research, 32(90001),
189D-192. doi:10.1093/nar/gkh034.

IdConsensus 95

Examples

data(HEC_MI1)
the contribution of an arginine ("R")
located 3 residues left of center
to a helical ("H") state at the center
HEC_MI1["R", "-3", "H"]

data(HEC_MI2)
the contribution of arginine and lysine ("K")
located at positions -1 and +1, respectively
to a coil ("C") state at the center position
HEC_MI2["R", "K", "-1", "1", "C"]

matplot(-10:10, t(HEC_MI1[,, "H"]),
type="l", col=1:8, lty=rep(1:3, each=8),
xlab="Amino Acid Position Relative to Center",
ylab="Log-Odds of Helix at Center Position")

legend("bottomleft",
lwd=1, col=1:8, lty=rep(1:3, each=8),
legend=dimnames(HEC_MI1)[[1]], ncol=2)

IdConsensus Create Consensus Sequences by Groups

Description

Forms a consensus sequence representing the sequences in each group.

Usage

IdConsensus(dbFile,
tblName = "Seqs",
identifier = "",
type = "DNAStringSet",
colName = "identifier",
processors = 1,
verbose = TRUE,
...)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table in which to form consensus.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

type The type of XStringSet (sequences) to use in forming consensus. This should
be (an abbreviation of) one of "DNAStringSet", "RNAStringSet", "AAStringSet",
or "BStringSet".

colName Column containing the group name of each sequence.

96 IdentifyByRank

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

... Additional arguments to be passed directly to ConsensusSequence for an AAStringSet,
DNAStringSet, or RNAStringSet, or to consensusString for a BStringSet.

Details

Creates a consensus sequence for each of the distinct groups defined in colName. The resulting
XStringSet contains as many consensus sequences as there are distinct groups in colName. For
example, it is possible to create a set of consensus sequences with one consensus sequence for each
"id" in the tblName.

Value

An XStringSet object containing the consensus sequence for each group. The names of the
XStringSet contain the number of sequences and name of each group.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Seqs2DB

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
con <- IdConsensus(db, colName="identifier", noConsensusChar="N")
BrowseSeqs(con)
}

IdentifyByRank Identify By Taxonomic Rank

Description

Identifies sequences by a specific level of their taxonomic rank.

Usage

IdentifyByRank(dbFile,
tblName = "Seqs",
level = 0,
add2tbl = FALSE,
verbose = TRUE)

IdentifyByRank 97

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table where the taxonomic rank (i.e., “organ-
ism”) information is located.

level Level of the taxonomic rank. (See details section below.)

add2tbl Logical or a character string specifying the table name in which to add the result.

verbose Logical indicating whether to print database queries and other information.

Details

IdentifyByRank simply identifies a sequence by a specific level of its taxonomic rank. Requires
that organism information be present in the tblName, such as that created by default when import-
ing sequences from a GenBank formatted file.

The input parameter level should be an integer giving the “level” of the taxonomic rank to choose
as the identifier. Negative levels are interpreted as being that many levels from the last level in
each rank. The level zero selects the base level (see below).

If the specified level of rank does not exist then the closest rank is chosen. Therefore, setting level
to Inf will always select the last taxonomic level (i.e., genus).

For example, a representative “organism” imported from a GenBank file is:
Saccharomyces cerevisiae
Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;
Saccharomycetales; Saccharomycetaceae; Saccharomyces.

Setting level to 0 would result in an identifier of “Saccharomyces cerevisiae”, because it is on
the first line. A level of 2 would return “Fungi”, and -2 (second to last) would return “Saccha-
romycetaceae”. A level of Inf would find the nearest level to the end, “Saccharomyces”.

Value

A data.frame with the organism and corresponding identifier as identifier. Note that quotes are
stripped from identifiers to prevent problems that they may cause. The origin gives the organism
preceding the identifier. If add2tbl is not FALSE then the “identifier” column is updated in
dbFile.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

FormGroups

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
ids <- IdentifyByRank(db, level=Inf)
head(ids)
}

98 IdLengths

IdLengths Determine the Number of Characters in Each Sequence

Description

Counts the number of standard and non-standard characters in each sequence.

Usage

IdLengths(dbFile,
tblName = "Seqs",
type = "DNAStringSet",
add2tbl = FALSE,
batchSize = 10000,
processors = 1,
verbose = TRUE)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table where the sequences are located.

type The type of XStringSet being processed. This should be (an abbreviation of)
one of "AAStringSet", "DNAStringSet", or "RNAStringSet".

add2tbl Logical or a character string specifying the table name in which to add the result.

batchSize Integer specifying the number of sequences to process at a time.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

IdLengths is designed to efficiently determine the number of standard and non-standard characters
in every sequence within a database. Standard and non-standard characters are defined with respect
to the type of the sequences. For DNA and RNA sequences there are four standard characters
and 11 non-standard characters (i.e., ambiguity codes). For amino acid sequences there are 20
standard and seven non-standard characters (including stops). Gap (“-”), missing (“.”), and mask
(“+”) characters count toward the width but not the number of standard or non-standard characters.

Value

A data.frame with the number of standard characters, nonstandard characters, and width of
each sequence. The row.names of the data.frame correspond to the "row_names" in the tblName
of the dbFile.

Author(s)

Erik Wright <eswright@pitt.edu>

IdTaxa 99

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The R
Journal, 8(1), 352-359.

See Also

Add2DB

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
l <- IdLengths(db)
head(l)

}

IdTaxa Assign Sequences a Taxonomic Classification

Description

Classifies sequences according to a training set by assigning a confidence to taxonomic labels for
each taxonomic level.

Usage

IdTaxa(test,
trainingSet,
type = "extended",
strand = "both",
threshold = 60,
bootstraps = 100,
samples = L^0.47,
minDescend = 0.98,
fullLength = 0,
processors = 1,
verbose = TRUE)

Arguments

test An AAStringSet, DNAStringSet, or RNAStringSet of unaligned sequences.
trainingSet An object of class Taxa and subclass Train compatible with the class of test.
type Character string indicating the type of output desired. This should be (an abbre-

viation of) one of "extended" or "collapsed". (See value section below.)
strand Character string indicating the orientation of the test sequences relative to the

trainingSet. This should be (an abbreviation of) one of "both", "top", or
"bottom". The top strand is defined as the input test sequences being in the
same orientation as the trainingSet, and the bottom strand is its reverse com-
plement orientation. The default of "both" will classify using both orientations
and choose the result with highest confidence. Choosing the correct strand will
make classification over 2-fold faster, assuming that all of the reads are in the
same orientation. Note that strand is ignored when test is an AAStringSet.

100 IdTaxa

threshold Numeric specifying the confidence at which to truncate the output taxonomic
classifications. Lower values of threshold will classify deeper into the tax-
onomic tree at the expense of accuracy, and vice versa for higher values of
threshold.

bootstraps Integer giving the maximum number of bootstrap replicates to perform for each
sequence. The number of bootstrap replicates is set automatically such that (on
average) 99% of k-mers are sampled in each test sequence.

samples A function or call written as a function of ‘L’, which will evaluate to a numeric
vector the same length as ‘L’. Typically of the form “A + B*L^C”, where ‘A’, ‘B’,
and ‘C’ are constants.

minDescend Numeric giving the minimum fraction of bootstraps required to descend the
tree during the initial tree descend phase of the algorithm. Higher values are less
likely to descend the tree, causing direct comparison against more sequences in
the trainingSet. Lower values may increase classification speed at the expense
of accuracy. Suggested values are between 1.0 and 0.9.

fullLength Numeric specifying the fold-difference in sequence lengths between sequences
in test and trainingSet that is allowable, or 0 (the default) to consider all
sequences in trainingSet regardless of length. Can be specified as either a
single numeric (> 1), or two numerics specifying the upper and lower fold-
difference. If fullLength is between 0 and 1 (exclusive), the fold-difference
is inferred from the length variability among sequences belonging to each class
based on the foldDifference quantiles. For example, setting fullLength to
0.99 would use the 1st and 99th percentile of intra-group length variability from
the trainingSet. In the case of full-length sequences, specifying fullLength
can improve both speed and accuracy by using sequence length as a pre-filter to
classification. Note that fullLength should only be greater than 0 when both
the test and trainingSet consist of full-length sequences.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

Sequences in test are each assigned a taxonomic classification based on the trainingSet created
with LearnTaxa. Each taxonomic level is given a confidence between 0% and 100%, and the
taxonomy is truncated where confidence drops below threshold. If the taxonomic classification
was truncated, the last group is labeled with “unclassified_” followed by the final taxon’s name.
Note that the reported confidence is not a p-value but does directly relate to a given classification’s
probability of being wrong. The default threshold of 60% is intended to minimize the rate of
incorrect classifications. Lower values of threshold (e.g., 50%) may be preferred to increase the
taxonomic depth of classifications. Values of 60% or 50% are recommended for nucleotide sequences
and 50% or 40% for amino acid sequences.

Value

If type is "extended" (the default) then an object of class Taxa and subclass Train is returned.
This is stored as a list with elements corresponding to their respective sequence in test. Each list
element contains components:

taxon A character vector containing the taxa to which the sequence was assigned.

confidence A numeric vector giving the corresponding percent confidence for each taxon.

IndexSeqs 101

rank If the classifier was trained with a set of ranks, a character vector containing the
rank name of each taxon.

If type is "collapsed" then a character vector is returned with the taxonomic assignment for each
sequence. This takes the repeating form “Taxon name [rank, confidence%]; ...” if ranks were
supplied during training, or “Taxon name [confidence%]; ...” otherwise.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Murali, A., et al. (2018). IDTAXA: a novel approach for accurate taxonomic classification of
microbiome sequences. Microbiome, 6, 140. https://doi.org/10.1186/s40168-018-0521-5

Cooley, N. and Wright, E. (2021). Accurate annotation of protein coding sequences with IDTAXA.
NAR Genomics and Bioinformatics, 3(3). https://doi.org/10.1093/nargab/lqab080

See Also

LearnTaxa, Taxa-class

Examples

data("TrainingSet_16S")

import test sequences
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

remove any gaps in the sequences
dna <- RemoveGaps(dna)

classify the test sequences
ids <- IdTaxa(dna, TrainingSet_16S, strand="top")
ids

view the results
plot(ids, TrainingSet_16S)

IndexSeqs Build an inverted index

Description

Builds an inverted index from a set of amino acid, DNA, or RNA sequences.

102 IndexSeqs

Usage

IndexSeqs(subject,
K,
sensitivity,
percentIdentity,
patternLength,
step = 1,
alphabet = AA_REDUCED[[171]],
maskRepeats = TRUE,
maskLCRs = TRUE,
maskNumerous = TRUE,
batchSize = 1e+07,
processors = 1,
verbose = TRUE)

Arguments

subject An AAStringSet, DNAStringSet, or RNAStringSet object of target (unaligned)
sequences to use as the subject of the search.

K Integer providing the k-mer length. Typical values are 5 to 7 for amino acids (in
the default alphabet) and 8 to 12 for nucleotides.

sensitivity Numeric giving the goal search sensitivity, which is used in the absence of spec-
ifying K. Typically near, but always less than, 1.

percentIdentity

Numeric identifying the goal percent identity for the given sensitivity, which
is used in the absence of specifying K. Values closer to 100 allow for larger K
and, thereby, faster searches.

patternLength Integer setting the expected (minimum) length of query sequences, which is used
in the absence of specifying K.

step Integer determining the number of positions between the start of adjacent k-
mers. Must be between 1 and K. Larger values reduce the memory required for
the inverted index at the expense of search sensitivity.

alphabet Character vector of amino acid groupings used to reduce the 20 standard amino
acids into smaller groups. Alphabet reduction helps to find more distant homolo-
gies between protein sequences. A non-reduced amino acid alphabet can be used
by setting alphabet equal to AA_STANDARD. Note that choice of alphabet af-
fects the optimal value of K, with smaller alphabets requiring larger K and vice
versa.

maskRepeats Logical specifying whether to mask repeats in the subject. (See details section
below.)

maskLCRs Logical indicating whether to mask low complexity regions in the subject. (See
details section below.)

maskNumerous Logical indicating whether to mask frequent k-mers in the subject, or a positive
numeric specifying the degree of masking to apply. (See details section below.)

batchSize Integer defining the number of sequences to process in a batch. Smaller val-
ues reduce the function’s memory footprint, potentially at the cost of increased
runtime.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

IndexSeqs 103

Details

An InvertedIndex object functions much like a the index at the back of a book, except with the
goal of finding homologous sequence regions. It primarily contains the locations of length K subse-
quences (i.e., k-mers) in subject. Only the set of unmasked k-mers separated every step positions
are stored. In general, lower values of K and, especially, step are preferable for improving search
sensitivity and specificity. If an appropriate value for K is unknown, it is possible to automatically
calculate K by providing a goal search sensitivity for sequences of patternLength positions
with a given percentIdentity to a target sequence. The fastest matching value of K will be auto-
matically selected, or an error will be returned when the constraints cannot be met.

Masking repeats and low complexity regions helps to avoid spurious hits that are not related to se-
quence homology (i.e., common descent), while masking extremely frequent k-mers can improve
search speed and decrease the size of the inverted index. If maskRepeats is TRUE (the default),
masking is first applied to tandem repeats, while maintaining the first copy of the repeat. Next,
if maskLCRs is TRUE (the default), any remaining low complexity regions are masked that are at
least as long as the k-mer length (i.e., K). Finally, if maskNumerous is TRUE (the default), extremely
frequent k-mers that remain are masked on a per sequence basis. It is also possible to control the
degree of masking frequent k-mers by supplying a positive number for maskNumerous, represent-
ing the -log(p-value) of observing that many k-mers by chance. Giving larger positive values for
maskNumerous will mask fewer k-mers.

Proper masking is critical to balance search speed and sensitivity. When mapping reads to a
subject genome it is often best to leave maskNumerous as TRUE but set maskRepeats and maskLCRs
to FALSE. This is because masking whole regions may preclude some reads from mapping, whereas
masking the most frequent k-mers is sometimes necessary for speed. In contrast, when the subject
is a set of shorter sequences (e.g., proteins) there are rarely extremely frequent k-mers in a sin-
gle sequence, so maskNumerous has less (or no) effect. In this case, keeping maskRepeats and
maskLCRs as TRUE will prevent k-mer matches between sequences that are not related by common
descent. This is because some biological mechanisms can generate similar sequence patterns in
unrelated sequences, which would otherwise mislead the statistical model of homology based on
the likelihood of shared k-mers.

Value

An object of class InvertedIndex, which is stored as a list with components:

k The input or automatically calculated value for K.

step The input value of step.

alphabet Numbered letter groups present in the sequence alphabet.

frequency Numeric frequencies of each letter grouping.

count The number of times every possible (unmasked) k-mer was observed.

length An integer giving the number of (unmasked) k-mers in each sequence in subject.

location The location of each k-mer within every sequence in subject, ordered by k-mer.

index The index of each k-mer within every sequence in subject, ordered by k-mer.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

SearchIndex, AlignPairs

104 InvertedIndex

Examples

import target sequences
fas <- system.file("extdata", "PlanctobacteriaNamedGenes.fas.gz", package="DECIPHER")
seqs <- readAAStringSet(fas)

build an inverted index, specifying K
index <- IndexSeqs(seqs, K=6L)
index # K = 6

alternatively, determine K automatically
index <- IndexSeqs(seqs, sensitivity=0.99, percentIdentity=60, patternLength=300)
index # K = 3

InvertedIndex InvertedIndex objects

Description

InvertedIndex objects store k-mer locations and indexes in a set of sequences.

Usage

S3 method for class 'InvertedIndex'
print(x,

...)

Arguments

x An object of class InvertedIndex.

... Other optional parameters.

Details

Objects of class InvertedIndex are stored as a list. The function IndexSeqs returns an object of
class InvertedIndex. The information stored in an InvertedIndex can be displayed with print.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

IndexSeqs, SearchIndex

Examples

import target sequences
fas <- system.file("extdata", "PlanctobacteriaNamedGenes.fas.gz", package="DECIPHER")
seqs <- readAAStringSet(fas)

build an inverted index
index <- IndexSeqs(seqs, K=6L)
index # print the index

LearnNonCoding 105

LearnNonCoding Learn a Non-Coding RNA Model

Description

Learns a compact representation of patterns representing a set of non-coding RNAs belonging to
the same family.

Usage

LearnNonCoding(myXStringSet,
threshold = 0.3,
weight = NA,
maxLoopLength = 500,
maxPatterns = 20,
scoreDependence = FALSE,
structure = NULL,
processors = 1)

Arguments

myXStringSet A DNAStringSet or RNAStringSet object of aligned sequence representatives
belonging to the same non-coding RNA family.

threshold Numeric specifying the minimum relative frequency of patterns to consider dur-
ing learning.

weight Either a numeric vector of weights for each sequence, a single number implying
equal weights, or NA (the default) to automatically calculate sequence weights
based on myXStringSet.

maxLoopLength Numeric giving the maximum length of conserved hairpin loops to consider.

maxPatterns A numeric vector of length two specifying the maximum number of motifs and
hairpins, respectively, or a single numeric giving the maximum for each.

scoreDependence

Logical determining whether to record a log-odds score for dependencies be-
tween patterns. The default (FALSE) is recommended for most non-coding RNA
families.

structure Either a character string providing the consensus secondary structure in dot
bracket notation, a matrix of paired positions in the first two columns, or NULL
(the default) to predict the consensus secondary structure with PredictDBN.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

Non-coding RNAs belonging to the same family typically have conserved sequence motifs, sec-
ondary structure elements, and k-mer frequencies that can be used to identify members of the family.
LearnNonCoding identifies these conserved patterns and determines which are best for identifying
the non-coding RNA relative to a random sequence background. Sequence motifs and hairpins are
defined relative to their distance from the start or end of the non-coding RNA, allowing the precise
and rapid identification of the boundaries of any matches to the non-coding RNA in a genome.

106 LearnTaxa

Value

An object of class NonCoding.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E. S. (2021). FindNonCoding: rapid and simple detection of non-coding RNAs in genomes.
Bioinformatics. https://doi.org/10.1093/bioinformatics/btab708

See Also

FindNonCoding, NonCoding-class

Examples

import a family of non-coding RNAs
fas_path <- system.file("extdata",
"IhtA.fas",
package="DECIPHER")
rna <- readRNAStringSet(fas_path)
rna

align the sequences
RNA <- AlignSeqs(rna)
RNA

y <- LearnNonCoding(RNA)
y
y[["motifs"]]
y[["hairpins"]]
head(y[["kmers"]])

LearnTaxa Train a Classifier for Assigning Taxonomy

Description

Trains a classifier based on a reference taxonomy containing sequence representatives assigned to
taxonomic groups.

Usage

LearnTaxa(train,
taxonomy,
rank = NULL,
K = NULL,
N = 500,
minFraction = 0.01,
maxFraction = 0.06,
maxIterations = 10,

LearnTaxa 107

multiplier = 100,
maxChildren = 200,
alphabet = AA_REDUCED[[139]],
verbose = TRUE)

Arguments

train An AAStringSet, DNAStringSet, or RNAStringSet of unaligned sequences.

taxonomy Character string providing the reference taxonomic assignment for each se-
quence in train. Taxonomic ranks are separated by semicolons (“;”) beginning
with “Root”.

rank Optionally, a data.frame with 5 named columns giving the “Index” (i.e., 0 to
the number of unique taxa), “Name” (i.e., taxon name), “Parent” (i.e., “Index”
of the parent taxon), “Level” (i.e., integer rank level), and “Rank” (e.g., “genus”)
of each taxonomic rank. This information is often provided in a separate “taxid”
file along with publicly available training sequence sets.

K Integer specifying the k-mer size or NULL (the default) to calculate the k-mer size
automatically. The default value of K is such that matches between sequences
are found by chance every N k-mers.

N Numeric indicating the approximate number of k-mers that can be randomly
selected before one is found by chance on average. For example, the default
value of 500 will set K (when K is unspecified) so that every 500th k-mer is
expected to match by chance.

minFraction Numeric giving the minimum fraction of k-mers to sample during the initial tree
descent phase of the classification algorithm. (See details section below.)

maxFraction Numeric giving the maximum fraction of k-mers to sample during the initial tree
descent phase of the classification algorithm. (See details section below.)

maxIterations Integer specifying the maximum number of iterations to attempt re-classification
of a training sequence before declaring it a “problem sequence”. (See details
section below.)

multiplier Numeric indicating the degree to which individual sequences have control over
the fraction of k-mers sampled at any edge during the initial tree descent phase
of the classification algorithm. (See details section below.)

maxChildren Integer giving the maximum number of child taxa of any taxon at which to
consider further descending the taxonomic tree. A value of 1 will prevent use of
the tree descent algorithm altogether. Lower values may decrease classification
speed, but result in output objects that require less memory.

alphabet Character vector of amino acid groupings used to reduce the 20 standard amino
acids into smaller groups. Alphabet reduction helps to find more distant ho-
mologies between sequences. A non-reduced amino acid alphabet can be used
by setting alphabet equal to AA_STANDARD.

verbose Logical indicating whether to display progress.

Details

Learning about the training data is a two part process consisting of (i) forming a taxonomic tree and
then (ii) ensuring that the training sequences can be correctly reclassified. The latter step relies
on reclassifying the sequences in train by descending the taxonomic tree, a process termed “tree
descent”. Ultimately, the goal of tree descent is to quickly and accurately narrow the selection of

108 LearnTaxa

groups where a sequence may belong. During the learning process, tree descent is tuned so that it
performs well when classifying new sequences.

The process of training the classifier first involves learning the taxonomic tree spanning all of the
reference sequences in train. Typically, reference taxonomic classifications are provided by an
authoritative source, oftentimes along with a “taxid” file containing taxonomic rank information.
The taxonomic tree may contain any number of levels (e.g., Root, Phylum, Class, Order, Family,
Genus) as long as they are hierarchically nested and always begin with “Root”.

The second phase of training the classifier, tree descent, involves learning the optimal set of k-mers
for discerning between the different sub-groups under each edge. Here a fraction of the k-mers
with the greatest discerning power are matched to a training sequence, and this process is repeated
with 100 random subsamples to decide on the set of possible taxonomic groups to which a training
sequence may belong.

The learning process works by attempting to correctly re-classify each training sequence in the
taxonomy. Initially, maxFraction of informative k-mers are repeatedly sampled at each edge during
tree descent. Training sequences that are incorrectly classified at an edge will lower the fraction
of k-mers that are sampled by an amount that is proportional to multiplier. As the fraction of
sampled k-mers decreases, the tree descent process terminates at higher rank levels.

A major advantage of tree descent is that it both speeds up the classification process and indicates
where the training set likely contains mislabeled sequences or incorrectly-placed taxonomic groups.
Training sequences that are not correctly classified within maxIterations are marked as “problem
sequences”, because it is likely that they are mislabeled. If enough sequences have difficulty being
correctly classified at an edge that the fraction drops below minFraction, then the edge is recorded
as a “problem group”.

The final result is an object that can be used for classification with IdTaxa, as well as information
about train that could be used to help correct any errors in the taxonomy.

Value

An object of class Taxa and subclass Train, which is stored as a list with components:

taxonomy A character vector containing all possible groups in the taxonomy.

taxa A character vector containing the basal taxon in each taxonomy.

ranks A character vector of rank names for each taxon, or NULL if rank information
was not supplied.

levels Integer giving the rank level of each taxon.

children A list containing the index of all children in the taxonomy for each taxon.

parents An integer providing the index of the parent for each taxon.

fraction A numeric between minFraction and maxFraction that represents the learned
fraction of informative k-mers to sample for each taxon during the initial tree
descent phase of the classification algorithm. Problem groups are marked by a
fraction of NA.

sequences List containing the integer indices of sequences in train belonging to each
taxon.

kmers List containing the unique sorted k-mers (converted to integers) belonging to
each sequence in train.

crossIndex Integer indicating the index in taxonomy of each sequence’s taxonomic label.

K The value of K provided as input.

IDFweights Numeric vector of length 4^K providing the inverse document frequency weight
for each k-mer.

LearnTaxa 109

decisionKmers List of informative k-mers and their associated relative frequencies for each in-
ternal edge in the taxonomy.

problemSequences

A data.frame providing the “Index”, “Expected” label, and “Predicted” taxon
for sequences that could not be correctly classified during the initial tree descent
phase of the algorithm.

problemGroups Character vector containing any taxonomic groups that repeatedly had problems
with correctly re-classifying sequences in train during the initial tree descent
phase of the classification algorithm. Problem groups likely indicate that a num-
ber of the sequences (or an entire group of sequences) assigned to the problem
group are incorrectly placed in the taxonomic tree.

alphabet The alphabet when train is an “AAStringSet”, otherwise NULL.

Note

If K is NULL, the automatically determined value of K might be too large for some computers, result-
ing in an error. In such cases it is recommended that K be manually set to a smaller value.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Murali, A., et al. (2018). IDTAXA: a novel approach for accurate taxonomic classification of
microbiome sequences. Microbiome, 6, 140. https://doi.org/10.1186/s40168-018-0521-5

See Also

IdTaxa, Taxa-class

Examples

import training sequences
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

parse the headers to obtain a taxonomy
s <- strsplit(names(dna), " ")
genus <- sapply(s, `[`, 1)
species <- sapply(s, `[`, 2)
taxonomy <- paste("Root", genus, species, sep="; ")
head(taxonomy)

train the classifier
trainingSet <- LearnTaxa(dna, taxonomy)
trainingSet

view information about the classifier
plot(trainingSet)

Not run:
train the classifier with amino acid sequences
aa <- translate(dna)
trainingSetAA <- LearnTaxa(aa, taxonomy)

110 MapCharacters

trainingSetAA

End(Not run)

MapCharacters Map Changes in Ancestral Character States

Description

Maps character changes on a phylogenetic tree containing reconstructed ancestral states.

Usage

MapCharacters(x,
refPositions = seq_len(nchar(attr(x, "state")[1])),
labelEdges = FALSE,
type = "dendrogram",
chars = LETTERS,
ignoreIndels = TRUE)

Arguments

x An object of class dendrogram with "state" attributes for each node.

refPositions Numeric vector of reference positions in the original sequence alignment. Only
changes at refPositions are reported, and state changes are labeled according
to their position in refPositions.

labelEdges Logical determining whether to label edges with the number of changes along
each edge.

type Character string indicating the type of output desired. This should be (an ab-
breviation of) one of "dendrogram", "table", or "both". (See value section
below.)

chars Character vector specifying the characters to consider in state changes at each
site. The default (LETTERS) is to consider any upper case letter. Alternatively,
chars could be AA_STANDARD, DNA_BASES, or RNA_BASES.

ignoreIndels Logical specifying whether to report insertions and deletions (indels). If TRUE
(the default), only substitutions of one state with another are reported.

Details

Ancestral state reconstruction affords the ability to identify character changes that occurred along
edges of a rooted phylogenetic tree. Character changes are reported according to their index in
refPositions. If ignoreIndels is FALSE, adjacent insertions and deletions are merged into single
changes occurring at their first position. The table of changes can be used to identify parallel,
convergent, and divergent mutations.

Value

If type is "dendrogram" (the default) then the original dendrogram x is returned with the addition
of "change" attributes on every edge except the root. If type is "table" then a sorted table of
character changes is returned with the most frequent parallel changes at the beginning. If type is
"both" then a list of length 2 is provided containing both the dendrogram and table.

MapCharacters 111

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Treeline

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

tree <- Treeline(myXStringSet=dna, reconstruct=TRUE)

out <- MapCharacters(tree,
labelEdges=TRUE,
type="both",
chars=DNA_BASES)

plot the tree with defaults
tree <- out[[1]]
plot(tree, horiz=TRUE) # edges show number of changes

color edges by number of changes
maxC <- 200 # changes at maximum of color spectrum
colors <- colorRampPalette(c("black", "darkgreen", "green"))(maxC)
colorEdges <- function(x) {

num <- attr(x, "edgetext") + 1
if (length(num)==0)

return(x)
if (num > maxC)

num <- maxC
attr(x, "edgePar") <- list(col=colors[num])
attr(x, "edgetext") <- NULL
return(x)

}
colorfulTree <- dendrapply(tree, colorEdges)
plot(colorfulTree, horiz=TRUE, leaflab="none")

look at parallel changes (X->Y)
parallel <- out[[2]]
head(parallel) # parallel changes

look at convergent changes (*->Y)
convergent <- gsub(".*?([0-9]+.*)", "\\1", names(parallel))
convergent <- tapply(parallel, convergent, sum)
convergent <- sort(convergent, decreasing=TRUE)
head(convergent)

look at divergent changes (X->*)
divergent <- gsub("(.*[0-9]+).*", "\\1", names(parallel))
divergent <- tapply(parallel, divergent, sum)
divergent <- sort(divergent, decreasing=TRUE)
head(divergent)

plot number of changes by position

112 MaskAlignment

changes <- gsub(".*?([0-9]+).*", "\\1", names(parallel))
changes <- tapply(parallel, changes, sum)
plot(as.numeric(names(changes)),

changes,
xlab="Position",
ylab="Total independent changes")

count cases of potential compensatory mutations
compensatory <- dendrapply(tree,

function(x) {
change <- attr(x, "change")
pos <- as.numeric(gsub(".*?([0-9]+).*", "\\1", change))
e <- expand.grid(seq_along(pos), seq_along(pos))
e <- e[pos[e[, 1]] < pos[e[, 2]],]
list(paste(change[e[, 1]], change[e[, 2]], sep=" & "))

})
compensatory <- unlist(compensatory)
u <- unique(compensatory)
m <- match(compensatory, u)
m <- tabulate(m, length(u))
compensatory <- sort(setNames(m, u), decreasing=TRUE)
head(compensatory) # ranked list of concurrent mutations

MaskAlignment Mask Highly Variable Regions of An Alignment

Description

Automatically masks poorly aligned regions of an alignment based on sequence conservation and
gap frequency.

Usage

MaskAlignment(myXStringSet,
type = "sequences",
windowSize = 5,
threshold = 1,
maxFractionGaps = 0.2,
includeTerminalGaps = FALSE,
correction = FALSE,
randomBackground = FALSE,
showPlot = FALSE)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

type Character string indicating the type of result desired. This should be (an abbre-
viation of) one of "sequences", "ranges", or "values". (See value section
below.)

windowSize Integer value specifying the size of the region to the left and right of the center-
point to use in calculating the moving average.

threshold Numeric giving the average entropy in bits below which a region is masked.

MaskAlignment 113

maxFractionGaps

Numeric specifying the maximum faction of gaps in an alignment column to be
masked.

includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("." or "-" characters
on each end of the sequences) into the calculation of gap fraction.

correction Logical indicating whether to apply a small-sample size correction to columns
with few letters (Yu et al., 2015).

randomBackground

Logical determining whether background letter frequencies are determined di-
rectly from myXStringSet (the default) or an uniform distribution of letters.

showPlot Logical specifying whether or not to show a plot of the positions that were kept
or masked.

Details

Poorly aligned regions of a multiple sequence alignment may lead to incorrect results in downstream
analyses. One method to mitigate their effects is to mask columns of the alignment that may be
poorly aligned, such as highly-variable regions or regions with many insertions and deletions (gaps).

Highly variable regions are detected by their signature of having a low information content. Here,
information content is defined by the relative entropy of a column in the alignment (Yu et al., 2015),
which is higher for conserved columns. The relative entropy is based on the background distribution
of letter-frequencies in the alignment.

A moving average of windowSize nucleotides to the left and right of the center-point is applied
to smooth noise in the information content signal along the sequence. Regions dropping below
threshold bits or more than maxFractionGaps are masked.

Value

If type is "sequences" then a MultipleAlignment object of the input type with masked columns
where the input criteria are met. Otherwise, if type is "ranges" then an IRanges object giving the
start and end positions of the masked columns. Else (type is "values") a data.frame containing
one row per site in the alignment and three columns of information:

"entropy" The entropy score of each column, in units of bits.

"gaps" For each column, the fraction of gap characters ("-" or ".").

"mask" A logical vector indicating whether or not the column met the criteria for mask-
ing.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Yu, Y.-K., et al. (2015). Log-odds sequence logos. Bioinformatics, 31(3), 324-331. http://doi.org/10.1093/bioinformatics/btu634

See Also

AlignSeqs, Treeline

114 MeltDNA

Examples

fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
masked_dna <- MaskAlignment(dna, showPlot=TRUE)

display only unmasked nucleotides for use in downstream analyses
not_masked <- as(masked_dna, "DNAStringSet")
BrowseSeqs(not_masked)

display only masked nucleotides that are covered by the mask
masked <- masked_dna
colmask(masked, append="replace", invert=TRUE) <- colmask(masked)
masked <- as(masked, "DNAStringSet")
BrowseSeqs(masked)

display the complete DNA sequence set including the mask
masks <- lapply(width(colmask(masked_dna)), rep, x="+")
masks <- unlist(lapply(masks, paste, collapse=""))
masked_dna <- replaceAt(dna, at=IRanges(colmask(masked_dna)), value=masks)
BrowseSeqs(masked_dna)

get the start and end ranges of masked columns
ranges <- MaskAlignment(dna, type="ranges")
ranges
replaceAt(dna, ranges) # remove the masked columns

obtain the entropy scores of each column
values <- MaskAlignment(dna, type="values")
head(values)

MeltDNA Simulate Melting of DNA

Description

The denaturation of double-stranded DNA occurs over a range of temperatures. Beginning from
a helical state, DNA will transition to a random-coil state as temperature is increased. MeltDNA
predicts the positional helicity, melt curve, or its negative derivative at different temperatures.

Usage

MeltDNA(myDNAStringSet,
type = "derivative",
temps = 50:100,
ions = 0.2)

Arguments

myDNAStringSet A DNAStringSet object or character vector with one or more sequences in 5’ to
3’ orientation.

type Character string indicating the type of results desired. This should be (an ab-
breviation of) one of "derivative curves", "melt curves", or "positional
probabilities".

MeltDNA 115

temps Numeric vector of temperatures (in degrees Celsius).

ions Numeric giving the molar sodium equivalent ionic concentration. Values must
be at least 0.01M.

Details

When designing a high resolution melt (HRM) assay, it is useful to be able to predict the results
before performing the experiment. Multi-state models of DNA melting can provide near-qualitative
agreement with experimental DNA melt curves obtained with quantitative PCR (qPCR). MeltDNA
employs the algorithm of Tostesen et al. (2003) with an approximation for loop entropy that runs in
nearly linear time and memory, which allows very long DNA sequences (up to 100,000 base pairs)
to be analyzed.

Denaturation is a highly cooperative process whereby regions of double-stranded DNA tend to melt
together. For short sequences (< 100 base pairs) there is typically a single transition from a helical
to random-coil state. Longer sequences may exhibit more complex melting behavior with multiple
peaks, as domains of the DNA melt at different temperatures. The melting curve represents the
average fractional helicity (Theta) at each temperature, and can be used for genotyping with high
resolution melt analysis.

Value

MeltDNA can return three types of results: positional helicity, melting curves, or the negative deriva-
tive of the melting curves. If type is "position", then a list is returned with one component for
each sequence in myDNAStringSet. Each list component contains a matrix with the probability of
helicity (Theta) at each temperature (rows) and every position in the sequence (columns).

If type is "melt", then a matrix with the average Theta across the entire sequence is returned.
This matrix has a row for each input temperature (temps), and a column for each sequence in
myDNAStringSet. For example, the value in element [3, 4] is the average helicity of the fourth
input sequence at the third input temperature. If type is "derivative" then the values in the matrix
are the derivative of the melt curve at each temperature.

Note

MeltDNA uses nearest neighbor parameters from SantaLucia (1998).

Author(s)

Erik Wright <eswright@pitt.edu>

References

SantaLucia, J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proceedings of the National Academy of Sciences, 95(4), 1460-1465.

Tostesen, E., et al. (2003). Speed-up of DNA melting algorithm with complete nearest neighbor
properties. Biopolymers, 70(3), 364-376. doi:10.1002/bip.10495.

See Also

AmplifyDNA, CalculateEfficiencyPCR, DesignSignatures

116 MIQS

Examples

fas <- system.file("extdata", "IDH2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

plot the melt curve for the two alleles
temps <- seq(85, 100, 0.2)
m <- MeltDNA(dna,

type="melt", temps=temps, ions=0.1)
matplot(temps, m,

type="l", xlab="Temperature (\u00B0C)", ylab="Average Theta")
legend("topright", names(dna), lty=seq_along(dna), col=seq_along(dna))

plot the negative derivative curve for a subsequence of the two alleles
temps <- seq(80, 95, 0.25)
m <- MeltDNA(subseq(dna, 492, 542),

type="derivative", temps=temps)
matplot(temps, m,

type="l", xlab="Temperature (\u00B0C)", ylab="-d(Theta)/dTemp")
legend("topright", names(dna), lty=seq_along(dna), col=seq_along(dna))

plot the positional helicity profile for the IDH2 allele
temps <- seq(90.1, 90.5, 0.1)
m <- MeltDNA(dna[1],

type="position", temps=temps, ions=0.1)
matplot(seq_len(dim(m[[1]])[2]), t(m[[1]]),

type="l", xlab="Nucleotide Position", ylab="Theta")
temps <- formatC(temps, digits=1, format="f")
legend("topright", legend=paste(temps, "\u00B0C", sep=""),

col=seq_along(temps), lty=seq_along(temps), bg="white")

MIQS MIQS Amino Acid Substitution Matrix

Description

The MIQS amino acid substitution matrix defined by Yamada & Tomii (2014).

Usage

data("MIQS")

Format

The format is: num [1:25, 1:25] 3.2 -1.3 -0.4 -0.4 1.5 -0.2 -0.4 0.4 -1.2 -1.3 ... - attr(*, "dim-
names")=List of 2 ..$: chr [1:25] "A" "R" "N" "D"$: chr [1:25] "A" "R" "N" "D" ...

Details

Substitution matrix values represent the log-odds of observing an aligned pair of amino acids versus
the likelihood of finding the pair by chance. Values in the MIQS matrix are in units of third-bits
(log(odds ratio) ∗ 3/log(2)).

MMLSUM 117

Source

Yamada, K., & Tomii, K. (2014). Revisiting amino acid substitution matrices for identifying dis-
tantly related proteins. Bioinformatics, 30(3), 317-325.

Examples

data(MIQS)
MIQS["A", "R"] # score for A/R pairing

data(BLOSUM)
plot(BLOSUM[1:20, 1:20, "62"], MIQS[1:20, 1:20])
abline(a=0, b=1)

MMLSUM MMLSUM Amino Acid Substitution Matrices

Description

The MMLSUM amino acid substitution matrices defined by Sumanaweera, D., et al. (2022).

Usage

data("MMLSUM")

Format

The format is: num [1:21, 1:21, 1:9] 10.31 -10.46 -11.95 -13.59 -8.33 ... - attr(*, "dimnames")=List
of 3 ..$: chr [1:21] "A" "R" "N" "D"$: chr [1:21] "A" "R" "N" "D"$: chr [1:9] "10" "20"
"30" "40" ...

Details

Substitution matrix values represent the log-odds of observing an aligned pair of amino acids versus
the likelihood of finding the pair by chance. The MMLSUM substitution matrices are stored as an
array named by each sub-matrix’s similarity threshold. (See examples section below.) In all cases
values are in units of third-bits (log(odds ratio) ∗ 3/log(2)).

Source

Sumanaweera, D., et al. (2022). Bridging the gaps in statistical models of protein alignment.
Bioinformatics, 38(Supplement_1), i228-i237.

Examples

data(MMLSUM)
MMLSUM60 <- MMLSUM[,, "60"] # the MMLSUM60 matrix
MMLSUM60["A", "R"] # score for A/R pairing

data(BLOSUM)
plot(BLOSUM[1:20, 1:20, "62"], MMLSUM60[1:20, 1:20])
abline(a=0, b=1)

118 MODELS

MODELS Available Models of Sequence Evolution

Description

The MODELS contains the models of sequence evolution that can be used by Treeline.

Usage

MODELS

Details

MODELS is a list of two elements: a character vector of (eight) nucleotide models and a character
vector of (37) protein models. All MODELS are time reversible.

Nucleotide models are described in order of increasing number of parameters as follows:

JC69 (Jukes and Cantor, 1969) The simplest substitution model that assumes equal base frequen-
cies (1/4) and equal mutation rates.

K80 (Kimura, 1980) Assumes equal base frequencies, but distinguishes between the rate of transi-
tions and transversions.

T92 (Tamura, 1992) In addition to distinguishing between transitions and transversions, a param-
eter is added to represent G+C content bias.

F81 (Felsenstein, 1981) Assumes equal mutation rates, but allows all bases to have different fre-
quencies.

HKY85 (Hasegawa, Kishino and Yano, 1985) Distinguishes transitions from transversions and
allows bases to have different frequencies.

TN93 (Tamura and Nei, 1993) Allows for unequal base frequencies and distinguishes between
transversions and the two possible types of transitions (i.e., A <-> G & C <-> T).

SYM (Zharkikh, 1994) Equal base frequencies but all substitution rates are free parameters.

GTR (Tavare, 1986) The general time reversible model allowing for unequal base frequencies and
substitution rates.

Protein models are described in the following publications:

AB (Mirsky, 2015), BLOSUM62 (Henikoff, 1992), cpREV (Adachi, 2000), cpREV64 (Zhong,
2010), Dayhoff (Dayhoff, 1978), DCMut-Dayhoff (Kosiol, 2005), DCMut-JTT (Kosiol, 2005),
DEN (Le, 2018), FLAVI (Le, 2020), FLU (Dang, 2010), gcpREV (Cox, 2013), HIVb (Nickle,
2007), HIVw (Nickle, 2007), JTT (Jones, 1992), LG (Le, 2008), MtArt (Abascal, 2007), mtDeu
(Le, 2017), mtInv (Le, 2017), mtMam (Yang, 1998), mtMet (Le, 2017), mtOrt (Chang, 2020),
mtREV (Adachi, 1996), mtVer (Le, 2017), MtZoa (Rota-Stabelli, 2009), PMB (Veerassamy, 2003),
Q.bird (Minh, 2021), Q.insect (Minh, 2021), Q.LG (Minh, 2021), Q.mammal (Minh, 2021), Q.pfam
(Minh, 2021), Q.plant (Minh, 2021), Q.yeast (Minh, 2021), rtREV (Dimmic, 2002), stmtREV (Liu,
2014), VT (Muller, 2000), WAG (Whelan, 2001), WAGstar (Whelan, 2001).

+G (Yang, 1993) Specifying any model+G4 adds a single parameter to any of the above models
to relax the assumption of equal rates among sites in the sequence. The single parameter specifies
the shape of the Gamma Distribution. The continuous distribution is represented with 2-10 discrete
rates and their respective probabilities as determined by equal bins or the Laguerre Quadrature
method (Felsenstein, 2001). For example, specifying a model+G8 would represent the continuous
Gamma Distribution with eight rates and their associated probabilities.

MODELS 119

+F Specifying any model+F uses empirical frequencies rather than optimized state frequencies.
This is only applicable for models having state frequencies with free parameters.

References

Abascal, F., Posada, D., and Zardoya, R. (2007) Molecular Biology and Evolution, 24, 1-5.

Adachi, J. and Hasegawa, M. (1996) Journal of Molecular Evolution, 42, 459-468.

Adachi, J., Waddell, P., Martin, W., and Hasegawa, M. (2000) Journal of Molecular Evolution, 50,
348-358.

Chang, H., Nie, Y., Zhang, N., Zhang, X., Sun, H., Mao, Y., Qiu, Z., and Huang, Y. (2020) BMC
Ecology and Evolution, 20, 57.

Cox, C. and Foster, P. (2013) Molecular Phylogenetics and Evolution, 68, 218-220.

Dang, C., Le, S., Gascuel, O., and Le, V. (2010) BMC Evolutionary Biology, 10, 99.

Dayhoff, M., Schwartz, R., and Orcutt, B. (1978) Atlas of Protein Sequence and Structure, National
Biomedical Research Foundation, Washington DC, 5, 345-352.

Dimmic, M., Rest, J., Mindell, D., and Goldstein, R. (2002) Journal of Molecular Evolution, 55,
65-73.

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17(6), 368-376.

Felsenstein, J. (2001) Taking Variation of Evolutionary Rates Between Sites into Account in Infer-
ring Phylogenies. Journal of molecular evolution, 53(4-5), 447-455.

Hasegawa, M., Kishino H., Yano T. (1985) Dating of human-ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160-174.

Henikoff, S. and Henikoff, J. (1992) Proceedings of the National Academy of Sciences of the USA,
89, 10915-10919.

Jones, D., Taylor, W., and Thornton, J. (1992) Computer Applications in the Biosciences, 8, 275-
282.

Jukes, T. and Cantor C. (1969) Evolution of Protein Molecules. New York: Academic Press. pp.
21-132.

Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through
comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120.

Kosiol, C. and Goldman, N. (2005) Molecular Biology and Evolution, 22, 193-199.

Le, S. and Gascuel, O. (2008) Molecular Biology and Evolution, 25, 1307-1320.

Le, T., Dang, C., and Le, S. (2018) Proceedings of 10th International Conference on Knowledge
and Systems Engineering (KSE 2018), Ho Chi Minh City, Vietnam, 242-246.

Le, T., and Vinh, L. (2020) Journal of Molecular Evolution, 88, 445-452.

Le, V., Dang, C., and Le, S. (2017) BMC Evolutionary Biology, 17, 136.

Liu, Y., Cox, C., Wang, W., and Goffinet, B. (2014) Systematic Biology, 63, 862-878.

Minh, B., Dang, C., Le, S., and Lanfear, R. (2021) Systematic Biology, syab010.

Mirsky, A., Kazandjian, L., and Anisimova, M. (2015) Molecular Biology and Evolution, 32, 806-
819.

Muller, T. and Vingron, M. (2000) Journal of Computational Biology, 7, 761-776.

Nickle, D., Heath, L., Jensen, M., Gilbert P., and Mullins, J., Kosakovsky Pond SL (2007) PLoS
ONE, 2, e503.

120 NNLS

Rota-Stabelli, O., Yang, Z., and Telford, M. (2009) Molecular Phylogenetics and Evolution, 52,
268-272.

Tamura, K. (1992) Estimation of the number of nucleotide substitutions when there are strong
transition-transversion and G+C content biases. Molecular Biology and Evolution, 9(4), 678-687.

Tamura, K. and Nei M. (1993) Estimation of the number of nucleotide substitutions in the control
region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution,
10(3), 512-526.

Tavare, S. (1986) “Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences.”
Lectures on Mathematics in the Life Sciences, 17: 57-86.

Veerassamy, S., Smith, A., and Tillier, E. (2003) Journal of Computational Biology, 10, 997-1010.

Whelan, S. and Goldman, N. (2001) Molecular Biology and Evolution, 18, 691-699.

Yang, Z., Nielsen, R., and Hasegawa, M. (1998) Molecular Biology and Evolution, 15, 1600-1611.

Yang, Z. (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substi-
tution rates differ over sites. Molecular Biology and Evolution, 10(6), 1396-1401.

Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences. Journal of
Molecular Evolution, 39, 315-329.

Zhong, B., Yonezawa, T., Zhong, Y., and Hasegawa, M. (2010) Molecular Biology and Evolution,
27, 2855-2863.

See Also

Treeline

Examples

str(MODELS)

NNLS Sequential Coordinate-wise Algorithm for the Non-negative Least
Squares Problem

Description

Consider the linear system Ax = b where A ∈ Rm x n, x ∈ Rn, and b ∈ Rm. The technique of least
squares proposes to compute x so that the sum of squared residuals is minimized. NNLS solves the
least squares problem min ||Ax = b||2 subject to the constraint x ≥ 0. This implementation of the
Sequential Coordinate-wise Algorithm uses a sparse input matrix A, which makes it efficient for
large sparse problems.

Usage

NNLS(A,
b,
precision = sqrt(.Machine$double.eps),
processors = 1,
verbose = TRUE)

NNLS 121

Arguments

A List representing the sparse matrix with integer components i and j, numeric
component x. The fourth component, dimnames, is a list of two components
that contains the names for every row (component 1) and column (component
2).

b Numeric matrix for the set of observed values. (See details section below.)
precision The desired accuracy.
processors The number of processors to use, or NULL to automatically detect and use all

available processors.
verbose Logical indicating whether to display progress.

Details

The input b can be either a matrix or a vector of numerics. If it is a matrix then it is assumed that
each column contains a set of observations, and the output x will have the same number of columns.
This allows multiple NNLS problems using the same A matrix to be solved simultaneously, and
greatly accelerates computation relative to solving each sequentially.

Value

A list of two components:

x The matrix of non-negative values that best explains the observed values given
by b.

res A matrix of residuals given by Ax− b.

References

Franc, V., et al. (2005). Sequential coordinate-wise algorithm for the non-negative least squares
problem. Computer Analysis of Images and Patterns, 407-414.

See Also

Array2Matrix, DesignArray

Examples

unconstrained least squares:
A <- matrix(c(1, -3, 2, -3, 10, -5, 2, -5, 6), ncol=3)
b <- matrix(c(27, -78, 64), ncol=1)
x <- solve(crossprod(A), crossprod(A, b))

Non-negative least squares:
w <- which(A > 0, arr.ind=TRUE)
A <- list(i=w[,"row"], j=w[,"col"], x=A[w],

dimnames=list(1:dim(A)[1], 1:dim(A)[2]))
x_nonneg <- NNLS(A, b)

compare the unconstrained and constrained solutions:
cbind(x, x_nonneg$x)

the input value "b" can also be a matrix:
b2 <- matrix(b, nrow=length(b), ncol=2) # repeat b in two columns
x_nonneg <- NNLS(A, b2) # solution is repeated in two output columns

122 NonCoding

NonCoding NonCoding Objects and Methods

Description

Non-coding RNAs can be represented by their conserved sequence motifs, secondary structure, and
k-mer frequencies. Class NonCoding provides objects and functions for representing non-coding
RNAs.

Usage

S3 method for class 'NonCoding'
print(x, ...)

Arguments

x An object of class NonCoding.
... Other optional parameters.

Details

Objects of class NonCoding are stored as lists containing a compact representation of a family of
non-coding RNAs. The first list component is a matrix of sequence motifs that identify the non-
coding RNAs, the second is a matrix of hairpin loops that are conserved across the family, the third
is a list of k-mer frequencies derived from representative sequences, and the fourth is a vector of log-
odds scores for sequence lengths. An optional fifth list component denotes the log-odds scores for
dependencies among patterns. Patterns are defined by their distance to either end of the non-coding
RNA, which helps to identify the boundaries of the non-coding RNA in a genome.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Wright, E. S. (2021). FindNonCoding: rapid and simple detection of non-coding RNAs in genomes.
Bioinformatics. https://doi.org/10.1093/bioinformatics/btab708

See Also

LearnNonCoding, FindNonCoding

Examples

data(NonCodingRNA_Bacteria)
x <- NonCodingRNA_Bacteria
print(x)
class(x)
attributes(x[[1]])
x[[1]] # the first non-coding RNA
x[[1]][["motifs"]] # sequence motifs
x[[1]][["hairpins"]] # hairpin loops
head(x[[1]][["kmers"]]) # k-mer frequencies

NonCodingRNA 123

NonCodingRNA NonCoding Models for Common Non-Coding RNA Families

Description

Pre-trained with NonCoding models for common RNA families found in genomes from organisms
belonging to each domain of life.

Usage

data("NonCodingRNA_Archaea")

Details

A set of NonCoding models contained in a named list. Models were built from up to 1000 represen-
tative sequences per non-coding RNA family.

Source

Models were built from sequences belonging to families in tRNADB-CE (http://trna.ie.niigata-u.
ac.jp/cgi-bin/trnadb/index.cgi) or Rfam (http://rfam.xfam.org).

Examples

data(NonCodingRNA_Archaea)
data(NonCodingRNA_Bacteria)
data(NonCodingRNA_Eukarya)
names(NonCodingRNA_Bacteria)
head(NonCodingRNA_Bacteria)

OrientNucleotides Orient Nucleotide Sequences

Description

Orients nucleotide sequences to match the directionality and complementarity of specified reference
sequences.

Usage

OrientNucleotides(myXStringSet,
reference = which.max(width(myXStringSet)),
type = "sequences",
orientation = "both",
threshold = 0.05,
verbose = TRUE,
processors = 1)

http://trna.ie.niigata-u.ac.jp/cgi-bin/trnadb/index.cgi
http://trna.ie.niigata-u.ac.jp/cgi-bin/trnadb/index.cgi
http://rfam.xfam.org

124 OrientNucleotides

Arguments

myXStringSet A DNAStringSet or RNAStringSet of unaligned sequences.

reference The index of reference sequences with the same (desired) orientation. By default
the first sequence with maximum width will be used.

type Character string indicating the type of results desired. This should be (an abbre-
viation of) either "sequences", "orientations", or "both".

orientation Character string(s) indicating the allowed reorientation(s) of non-reference se-
quences. This should be (an abbreviation of) either "all", "reverse", "complement",
and/or "both" (for reverse complement).

threshold Numeric giving the decrease in k-mer distance required to adopt the alternative
orientation.

verbose Logical indicating whether to display progress.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

Biological sequences can sometimes have inconsistent orientation that interferes with their analysis.
OrientNucleotides will reorient sequences by changing their directionality and/or complemen-
tarity to match specified reference sequences in the same set, which are assume to have the same
orientation. The process works by finding the k-mer distance between the reference sequence(s) and
each allowed orientation of the sequences. Alternative orientations that lessen the distance by
at least threshold are adopted. Note that this procedure requires a moderately similar reference
sequence be available for each sequence that needs to be reoriented. Sequences for which a corre-
sponding reference is unavailable will most likely be left alone because alternative orientations will
not pass the threshold. For this reason, it is recommended to specify several diverse sequences as
references.

Value

OrientNucleotides can return two types of results: the relative orientations of sequences and/or
the reoriented sequences. If type is "sequences" (the default) then the reoriented sequences are
returned. If type is "orientations" then a character vector is returned that specifies whether
sequences were reversed ("r"), complemented ("c"), reversed complemented ("rc"), or in the same
orientation ("") as the reference sequences (marked by NA). If type is "both" then the output is a
list with the first component containing the "orientations" and the second component containing
the "sequences".

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

CorrectFrameshifts

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
dna <- RemoveGaps(dna)

PAM 125

DNA <- dna # 175 sequences

reorient subsamples of the first 169 sequences
s <- sample(169, 30)
DNA[s] <- reverseComplement(dna[s])
s <- sample(169, 30)
DNA[s] <- reverse(dna[s])
s <- sample(169, 30)
DNA[s] <- complement(dna[s])

DNA <- OrientNucleotides(DNA, reference=170:175)
DNA==dna # all were correctly reoriented

PAM PAM Amino Acid Substitution Matrices

Description

The PAM amino acid substitution matrices defined by Dayhoff, M., et al. (1978).

Usage

data("PAM")

Format

The format is: num [1:24, 1:24, 1:50] 10.5 -15 -10.5 -9 -15 -10.5 -7.5 -6 -16.5 -12 ... - attr(*,
"dimnames")=List of 3 ..$: chr [1:24] "A" "R" "N" "D"$: chr [1:24] "A" "R" "N" "D"$:
chr [1:50] "10" "20" "30" "40" ...

Details

Substitution matrix values represent the log-odds of observing an aligned pair of amino acids versus
the likelihood of finding the pair by chance. The PAM substitution matrices are stored as an array
named by each sub-matrix’s percentage accepted mutations. (See examples section below.) In all
cases values are in units of third-bits (log(odds ratio) ∗ 3/log(2)).

Source

Dayhoff, M., et al. (1978). A model of evolutionary change in proteins. Atlas of protein sequence
and structure, 5, 345-358.

Examples

data(PAM)
PAM250 <- PAM[,, "250"] # the PAM250 matrix
PAM250["A", "R"] # score for A/R pairing

data(BLOSUM)
plot(BLOSUM[1:20, 1:20, "62"], PAM250[1:20, 1:20])
abline(a=0, b=1)

126 PredictDBN

PFASUM PFASUM Amino Acid Substitution Matrices

Description

The PFASUM amino acid substitution matrices defined by Keul, F., et al. (2017).

Usage

data("PFASUM")

Format

The format is: num [1:25, 1:25, 1:90] 0.9492 -1.7337 0.2764 1.8153 0.0364 ... - attr(*, "dim-
names")=List of 3 ..$: chr [1:25] "A" "R" "N" "D"$: chr [1:25] "A" "R" "N" "D"$: chr
[1:90] "11" "12" "13" "14" ...

Details

Substitution matrix values represent the log-odds of observing an aligned pair of amino acids versus
the likelihood of finding the pair by chance. The PFASUM substitution matrices are stored as an
array named by each sub-matrix’s similarity threshold. (See examples section below.) In all cases
values are in units of third-bits (log(odds ratio) ∗ 3/log(2)).

Source

Keul, F., et al. (2017). PFASUM: a substitution matrix from Pfam structural alignments. BMC
Bioinformatics, 18(1), 293.

Examples

data(PFASUM)
PFASUM62 <- PFASUM[,, "62"] # the PFASUM62 matrix
PFASUM62["A", "R"] # score for A/R pairing

data(BLOSUM)
plot(BLOSUM[1:20, 1:20, "62"], PFASUM62[1:20, 1:20])
abline(a=0, b=1)

PredictDBN Predict RNA Secondary Structure in Dot-Bracket Notation

Description

Predicts a consensus RNA secondary structure from a multiple sequence alignment using mutual
information.

PredictDBN 127

Usage

PredictDBN(myXStringSet,
type = "states",
minOccupancy = 0.4,
impact = c(1, 1.2, 0.4, -1),
avgProdCorr = 1,
slope = 2,
shift = 1.3,
threshold = 0.4,
pseudoknots = 1,
weight = NA,
useFreeEnergy = TRUE,
deltaGrules = NULL,
processors = 1,
verbose = TRUE)

Arguments

myXStringSet A DNAStringSet or RNAStringSet object containing aligned sequences.
type Character string indicating the type of results desired. This should be (an unam-

biguous abbreviation of) one of "states", "pairs", "evidence", "scores",
"structures", or "search". (See value section below.)

minOccupancy Numeric specifying the minimum occupancy (1 - fraction of gaps) required to
include a column of the alignment in the prediction.

impact A vector with four elements giving the weights of A/U, G/C, G/U, and other
pairings, respectively. The last element of impact is the penalty for pairings
that are inconsistent with two positions being paired (e.g., A/- or A/C).

avgProdCorr Numeric specifying the weight of the average product correction (APC) term, as
described in Buslje et al. (2009).

slope Numeric giving the slope of the sigmoid used to convert mutual information
values to scores ranging from zero to one.

shift Numeric giving the relative shift of the sigmoid used to convert mutual informa-
tion values to scores ranging from zero to one.

threshold Numeric specifying the score threshold at which to consider positions for pair-
ing. Only applicable if type is "states" or "pairs".

pseudoknots Integer indicating the maximum order of pseudoknots that are acceptable. A
value of 0 will prevent pseudoknots in the structure, whereas 1 (the default)
will attempt to find first-order psuedoknots. Only used if type is "states" or
"pairs".

weight Either a numeric vector of weights for each sequence, a single number implying
equal weights, or NA (the default) to automatically calculate sequence weights
based on myXStringSet.

useFreeEnergy Logical determining whether RNA free energy predictions should be incorpo-
rated along with mutual information into the secondary structure prediction.

deltaGrules Free energy rules for all possible base pairings in quadruplets. If NULL, defaults
to pseudoenergies (deltaGrulesRNA). Only applicable if useFreeEnergies is
TRUE.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

128 PredictDBN

Details

PredictDBN employs an extension of the method described by Freyhult et al. (2005) for determining
a consensus RNA secondary structure. It uses the mutual information (H) measure to find covarying
positions in a multiple sequence alignment. The original method is modified by the addition of
different weights for each type of base pairing and each input sequence. The formula for mutual
information between positions i and j then becomes:

H(i, j) =
∑

XY ∈bp

(
impact(XY) · fi,j(XY) · log2

(
fi,j(XY)

fi(X) · fj(Y)

))

where, bp denotes the base pairings A/U, C/G, and G/U; impact is their weight; f is the frequency
of single bases or pairs weighted by the corresponding weight of each sequence.

A penalty is then added for bases that are inconsistent with pairing:

Hmod(i, j) = H(i, j) +
∑

XY /∈bp

(
impact(XY) · fi,j(XY)

)
Next an average product correction (Buslje et al., 2009) is applied to the matrix H:

HAPC(i, j) = Hmod(i, j)− avgProdCorr · Hmod(i, .) ·Hmod(., j)

Hmod(., .)

The mutual information values are then rescaled between 0 and 1 by applying a sigmoidal transfor-
mation, which is controlled by shift and slope:

Hfinal(i, j) =

(
1 + exp

(
slope · loge

(
HAPC(i, j)

shift ·HAPC [n]

)))−1

where, n is the number of positions having minOccupancy divided by two (i.e., the maximum
possible number of paired positions) and HAPC [n] denotes the nth highest value in the matrix
HAPC .

If useFreeEnergies is TRUE, mutual information is supplemented with a probabalistic model of
folding based on deltaGrules. That is, palindromes in each sequence are ranked by their free
energy, and converted to probabilities of base pairing by assuming an exponential distribution of free
energies. This tends to improve predictive accuracy when the aligned sequences are insufficiently
diverse for considerable evidence of compensatory mutations.

If type is "states" or "pairs", the secondary structure is determined using a variant of the Nussi-
nov algorithm similar to that described by Venkatachalam et al. (2014). Pairings with a score
below threshold are not considered during the traceback. If psuedoknots is greater than 0, paired
positions are removed from consideration and the method is applied again to find pseudoknots.

In practice the secondary structure prediction is most accurate when the input alignment is of high
quality, contains a wide diversity of sequences, the number of sequences is large, no regions are
completely conserved across all sequences, and most of the sequences span the entire alignment
(i.e., there are few partial/incomplete sequences).

Value

If type is "states" (the default), then the output is a character vector with the predicted secondary
structure assignment for each position in myXStringSet. Standard dot-bracket notation (DBN) is
used, where “.” signifies an unpaired position, “(” and “)” a paired position, and successive “[]”,

PredictDBN 129

“{}”, and “<>” indicate increasing order pseudoknots. Columns below minOccupancy are denoted
by the “-” character to indicate that they contained too many gaps to be included in the consensus
structure.

If type is "pairs", then a matrix is returned with one row for each base pairing and three columns
giving the positions of the paired bases and their pseudoknot order.

If type is "evidence", then a matrix is returned with one row for each base pairing and three
columns giving the positions of the paired bases and their respective scores (greater than or equal
to threshold). This differs from type "pairs" in that "evidence" does not perform a traceback.
Therefore, it is possible to have conflicting evidence where a single base has evidence for pairing
with multiple other bases.

If type is "scores", then a matrix of three rows is returned, where the values in a column represent
the maximum score for a state in each position. Columns sum to 1 if the position was above
minOccupancy and 0 otherwise.

If type is "structures", then the output is a list with one element for each sequence in myXStringSet.
Each list element contains a matrix of dimension 3 (each state) by the number of nucleotides in the
sequence. Columns of the matrix sum to zero where the nucleotide was located in a position that
was below minOccupancy. Otherwise, positions are considered paired if they are consistent with
pairing (i.e., A/U, C/G, or G/U) in the consensus secondary structure.

When type is "search" the results are similar to "structures", but an attempt is made to find ad-
ditional secondary structure beyond positions exhibiting covariation. First, anchors are identified as
pairs of covarying positions with their score above threshold. Next, the regions between anchors
are searched for previously unidentified stem loops. Finally, any helices are assigned a score ac-
cording to their length, i.e. one minus the probability of finding that many consecutive pairs within
the anchor boundaries by chance. Hence, output type "search" will find secondary structure out-
side of the consensus structure shared by most sequences, and can identify secondary structure in
conserved alignment regions.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Buslje, C., et al. (2009). Correction for phylogeny, small number of observations and data re-
dundancy improves the identification of coevolving amino acid pairs using mutual information.
Bioinformatics, 25(9), 1125-1131.

Freyhult, E., et al. (2005). Predicting RNA Structure Using Mutual Information. Applied Bioinfor-
matics, 4(1), 53-59.

Venkatachalam, B., et al. (2014). Faster algorithms for RNA-folding using the Four-Russians
method. Algorithms for Molecular Biology : AMB, 9(1), 1-12.

Wright, E. S. (2020). RNAconTest: comparing tools for noncoding RNA multiple sequence align-
ment based on structural consistency. RNA 2020, 26, 531-540.

See Also

PredictHEC

Examples

load the example non-coding RNA sequences
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")

130 PredictHEC

dna <- readDNAStringSet(fas)
rna <- RNAStringSet(dna)

Not run:
predict the secondary structure in dot-bracket notation (dbn)
p <- PredictDBN(rna, "states") # predict the secondary structure in dbn
p # pairs are denoted by (), and (optionally) pseudoknots by [], {}, and <>

convert the dot-bracket notation into pairs of positions within the alignment
p <- PredictDBN(rna, "pairs") # paired positions in the alignment
head(p) # matrix giving the pairs and their pseudoknot order (when > 0)

plot an arc diagram with the base pairings
plot(NA, xlim=c(0, 1), ylim=c(0, 1),
xaxs="i", yaxs="i",
xlab="Alignment position", ylab="",
bty="n", xaxt="n", yaxt="n")

ticks <- pretty(seq_len(width(rna)[1]))
axis(1, ticks/width(rna)[1], ticks)
rs <- c(seq(0, pi, len=100), NA)
r <- (p[, 2] - p[, 1] + 1)/width(rna)[1]/2
r <- rep(r, each=101)
x <- (p[, 1] + p[, 2])/2/width(rna)[1]
x <- rep(x, each=101) + r*cos(rs)
y <- r*sin(rs)/max(r, na.rm=TRUE)
lines(x, y, xpd=TRUE)

show all available evidence of base pairing
p <- PredictDBN(rna, "evidence") # all pairs with scores >= threshold
head(p) # matrix giving the pairs and their scores

determine the score at every alignment position
p <- PredictDBN(rna, "scores") # score in the alignment
p["(", 122] # score for left-pairing at alignment position 122
p[")", 260] # score for right-pairing at alignment position 260

find the scores individually for every sequence in the alignment
p <- PredictDBN(rna, "structures") # scores per sequence
p[[1]][, 1] # the scores for the first position in the first sequence
p[[2]][, 10] # the scores for the tenth position in the second sequence
these positional scores can be used as shades of red, green, and blue:
BrowseSeqs(rna, patterns=p) # red = unpaired, green = left-pairing, blue = right
positions in black are not part of the consensus secondary structure

search for additional secondary structure between the consensus pairs
p <- PredictDBN(rna, "search") # scores per sequence after searching
BrowseSeqs(rna, patterns=p) # red = unpaired, green = left-pairing, blue = right
note that "search" identified many more pairings than "structures"

End(Not run)

PredictHEC Predict Protein Secondary Structure

PredictHEC 131

Description

Predicts protein secondary structure based on the primary (amino acid) sequence using the GOR IV
method (Garnier et al., 1996).

Usage

PredictHEC(myAAStringSet,
type = "states",
windowSize = 8,
background = c(H = -0.2, E = -0.6, C = 0),
HEC_MI1 = NULL,
HEC_MI2 = NULL)

Arguments

myAAStringSet An AAStringSet object of sequences.

type Character string indicating the type of results desired. This should be (an unam-
biguous abbreviation of) one of "states", "scores", or "probabilities".

windowSize Either a single number specifying the number of residues to the left or right of
the center position to use in the prediction or two numbers to use with HEC_MI1
and HEC_MI2, respectively.

background A named numeric vector with the background “scores” for each of the states,
or a matrix with states as rows and columns giving the background for each
sequence in myXStringSet. The background represents a calibrated prior on
the relative propensity for each state, typically the log of the (normalized) state
frequencies and possibly standardized to a minimum or maximum of zero.

HEC_MI1 An array of dimensions 20 x W x N giving the mutual information for single
residues, where W is at least 2*windowSize + 1 and N is the number of states in
background.

HEC_MI2 An array of dimensions 20 x 20 x W x W x N giving the mutual information for
pairs of residues, where W is at least 2*windowSize + 1 and N is the number of
states in background.

Details

The GOR (Garnier-Osguthorpe-Robson) method is an information-theory method for prediction of
secondary structure based on the primary sequence of a protein. Version IV of the method makes
state predictions based on the mutual information contained in single residues and pairs of residues
within windowSize residues of the position being assigned. This approach is about 65% accurate
for the traditional three states (i.e., H, E, and C), and is one of the more accurate methods for
assigning secondary structure based on single sequences. This implementation of GOR IV does not
use decision constants or the number of contiguous states when assigning the final state. Note that
characters other than the standard 20 amino acids are not assigned a state.

Value

If type is "states" (the default), then the output is a character vector with the secondary structure
assignment for each residue in myAAStringSet.

Otherwise, the output is a list with one element for each sequence in myAAStringSet. Each list
element contains a matrix of dimension N by the number of residues in the sequence, where N is the
number of states in background. If type is "scores", then values in the matrix represent log-odds

132 ReadDendrogram

“scores”. If type is "probabilities" then the values represent the normalized probabilities of the
states at a position.

Author(s)

Erik Wright <eswright@pitt.edu>

References

Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary
structure from amino acid sequence. Methods in Enzymology, 266, 540-553.

See Also

HEC_MI1, HEC_MI2, PredictDBN

Examples

fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
aa <- translate(dna)
hec <- PredictHEC(aa)
head(hec)

ReadDendrogram Read a Dendrogram from a Newick Formatted File

Description

Reads a dendrogram object from a file in Newick (also known as New Hampshire) parenthetic
format.

Usage

ReadDendrogram(file,
convertBlanks = TRUE,
internalLabels = TRUE,
keepRoot = TRUE,
quote = "'")

Arguments

file a connection object or a character string.

convertBlanks Logical specifying whether to convert underscores in unquoted leaf labels to
spaces.

internalLabels Logical indicating whether to keep internal node labels as “edgetext” preceding
the node in the dendrogram.

keepRoot Logical specifying whether to keep the root node (if one is present) as a dendro-
gram leaf.

quote Either a single or double quotation mark determining the character used quote
labels.

RemoveGaps 133

Details

ReadDendrogram will create a dendrogram object from a Newick formatted tree. Note that all
edge lengths must be specified, but labels are optional. Leaves will be numbered by their labels in
alphabetical order.

Value

An object of class dendrogram.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Treeline, WriteDendrogram

Examples

tf <- tempfile()
dists <- matrix(c(0, 10, 20, 10, 0, 5, 20, 5, 0),

nrow=3,
dimnames=list(c("dog", "elephant", "horse")))

dend1 <- Treeline(myDistMatrix=dists, method="NJ", type="dendrogram")
WriteDendrogram(dend1, file=tf)

dend2 <- ReadDendrogram(tf)
layout(matrix(1:2))
plot(dend1, main="Dendrogram Written")
plot(dend2, main="Dendrogram Read")

unlink(tf)

RemoveGaps Remove Gap Characters in Sequences

Description

Removes gaps ("-" or "." characters) in a set of sequences, either deleting all gaps or only those
shared by all sequences in the set.

Usage

RemoveGaps(myXStringSet,
removeGaps = "all",
includeMask = FALSE,
processors = 1)

134 RESTRICTION_ENZYMES

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object containing sequences.

removeGaps Determines how gaps ("-" or "." characters) are removed in the sequences. This
should be (an unambiguous abbreviation of) one of "none", "all" or "common".

includeMask Logical specifying whether to consider the mask character ("+") as a gap.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

Details

The removeGaps argument controls which gaps are removed in myXStringSet. Setting removeGaps
to "all" will remove all gaps in the input sequences, whereas setting removeGaps to "common" will
remove only gaps that exist in the same position in every sequence. Therefore, the latter method
will leave gaps in place that are not shared by every sequence, requiring that the sequences in
myXStringSet all be the same length (i.e., be aligned). Setting removeGaps to "none" will simply
return myXStringSet unaltered.

Value

An XStringSet of the same type as myXStringSet.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

AlignSeqs

Examples

dna <- DNAStringSet(c("ACT-G-", "AC--G-"))
dna
RemoveGaps(dna, "all")
RemoveGaps(dna, "common")

RESTRICTION_ENZYMES Common Restriction Enzyme’s Cut Sites

Description

A character vector of common restriction sites named by the restriction enzyme that cuts at each
site. Sequence specificity is listed in 5’ to 3’ orientation based on the IUPAC_CODE_MAP. The cut site
is either signified by a “/” for palindromic sites, or two numbers giving the position of the top and
bottom cut positions relative to the site’s 3’-end.

Usage

data(RESTRICTION_ENZYMES)

ScoreAlignment 135

Format

The format is: Named chr [1:224] "GACGT/C" "G/GTACC" "GT/MKAC" ... - attr(*, "names")=
chr [1:224] "AatII" "Acc65I" "AccI" "AciI" ...

Source

Restriction enzymes sold by New England BioLabs.

Examples

data(RESTRICTION_ENZYMES)
RESTRICTION_ENZYMES

ScoreAlignment Score a Multiple Sequence Alignment

Description

Calculates a score for a multiple sequence alignment based on either sum-of-pairs or sum-of-
adjacent-pairs scoring.

Usage

ScoreAlignment(myXStringSet,
method = "pairs",
type = "sum",
perfectMatch = 1,
misMatch = 0,
gapOpening = -7.5,
gapExtension = -0.6,
substitutionMatrix = NULL,
structures = NULL,
structureMatrix = NULL,
includeTerminalGaps = FALSE,
weight = 1)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

method Character string indicating the method of scoring. This should be (an abbrevi-
ation of) one of "pairs" for sum-of-pairs or "adjacent" for sum-of-adjacent-
pairs. (See details section below.)

type Character string giving the type of result. This should be (an abbreviation of)
one of "sum" for the total score or "scores" for a vector with one score per site
(column) in myXStringSet.

perfectMatch Numeric giving the reward for aligning two matching nucleotides in the align-
ment. Only used for DNAStringSet or RNAStringSet inputs.

misMatch Numeric giving the cost for aligning two mismatched nucleotides in the align-
ment. Only used for DNAStringSet or RNAStringSet inputs.

gapOpening Numeric giving the cost for opening and closing a gap in the alignment.

http://www.neb.com

136 ScoreAlignment

gapExtension Numeric giving the cost for extending an open gap in the alignment.
substitutionMatrix

Either a substitution matrix representing the substitution scores for an alignment
(in third-bits) or the name of the amino acid substitution matrix to use in align-
ment. The default (NULL) will use the perfectMatch and misMatch penalties
for DNA/RNA or PFASUM50 for AA.

structures Either NULL (the default) or a list of matrices with one list element per sequence
in myXStringSet.

structureMatrix

A structure matrix if structures are supplied, or NULL otherwise.
includeTerminalGaps

Logical specifying whether or not to include terminal gaps ("-" or "." characters
on each end of the sequence) into the calculation of score.

weight A numeric vector of weights for each sequence, or a single number implying
equal weights.

Details

Sum-of-pairs scoring is the standard way to judge whether a set of sequences are homologous.
ScoreAlignment calculates the sum-of-pairs score for myXStringSet when method is "pairs".
This score can also be used to compare among different alignments of the same sequences. If
method is "adjacent" then the sum-of-adjacent-pairs scores is calculated, where each sequence
is compared to the next sequence. Hence, the input order of sequences in myXStringSet matters
when method is "adjacent".

Both scores are linearly related to the number of sequences in the alignment and the number of
sites in the alignment. Therefore, it is possible to normalize the score by dividing by the width and
length (minus 1) of the myXStringSet.

Value

A single numeric score.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

AlignSeqs, PFASUM

Examples

small example
x <- DNAStringSet(c("C-G", "CTG", "C-G", "CTG"))
ScoreAlignment(x, method="pairs", gapOpening=-1) # +3 -1 +3 = 5
ScoreAlignment(x, method="adjacent", gapOpening=-1) # +3 -3 +3 = 3

DNA alignment with the defaults
fas <- system.file("extdata", "Streptomyces_ITS_aligned.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
dna # input alignment
ScoreAlignment(dna, method="pairs")
ScoreAlignment(dna, method="adjacent")

SearchDB 137

provide a DNA substitution matrix for greater discerning power
sub <- matrix(c(1.5, -2.134, -0.739, -1.298,

-2.134, 1.832, -2.462, 0.2,
-0.739, -2.462, 1.522, -2.062,
-1.298, 0.2, -2.062, 1.275),
nrow=4,
dimnames=list(DNA_BASES, DNA_BASES))

ScoreAlignment(dna, substitutionMatrix=sub)

use structures with an amino acid alignment
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
aa <- AlignTranslation(dna, type="AAStringSet")
structureMatrix <- matrix(c(0.187, -0.8, -0.873,

-0.8, 0.561, -0.979,
-0.873, -0.979, 0.221),
nrow=3,
dimnames=list(c("H", "E", "C"), c("H", "E", "C")))

ScoreAlignment(aa,
structures=PredictHEC(aa, type="probabilities"),
structureMatrix=structureMatrix)

SearchDB Obtain Specific Sequences from a Database

Description

Returns the set of sequences meeting the search criteria.

Usage

SearchDB(dbFile,
tblName = "Seqs",
identifier = "",
type = "XStringSet",
limit = -1,
replaceChar = NA,
nameBy = "row_names",
orderBy = "row_names",
countOnly = FALSE,
removeGaps = "none",
quality = "Phred",
clause = "",
processors = 1,
verbose = TRUE)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table where the sequences are located.

138 SearchDB

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" (the default) then all identifiers are selected.

type The type of XStringSet (sequences) to return. This should be (an unambiguous
abbreviation of) one of "XStringSet", "DNAStringSet", "RNAStringSet",
"AAStringSet", "BStringSet", "QualityScaledXStringSet", "QualityScaledDNAStringSet",
"QualityScaledRNAStringSet", "QualityScaledAAStringSet", or "QualityScaledBStringSet".
If type is "XStringSet" or "QualityScaledXStringSet" then an attempt is
made to guess the type of sequences based on their composition.

limit Number of results to display. The default (-1) does not limit the number of
results.

replaceChar Optional character used to replace any characters of the sequence that are not
present in the XStringSet’s alphabet. Not applicable if type=="BStringSet".
The default (NA) results in an error if an incompatible character exist. (See details
section below.)

nameBy Character string giving the column name for naming the XStringSet.

orderBy Character string giving the column name for sorting the results. Defaults to the
order of entries in the database. Optionally can be followed by " ASC" or "
DESC" to specify ascending (the default) or descending order.

countOnly Logical specifying whether to return only the number of sequences.

removeGaps Determines how gaps ("-" or "." characters) are removed in the sequences. This
should be (an unambiguous abbreviation of) one of "none", "all" or "common".

clause An optional character string to append to the query as part of a “where clause”.

quality The type of quality object to return if type is a QualityScaledXStringSet.
This should be (an unambiguous abbreviation of) one of "Phred", "Solexa", or
"Illumina". Note that recent versions of Illumina software provide "Phred"
formatted quality scores.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display queries as they are sent to the database.

Details

If type is "DNAStringSet" then all U’s are converted to T’s before creating the DNAStringSet, and
vise-versa if type is "RNAStringSet". All remaining characters not in the XStringSet’s alphabet
are converted to replaceChar or removed if replaceChar is "". Note that if replaceChar is NA
(the default), it will result in an error when an unexpected character is found. Quality information
is interpreted as PredQuality scores.

Value

An XStringSet or QualityScaledXStringSet with the sequences that meet the specified criteria.
The names of the object correspond to the value in the nameBy column of the database.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The R
Journal, 8(1), 352-359.

SearchIndex 139

See Also

Seqs2DB, DB2Seqs

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
get all sequences in the default table:
dna <- SearchDB(db)
remove gaps from "Sphingomonadales" sequences:
dna <- SearchDB(db, identifier="Sphingomonadales", removeGaps="all")
provide a more complex query:
dna <- SearchDB(db, nameBy="description", orderBy="standard", removeGaps="common",

clause="nonstandard is 0")
}

SearchIndex Search an inverted index

Description

Searches an inverted index for homologous sequences.

Usage

SearchIndex(pattern,
invertedIndex,
subject=NULL,
minScore = NA,
perPatternLimit=0,
perSubjectLimit=1,
scoreOnly = FALSE,
sepCost = -0.9,
gapCost = -3,
maskRepeats = TRUE,
maskLCRs = TRUE,
dropScore = -10,
correctBackground = TRUE,
iterations = 0,
threshold = 1e-6,
processors = 1,
verbose = TRUE)

Arguments

pattern An AAStringSet, DNAStringSet, or RNAStringSet object of query (unaligned)
sequences to use as the pattern that will be queried.

invertedIndex An object of class InvertedIndex compatible with the class of pattern.

subject The XStringSet object used to build the invertedIndex or NULL (the default)
to skip the extension of k-mer matches. (See details section below.)

140 SearchIndex

minScore Numeric specifying the minimum score of hits to return. The default (NA) will
automatically determine minScore from the size of the invertedIndex to cor-
rect for multiple testing (i.e., searching more than one subject sequence).

perPatternLimit

Numeric giving the maximum number of hits to return per pattern query. The
default perPatternLimit (0) will cause the number of hits per pattern to be
unlimited. Note, perPatternLimit is enforced after applying the perSubjectLimit.

perSubjectLimit

Numeric determining the maximum number of hits per subject to return for
each pattern query. The default (1) is to return the top scoring hit per subject
(target) sequence. Setting perSubjectLimit to 0 will cause the number of hits
per subject to be unlimited. Note, perSubjectLimit is enforced before ap-
plying the perPatternLimit.

scoreOnly Logical determining whether to return only the hits and their scores or also the
Position of k-mer hits.

sepCost Numeric giving the penalty applied to sequence positions separating neighbor-
ing k-mer hits.

gapCost Numeric providing the penalty applied to the minimum number of implied in-
serted or deleted positions (i.e., gaps) separating neighboring k-mer hits.

maskRepeats Logical specifying whether to mask repeats when searching for hits.

maskLCRs Logical indicating whether to mask low complexity regions when searching for
hits.

dropScore Numeric giving the decrease from maximum score required to stop extending
k-mer matches. Only applicable when subject is not NULL. Values closer to
zero will increase speed, potentially at the expense of sensitivity.

correctBackground

Logical determining whether to correct the substitution matrix for the back-
ground distribution of letter frequencies on a per pattern basis. Alternatively,
a positive numeric dictating the degree of compositional adjustment, with larger
values resulting in less adjustment. The default (TRUE) uses an empirically de-
termined value of 1e4.

iterations The number of profile-based iterations to perform, or 0 (the default) for none.
Additional iterations make use of previous homologous matches to detect more
remote homologs, but each iteration increases the search time.

threshold Numeric controlling profile inclusion when iterations is non-zero. Should be
a positive number representing the score probability required for matches to be
included in the profile. Values closer to zero will generate less diverse profiles
when iterating.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Details

The invertedIndex is searched for all umasked k-mers shared with pattern, and the set of
matches meeting the minScore is returned. By default, SearchIndex returns the top hundred scor-
ing matches per subject (target) sequence (above minScore), but it is also possible to set (or re-
move) a limit on the number of pattern hits (perPatternLimit) or subject hits (perSubjectLimit)

SearchIndex 141

output for each pattern (query) sequence. A data.frame is returned with (by default) or without
the Position(s) of matches, depending on the value of scoreOnly.

If the set of subject sequences is provided (i.e., not NULL), then k-mer matches are extended to in-
crease search sensitivity. Extension proceeds to the left and right of each k-mer match until another
match is encountered or the score falls below dropScore. This can decrease search speed, depend-
ing on dropScore, but may help to find more distant matches. Similarly, increasing the number
of iterations can improve homolog detection at the expense of search speed. Each additional
iteration will build a position-specific profile from significant matches and use this profile to find
new hits. The Score of any hits is defined by their log-odds with respect to the pattern regardless
of whether subject is provided or iterations is above zero.

Value

A data.frame is returned with dimensions with columns Pattern, Subject, Score, and (option-
ally) Position. The Pattern is the index of the sequence in pattern and the Subject is the index
of the sequence in the set used to build the invertedIndex. Each row contains a hit with Score
meeting the minScore. If scoreOnly is FALSE (the default), the Position column contains a list of
matrices with four rows: start/end positions of k-mer hits in the Pattern and start/end positions of
k-mer hits in the Subject. The data.frame will always be order by ascending Pattern index.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

IndexSeqs, AlignPairs

Examples

import target sequences
fas <- system.file("extdata", "PlanctobacteriaNamedGenes.fas.gz", package="DECIPHER")
target <- readAAStringSet(fas)

build an inverted index
index <- IndexSeqs(target, K=6)
index

import query sequences
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
query <- translate(dna)

search the index, using the defaults
hits <- SearchIndex(query, index)
head(hits)
dim(hits) # number of hits

search the index, requesting only the top hits
tophits <- SearchIndex(query, index, perPatternLimit=1)
head(tophits)
dim(tophits) # number of hits
tophits$Position[[1]] # query/target k-mer positions supporting first hit

search the index, requesting the score for all hits

142 Seqs2DB

allhits <- SearchIndex(query, index, perSubjectLimit=0, scoreOnly=TRUE)
head(allhits)
dim(allhits) # number of hits

include the target sequences to improve sensitivity (but slower)
morehits <- SearchIndex(query, index, target)
head(morehits)
dim(morehits) # number of hits

further improve sensitivity with profile-based iterations
morehits <- SearchIndex(query, index, target, iterations=1)
head(morehits)
dim(morehits) # number of hits

Seqs2DB Add Sequences from Text File to Database

Description

Adds sequences to a database.

Usage

Seqs2DB(seqs,
type,
dbFile,
identifier,
tblName = "Seqs",
chunkSize = 1e7,
replaceTbl = FALSE,
fields = c(accession = "ACCESSION", organism = "ORGANISM"),
processors = 1,
verbose = TRUE,
...)

Arguments

seqs A connection object or a character string specifying the file path to the file
containing the sequences, an XStringSet object if type is XStringSet, or
a QualityScaledXStringSet object if type is QualityScaledXStringSet.
Files compressed with gzip, bzip2, xz, or lzma compression are automatically
detected and decompressed during import. Full URL paths (e.g., "http://" or
"ftp://") to uncompressed text files or gzip compressed text files can also be
used.

type The type of the sequences (seqs) being imported. This should be (an unambigu-
ous abbreviation of) one of "FASTA", "FASTQ", "GenBank", "XStringSet", or
"QualityScaledXStringSet".

dbFile A database connection object or a character string specifying the path to a
SQLite database file. If the tblName does not exist then a new table is created
(and file, if needed).

identifier Character string specifying the "id" to give the imported sequences in the database.

Seqs2DB 143

tblName Character string specifying the table in which to add the sequences.

chunkSize Number of characters to read at a time.

replaceTbl Logical indicating whether to overwrite the entire table in the database. If FALSE
(the default) then the sequences are appended to any already existing in the
tblName. If TRUE the entire table is dropped, removing any existing sequences
before adding any new sequences.

fields Named character vector providing the fields to import from a "GenBank" format-
ted file as text columns in the database (not applicable for other "type"s). The
default is to import the "ACCESSION" field as a column named "accession" and
the "ORGANISM" field as a column named "organism". Other uppercase fields,
such as "LOCUS" or "VERSION", can be specified in similar manner. Note that the
"DEFINITION" field is automatically imported as a column named "description"
in the database.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display each query as it is sent to the database.

... Further arguments to be passed directly to Codec for compressing sequence in-
formation.

Details

Sequences are imported into the database in chunks of lines specified by chunkSize. The sequences
can then be identified by searching the database for the identifier provided. Sequences are added
to the database verbatim, so that no sequence information is lost when the sequences are exported
from the database. The sequence (record) names are recorded into a column named “description”
in the database.

Value

The total number of sequences in the database table is returned after import.

Warning

If replaceTbl is TRUE then any sequences already in the table are overwritten, which is equivalent
to dropping the entire table.

Author(s)

Erik Wright <eswright@pitt.edu>

References

ES Wright (2016) "Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R". The R
Journal, 8(1), 352-359.

See Also

BrowseDB, SearchDB, DB2Seqs

144 StaggerAlignment

Examples

if (require("RSQLite", quietly=TRUE)) {
gen <- system.file("extdata", "Bacteria_175seqs.gen", package="DECIPHER")
dbConn <- dbConnect(dbDriver("SQLite"), ":memory:")
Seqs2DB(gen, "GenBank", dbConn, "Bacteria")
BrowseDB(dbConn)
dna <- SearchDB(dbConn, nameBy="description")
dbDisconnect(dbConn)

}

StaggerAlignment Produce a Staggered Alignment

Description

Staggers overlapping characters in a multiple sequence alignment that are better explained by mul-
tiple insertions than multiple deletions.

Usage

StaggerAlignment(myXStringSet,
tree = NULL,
threshold = 3,
fullLength = FALSE,
processors = 1,
verbose = TRUE)

Arguments

myXStringSet An AAStringSet, DNAStringSet, or RNAStringSet object of aligned sequences.

tree A bifurcating dendrogram representing the evolutionary relationships between
sequences, such as that created by Treeline. The root should be the topmost
node of the tree. The default (NULL) will automatically infer a tree from
myXStringSet.

threshold Numeric giving the ratio of insertions to deletions that must be met to stagger
a region of the alignment. Specifically, the number of insertions divided by
deletions must be less than threshold to stagger.

fullLength Logical specifying whether the sequences are full-length (TRUE), or terminal
gaps should be treated as missing data (FALSE, the default). Either a single
logical, a vector with one logical per sequence, or a list with right and left
components containing logicals for the right and left sides of the alignment.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

Synteny 145

Details

Multiple sequence aligners typically maximize true homologies at the expense of increased false
homologies. StaggerAlignment creates a “staggered alignment” which separates regions of the
alignment that are likely not homologous into separate regions. This re-balances the trade-off be-
tween true positives and false positives by decreasing the number of false homologies at the loss of
some true homologies. The resulting alignment is less aesthetically pleasing because it is widened
by the introduction of many gaps. However, in an evolutionary sense a staggered alignment is more
correct because each aligned position represents a hypothesis about evolutionary events: overlap-
ping characters between any two sequences represent positions common to their ancestor sequence
that may have evolved through substitution.

The single parameter threshold controls the degree of staggering. Its value represents the ratio
of insertions to deletions that must be crossed in order to stagger a region. A threshold of 1
would mean any region that could be better explained by separate insertions than deletions should
be staggered. A higher value for threshold makes it more likely to stagger, and vise-versa. A very
high value would conservatively stagger most regions with gaps, resulting in few false homologies
but also fewer true homologies. The default value (3) is intended to remove more false homologies
than it eliminates in true homologies. It may be preferable to tailor the threshold depending on
the purpose of the alignment, as some downstream procedures (such as tree building) may be more
or less sensitive to false homologies.

Value

An XStringSet of aligned sequences.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

AdjustAlignment, AlignSeqs, Treeline

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
dna <- RemoveGaps(dna)
alignedDNA <- AlignSeqs(dna)
staggerDNA <- StaggerAlignment(alignedDNA)
BrowseSeqs(staggerDNA, highlight=1)

Synteny Synteny blocks and hits

Description

Syntenic blocks are DNA segments composed of conserved hits occurring in the same order on two
sequences. The two sequences are typically chromosomes of different species that are hypothesized
to contain homologous regions. Class "Synteny" provides objects and functions for storing and
viewing syntenic blocks and hits that are shared between sequences.

146 Synteny

Usage

S3 method for class 'Synteny'
pairs(x,

bounds = TRUE,
boxBlocks = FALSE,
labels = abbreviate(rownames(x), 9),
gap = 0.5,
line.main = 3,
cex.labels = NULL,
font.labels = 1,
...)

S3 method for class 'Synteny'
plot(x,

colorBy = 1,
colorRamp = colorRampPalette(c("#FCF9EE", "#FFF272",

"#FFAC28", "#EC5931",
"#EC354D", "#0D0887")),

barColor = "#CCCCCC",
barSides = ifelse(nrow(x) < 100, TRUE, FALSE),
horizontal = TRUE,
labels = abbreviate(rownames(x), 9),
cex.labels = NULL,
width = 0.7,
scaleBar = TRUE,
...)

S3 method for class 'Synteny'
as.dist(m,

diag = FALSE,
upper = FALSE)

S3 method for class 'Synteny'
print(x,

quote = FALSE,
right = TRUE,
...)

Arguments

x An object of class Synteny.

bounds Logical specifying whether to plot sequence boundaries as horizontal or vertical
lines.

boxBlocks Logical indicating whether to draw a rectangle around hits belonging to the same
block of synteny.

colorBy Numeric giving the index of a reference sequence, or a character string indicat-
ing to color by “neighbor”, “frequency”, or “none”. (See details section below.)

colorRamp A function that will return n colors when given a number n. Examples are
rainbow, heat.colors, terrain.colors, cm.colors, or (the default) colorRampPalette.

barColor Character string giving the background color of each bar.

barSides Logical indicating whether to draw black lines along the long-sides of each bar.

Synteny 147

horizontal Logical indicating whether to plot the sequences horizontally (TRUE) or verti-
cally (FALSE).

labels Character vector providing names corresponding to each “identifier” for labels
on the diagonal.

width Numeric giving the fractional width of each bar between zero and one.

scaleBar Logical controlling whether a scale bar is drawn when colorBy is “frequency”.
The scale bar displays the mapping between color and the level of sequence
conservation. Not applicable when colorBy is a value other than “frequency”.

gap Distance between subplots, in margin lines.

line.main If main is specified, line.main provides the line argument to mtext.

cex.labels Magnification of the labels.

font.labels Font of labels on the diagonal.

m An object of class Synteny to be converted into a dist object.

diag Logical determining whether to print the diagonal of the distance matrix.

upper Logical determining whether to print the upper triangle of the distance matrix.

quote Logical indicating whether to print the output surrounded by quotes.

right Logical specifying whether to right align strings.

... Other graphical parameters for pairs or plot, including: main, cex.main,
font.main, and oma. Other arguments for print, including print.gap and
max.

Details

Objects of class Synteny are stored as square matrices of list elements with dimnames giving the
“identifier” of the corresponding sequences. The synteny matrix can be separated into three parts:
along, above, and below the diagonal. Each list element along the diagonal contains an integer
vector with the width of the sequence(s) belonging to that “identifier”. List elements above the
diagonal (column j > row i) each contain a matrix with “hits” corresponding to matches between
sequences i and j. List elements below the diagonal each contain a matrix with “blocks” of synteny
between sequences j and i.

The pairs method creates a scatterplot matrix from a Synteny object. Dot plots above the diagonal
show hits between identifier i and j, where forward hits are colored in black, and hits to the reverse
strand of identifier j are colored in red. Plots below the diagonal show blocks of synteny colored by
their score, from green (highest scoring) to blue to magenta (lowest scoring).

The plot method displays a bar view of the sequences in the same order as the input object (x). The
coloring scheme of each bar is determined by the colorBy argument, and the color palette is set by
colorRamp. When colorBy is an index, the sequences are colored according to regions of shared
homology with the specified reference sequence (by default 1). If colorBy is “neighbor” then
shared syntenic blocks are connected between neighboring sequences. If colorBy is “frequency”
then positions in each sequence are colored based on the degree of conservation with the other
sequences. In each case, regions that have no correspondence in the other sequence(s) are colored
barColor.

The as.dist method returns an object of class dist containing distances between each pair of
sequences in a Synteny object. Distance is defined as one minus the hit coverage for the shorter of
the two sequences in the pair.

Author(s)

Erik Wright <eswright@pitt.edu>

148 Taxa

See Also

AlignSynteny, FindSynteny

Examples

if (require("RSQLite", quietly=TRUE)) {
a small example:
dbConn <- dbConnect(dbDriver("SQLite"), ":memory:")
s1 <- DNAStringSet("ACTAGACCCAGACCGATAAACGGACTGGACAAG")
s3 <- reverseComplement(s1)
s2 <- c(s1, s3)
Seqs2DB(c(c(s1, s2), s3),

"XStringSet",
dbConn,
c("s1", "s2", "s2", "s3"))

syn <- FindSynteny(dbConn, minScore=1)
syn # Note: > 100% hits because of sequence reuse across blocks
pairs(syn, boxBlocks=TRUE)
plot(syn)
dbDisconnect(dbConn)

a larger example:
db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
synteny <- FindSynteny(db, minScore=50)
class(synteny) # 'Synteny'
synteny

accessing parts
i <- 1
j <- 2
synteny[i, i][[1]] # width of sequences in i
synteny[j, j][[1]] # width of sequences in j
head(synteny[i, j][[1]]) # hits between i & j
synteny[j, i][[1]] # blocks between i & j

plotting
pairs(synteny) # dot plots
pairs(synteny, boxBlocks=TRUE) # boxes around blocks

plot(synteny) # bar view colored by position in genome 1
plot(synteny, barColor="#268FD6") # emphasize missing regions
plot(synteny, "frequency") # most regions are shared by all
plot(synteny, "frequency", colorRamp=rainbow) # change the colors
plot(synteny, "neighbor") # connect neighbors

}

Taxa Taxa training and testing objects

Description

Taxonomic classification is the process of assigning an organism a label that is part of a taxonomic
hierarchy (e.g., Phylum, Class, Order, Family, Genus). Here, labels are assigned based on an organ-
ism’s DNA or RNA sequence at a rank level determined by the classification’s confidence. Class

Taxa 149

Taxa provides objects and functions for storing and viewing training and testing objects used in
taxonomic classification.

Usage

S3 method for class 'Taxa'
plot(x,

y = NULL,
showRanks = TRUE,
n = NULL,
...)

S3 method for class 'Taxa'
print(x,

...)

S3 method for class 'Taxa'
x[i, j, threshold]

Arguments

x An object of class Taxa with subclass Train or Test.

y An (optional) object of class Taxa with the opposite subclass as x.

showRanks Logical specifying whether to show all rank levels when plotting an object of
class Taxa and subclass Test. If TRUE (the default), then ranks are shown as
(colored) concentric rings with radial lines delimiting taxa boundaries.

n Numeric vector giving the frequency of each classification if x or y is an object
of subclass Test, or the default (NULL) to treat all classifications as occurring
once. Typically, specifying n is useful when the classifications represent vary-
ing numbers of observations, e.g., when only unique sequences were originally
classified.

... Other optional parameters.

i Numeric or character vector of indices to extract from objects of class Taxa with
subclass Test.

j Numeric or character vector of rank levels to extract from objects of class Taxa
with subclass Test.

threshold Numeric specifying the confidence threshold at which to truncate the output
taxonomic classifications. Note that threshold must be higher than the original
for the classifications to change.

Details

Objects of class Taxa are stored as lists, and can have either subclass Train or Test. The function
LearnTaxa returns an object of subclass Train, while the function IdTaxa can return an object of
class Test.

Training objects are built from a set of reference sequences with known taxonomic classifica-
tions. List elements contain information required by IdTaxa for assigning a classification to test
sequences.

Testing objects can be generated by IdTaxa from a Training object and a set of test sequences.
Each list element contains the taxon, confidence, and (optionally) rank name of the taxonomic
assignment.

150 TerminalChar

The information stored in Taxa can be visualized with the plot function or displayed with print.
Only objects of subclass Train can be subsetted without losing their class.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

LearnTaxa, IdTaxa

Examples

data("TrainingSet_16S")
plot(TrainingSet_16S)

import test sequences
fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

remove any gaps in the sequences
dna <- RemoveGaps(dna)

classify the test sequences
ids <- IdTaxa(dna, TrainingSet_16S, strand="top")
ids

plot(ids) # plot all rank levels
plot(ids[, 1:4]) # plot the first rank levels
plot(ids[j=c("rootrank", "class", "genus")]) # plot specific rank levels
plot(ids[threshold=70]) # plot high confidence classifications

TerminalChar Determine the Number of Terminal Characters

Description

Counts the number of terminal characters for every sequence in an XStringSet. Terminal charac-
ters are defined as a specific character repeated at the beginning and end of a sequence.

Usage

TerminalChar(myXStringSet,
char = "")

Arguments

myXStringSet An XStringSet object of sequences.

char A single character giving the terminal character to count, or an empty character
("") indicating to count both gap ("-") and unknown (".") characters.

TileSeqs 151

Value

A matrix containing the results for each sequence in its respective row. The first column contains
the number of leading char, the second contains the number of trailing char, and the third contains
the total number of characters in-between.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

IdLengths

Examples

fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)
t <- TerminalChar(dna)

TileSeqs Form a Set of Tiles for Each Group of Sequences.

Description

Creates a set of tiles that represent each group of sequences in the database for downstream appli-
cations.

Usage

TileSeqs(dbFile,
tblName = "Seqs",
identifier = "",
minLength = 26,
maxLength = 27,
maxTilePermutations = 10,
minCoverage = 0.9,
add2tbl = FALSE,
processors = 1,
verbose = TRUE,
...)

Arguments

dbFile A database connection object or a character string specifying the path to a
SQLite database file.

tblName Character string specifying the table of sequences to use for forming tiles.

identifier Optional character string used to narrow the search results to those matching a
specific identifier. If "" then all identifiers are selected.

minLength Integer providing the minimum number of nucleotides in each tile. Typically the
same or slightly less than maxLength.

152 TileSeqs

maxLength Integer providing the maximum number of nucleotides in each tile. Tiles are
designed primarily for this length, which should ideally be slightly greater than
the maximum length of oligos used in downstream functions.

maxTilePermutations

Integer specifying the maximum number of tiles in each target site.

minCoverage Numeric providing the fraction of coverage that is desired for each target site in
the group. For example, a minCoverage of 0.9 request that additional tiles are
added until 90% of the group is represented by the tile permutations.

add2tbl Logical or a character string specifying the table name in which to add the result.

processors The number of processors to use, or NULL to automatically detect and use all
available processors.

verbose Logical indicating whether to display progress.

... Additional arguments to be passed directly to SearchDB.

Details

TileSeqs will create a set of overlapping tiles representing each target site in an alignment of se-
quences. The most common tile permutations are added until the desired minimum group coverage
is obtained. The dbFile is assumed to contain DNAStringSet sequences (any U’s are converted to
T’s).

Target sites with one more more tiles not meeting a set of requirements are marked with misprime
equals TRUE. Requirements include minimum group coverage, minimum length, and maximum
length. Additionally, tiles are required not to contain more than four runs of a single base or four
di-nucleotide repeats.

Value

A data.frame with a row for each tile, and multiple columns of information. The row_names col-
umn gives the row number. The start, end, start_aligned, and end_aligned columns provide
positioning of the tile in a consensus sequence formed from the group. The column misprime is
a logical specifying whether the tile meets the specified constraints. The columns width and id
indicate the tile’s length and group of origin, respectively.

The coverage field gives the fraction of sequences containing the tile in the group that encompass
the tile’s start and end positions in the alignment, whereas groupCoverage contains the fraction of
all sequences in the group containing a tile at their respective target site. For example, if only a
single sequence out of 10 has information (no gap) in the first alignment position, then coverage
would be 100% (1.0), while groupCoverage would be 10% (0.1).

The final column, target_site, provides the sequence of the tile.

Note

If add2tbl is TRUE then the tiles will be added to the database table that currently contains the
sequences used for tiling. The added tiles may cause interference when querying a table of se-
quences. Therefore, it is recommended to add the tiles to their own table, for example, by using
add2tbl="Tiles".

Author(s)

Erik Wright <eswright@pitt.edu>

TrainingSet_16S 153

See Also

DesignPrimers

Examples

if (require("RSQLite", quietly=TRUE)) {
db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")
tiles <- TileSeqs(db, identifier="Sphingomonadales")

}

TrainingSet_16S Training Set for Classification of 16S rRNA Gene Sequences

Description

A pre-trained classifier for 16S rRNA gene sequences generated by LearnTaxa.

Usage

data("TrainingSet_16S")

Format

A training set of class ’Taxa’ * K-mer size: 8 * Number of rank levels: 10 * Total number of
sequences: 2472 * Number of taxonomic groups: 2472 * Number of problem groups: 5 * Number
of problem sequences: 8

Details

The original training sequences were pruned to a maximum of one sequence per group, as described
in the ’Classifying Sequences’ vignette.

Note

This 16S rRNA training set is provided for illustrative purposes only. It is highly recommended to
use a more comprehensive training set when classifying real sequences. Examples of comprehen-
sive training sets can be found at http://DECIPHER.codes/Download.html.

Source

Derived from version 16 of the RDP Training Set (http://rdp.cme.msu.edu) based on Bergey’s
Manual.

References

Whitman, W.B., Goodfellow, M., Kampfer, P., Busse, H.-J., Trujillo, M.E., Ludwig, W. & Suzuki,
K.-i. (eds., 2012). Bergey’s Manual of Systematic Bacteriology, 2nd ed., Springer-Verlag, New
York, NY.

Examples

data(TrainingSet_16S)
TrainingSet_16S
plot(TrainingSet_16S)

http://DECIPHER.codes/Download.html
http://rdp.cme.msu.edu

154 Treeline

Treeline Construct a Phylogenetic Tree

Description

Builds a phylogenetic tree from a set of sequences or distance matrix.

Usage

Treeline(myXStringSet = NULL,
myDistMatrix = NULL,
method = "ME",
type = "dendrogram",
cutoff = -Inf,
showPlot = FALSE,
standardDeviation = 0.3,
fracRandomNNIs = 0.3,
goalPercent = NA,
minIterations = 100,
maxIterations = 1000,
maxTime = Inf,
root = 0,
collapse = -1,
reconstruct = FALSE,
costMatrix = NULL,
model = MODELS,
informationCriterion = "AICc",
quadrature = FALSE,
processors = 1,
verbose = TRUE)

Arguments

myXStringSet A AAStringSet, DNAStringSet, or RNAStringSet. Required if (a) not supply-
ing myDistMatrix, (b) method is "ML", (c) method is "MP", or (d) reconstruct
is not FALSE.

myDistMatrix A symmetric N x N distance matrix with the values of dissimilarity between
N sequences or an object of class 'dist'. If NULL (the default), myDistMatrix
will be automatically determined from myXStringSet based on the hamming
distance between sequences using the DistanceMatrix function with penalizeGapLetterMatches
set to FALSE. The distance matrix is always used to construct the first tree, re-
gardless of the method. If method is "ME", myDistMatrix determines the branch
lengths and, therefore, overall tree length that is optimized. Missing values (i.e.,
NA) in myDistMatrix are imputed using the ultrametric method described by
Makarenkov and Lapointe (2004).

method The phylogenetic method to be used. This should be (an abbreviation of) one of
"ME" for (balanced) minimum evolution (the default), "ML" for maximum like-
lihood, "MP" for maximum parsimony, "NJ" for neighbor joining, "complete"
for complete-linkage, "single" for single-linkage, "UPGMA" for “unweighted
pair group method with arithmetic mean”, or "WPGMA" for “weighted pair group
method with arithmetic mean”. (See details section below.)

Treeline 155

type Character string indicating the type of output desired. This should be (an abbre-
viation of) one of "dendrogram" (the default), "clusters", or "both". (See
value section below.)

cutoff A vector with the maximum edge length separating the sequences in the same
cluster. A negative value (the default) will prevent clustering. Multiple cutoffs
may be provided in ascending or descending order. (See details section below.)

showPlot Logical specifying whether or not to plot the resulting dendrogram.
standardDeviation

Numeric determining the extent to which cophenetic distances are perturbed
prior to constructing the initial candidate tree in each iteration. Only applicable
if method is "ME", "ML", or "MP".

fracRandomNNIs Numeric giving the fraction of stochastic nearest neighbor interchanges to per-
form when perturbing the tree to develop a new candidate tree in each iteration
after the first. Only applicable if method is "ME", "ML", or "MP".

goalPercent Numeric providing the target percent difference in score relative to the best
observed tree after optimizing the candidate tree through nearest neighbor in-
terchanges (NNIs). If goalPercent is not NA (the default), fracRandomNNIs
is iteratively adjusted to reach goalPercent relative score. Only applicable if
method is "ME", "ML", or "MP".

minIterations Integer indicating the minimum number of iterations of optimization to per-
form. Iteration will cease early if an equivalently scoring tree is found at least
minIterations times. Only applicable if method is "ME", "ML", or "MP".

maxIterations Integer indicating the maximum number iterations of optimization to perform.
More iterations will potentially better search tree space at the expense of added
runtime. Only applicable if method is "ME", "ML", or "MP".

maxTime Numeric giving the maximum number of hours the algorithm is allowed to run
before returning a result. Once maxTime is reached, the algorithm will proceed
at the next available opportunity, even if minIterations is unmet. Only ap-
plicable if method is "ME", "ML", or "MP". Note that setting a time limit may
prevent reproducibility when using a random number seed.

root Integer specifying the index of the outgroup or 0 (the default) to midpoint root
the dendrogram.

collapse Numeric controlling which internal edges of the tree are removed by collapsing
their nodes. If collapse is zero then nodes at the same height will be collapsed
to a single node, resulting in a multifurcating tree. When collapse is greater
than zero, nodes that are within collapse difference in height are made into a
single node. A value of collapse less than zero (the default) will ensure that the
dendrogram is purely bifurcating. Note that collapse has no effect on cluster
numbers or cutoff.

reconstruct Logical or numeric determining whether to perform ancestral state reconstruc-
tion when myXStringSet is specified. If TRUE, ancestral character states are
determined at internal nodes of the dendrogram and provided as a "state" at-
tribute. Ancestral states are determined as the most parsimonious state according
to the "costMatrix", unless method is "ML", in which case ancestral states are
determined as those with the highest (marginal) likelihood. A numeric value be-
tween zero and one (exclusive) can be provided when method is "ML" to require
that fraction of the state’s likelihood to be greater than that of all alternative
states, otherwise a more ambiguous degeneracy code is used. Only applicable if
type is "dendrogram" (the default) or "both".

156 Treeline

costMatrix Either NULL (the default) or a symmetric matrix setting the penalties used in
Sankoff parsimony. The default (NULL) will apply a cost of 1 for standard char-
acter state changes and 0 otherwise (i.e., equivalent to Fitch parsimony). If a
matrix then the states are taken from its row or column names. Only applicable
if method is "MP", or reconstruct is not FALSE and method is not "ML".

model One or more of the available MODELS of evolution provided as a character vector
or list with components ‘Protein’ and/or ‘Nucleotide’. Automatic model selec-
tion based on the informationCriterion will be performed if more than one
model is provided. Only applicable if method is "ML".

informationCriterion

Character string specifying which information criterion to use in automatic model
selection. Must be (an abbreviation of) either "AICc" or "BIC". The best model
is automatically chosen based on the informationCriterion calculated from
the likelihood and the sample size (defined as the number of variable sites in
myXStringSet). Only applicable if method is "ML".

quadrature Logical determining whether to use the Laguerre quadrature or equal-sized bins
when discretizing the rate distribution across sites. The default (FALSE) is to use
equal-sized bins for direct comparison among likelihoods computed by other
programs, although the Laguerre quadrature theoretically offers an improvement
in accuracy for the same number of rates (Felsenstein, 2001).

processors The number of processors to use, or NULL to automatically detect and use all
available processors. Note, the number of processors in some steps is automati-
cally selected between one and processors to optimize performance.

verbose Logical indicating whether to display progress.

Details

Treeline builds a phylogenetic tree using either myXStringSet and/or myDistMatrix. The output
is either a dendrogram and/or data.frame containing cluster numbers.

Multiple methods of tree building are supported:

(1) Minimum evolution: ME iterative minimizes the (balanced) tree length according to a distance
matrix, as described by Pauplin (2000). According to Gonnet (2012) and Spirin et al. (2024), the
ME criterion performs best overall on benchmarks constructed from real genes and is therefore the
default method. ME is also the fastest of the optimized methods. Branch lengths are determined from
myDistMatrix or, if missing (NULL), calculated from the hamming distances between sequences in
myXStringSet.

(2) Maximum likelihood: ML iteratively maximizes the likelihood of the tree and model parameters
given aligned sequences (myXStringSet). One or more MODELS of sequence evolution must be
specified, of which the best model is automatically selected based on the informationCriterion.
The ML criterion performs well on benchmarks constructed from real genes when given sufficiently
long and variable alignments. Branch lengths are in units of substitution per site.

(3) Maximum parsimony: MP iteratively maximizes the parsimony of a tree given aligned sequences
(myXStringSet) and a costMatrix. The default cost matrix is binary, corresponding to Fitch
(1971) parsimony. The costMatrix often has a large influence over the result, and more bio-
logically reasonable cost matrices will likely improve the resulting tree. See the examples below
for non-uniform cost matrices. Branch lengths represent the average cost per site.

(4) Neighbor-joining: NJ uses the Neighbor-Joining method proposed by Saitou and Nei (1987),
which creates a reasonable minimum evolution tree from a distance matrix (myDistMatrix). The
NJ criterion is a greedy heuristic approach to minimum evolution, and can be considered a less
accurate alternative to ME.

Treeline 157

(5) Ultrametric: The method complete assigns clusters using complete-linkage so that sequences
in the same cluster are no more than cutoff distance apart. The method single assigns clusters
using single-linkage so that sequences in the same cluster are within cutoff of at least one other
sequence in the same cluster. UPGMA and WPGMA assign clusters using average-linkage which is a
compromise between the sensitivity of complete-linkage clustering to outliers and the tendency of
single-linkage clustering to connect distant relatives that are not closely related. UPGMA produces an
unweighted tree, where each leaf contributes equally to the average edge lengths, whereas WPGMA
produces a weighted result.

For methods "ME", "ML", and "MP", candidate trees are iteratively optimized through rounds of
nearest neighbor interchanges (“climbs”) followed by fusion of remaining differences to the best
observed tree (“grafts”). Candidate trees are generated with a heuristic variant of neighbor joining
after perturbing the best observed tree’s cophenetic distance matrix, followed by stochastic NNIs
if fracRandomNNIs is greater than 0. The value of fracRandomNNIs is adaptively varied to reach
goalPercent relative score on average after optimization via climbs, unless goalPercent is NA (the
default). This process results in gradual improvement until reaching a best tree, which is returned if
no score improvement is made for minIterations, unless maxIterations or maxTime is reached.

The objective of optimization is to reach a point near the global optimum, but it is necessary to
set a random seed for exact reproducibility since optimization is stochastic. Setting maxTime may
prevent reproducibility if iteration terminates prior to reaching minIterations or maxIterations.
Also, not all math operations (e.g., logarithm) have standard implementations across platforms, so
reproducibility is not guaranteed on different machines. The results are not necessarily correct even
if they are reproducible, so it important to use bootstrapping to gauge support for different partitions.
When method is "ML", aBayes support values are provided that are a reasonable representation of
support.

The returned dendrogram has information stored in its attributes, which can be accessed with the
attributes or attr functions. For maximum likelihood trees, the edges have a "probability"
attribute representing the aBayes support probability (Anisimova, 2011). If reconstruct is not
FALSE, each edge of the tree will have a "state" attribute representing the node’s predicted an-
cestral state. Also, when reconstruct is not FALSE, maximum likelihood trees will provide the
likelihoods at each site and other methods will provide a state transition matrix.

When non-negative cutoff(s) are supplied, Treeline will assign clusters based on edge lengths
in the tree. Multiple cutoffs may be provided in sorted order. If the cutoffs are provided in
descending order then clustering at each new value of cutoff is continued within the prior cutoff’s
clusters. In this way clusters at lower values of cutoff are completely contained within their
umbrella clusters at higher values of cutoff. This is useful for defining taxonomy, where groups
need to be hierarchically nested. If multiple cutoffs are provided in ascending order then clustering
at each level of cutoff is independent of the prior level.

Value

If type is "dendrogram" (the default), then a tree of class dendrogram is returned with attributes
including pertinent information. If type is "clusters", then a data.frame is returned with dimen-
sions N ∗M , where each one of N sequences is assigned to a cluster at the M -level of cutoff. If
type is "both" then a list is returned containing both the "clusters" and "dendrogram" outputs.

Note

Note that the cophenetic distance between leaves of the dendrogram is often defined as the sum
of branch lengths separating the leaves, also known as the patristic distance. This is the typical
phylogenetic interpretation but different than that for trees produced by hclust where leaves are
merged at a height equal to their cophenetic distance. Hence, always use Cophenetic (rather than
cophenetic) to compute cophenetic distances if the length between leaves is desired.

158 Treeline

Author(s)

Erik Wright <eswright@pitt.edu>

References

Anisimova M., et al. (2011) Survey of branch support methods demonstrates accuracy, power, and
robustness of fast likelihood-based approximation schemes. Syst Biol., 60(5), 685-99.

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17(6), 368-376.

Felsenstein J. (2001) Taking variation of evolutionary rates between sites into account in inferring
phylogenies. Journal of molecular evolution, 53, 447-455.

Fitch, W. M. (1971) Toward defining the course of evolution: minimum change for a specified tree
topology. Systematic Zoology, 20:406-416.

Gonnet, G. H. (2012) Surprising results on phylogenetic tree building methods based on molecular
sequences. BMC Bioinformatics, 13, 148.

Makarenkov V., and Lapointe, F. (2004) A weighted least-squares approach for inferring phyloge-
nies from incomplete distance matrices. Bioinformatics, 20(13), 2113-2121.

Pauplin, Y. (2000) Direct Calculation of a Tree Length Using a Distance Matrix. J Mol Evol, 51(1),
41-47.

Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

Sankoff, D. (1975) Minimal mutation trees of sequences. SIAM Journal of Applied Math, 28.

Spirin, S., et al. (2024) PhyloBench: A Benchmark for Evaluating Phylogenetic Programs. Molec-
ular Biology and Evolution, 41(6), 1-11.

See Also

Clusterize, Cophenetic, DistanceMatrix, MapCharacters, MODELS, ReadDendrogram, WriteDendrogram

Examples

using the matrix from the original paper by Saitou and Nei (1987)
m <- matrix(0,8,8) # only the lower triangle is used
m[2:8,1] <- c(7, 8, 11, 13, 16, 13, 17)
m[3:8,2] <- c(5, 8, 10, 13, 10, 14)
m[4:8,3] <- c(5, 7, 10, 7, 11)
m[5:8,4] <- c(8, 11, 8, 12)
m[6:8,5] <- c(5, 6, 10)
m[7:8,6] <- c(9, 13)
m[8,7] <- 8

returns an object of class "dendrogram"
tree <- Treeline(myDistMatrix=m, cutoff=10, method="NJ", showPlot=TRUE)

example of specifying multiple cutoffs
clusters <- Treeline(myDistMatrix=m, method="UPGMA", type="clusters", cutoff=c(2,6,10,20))
head(clusters)

example of creating a complete-linkage tree from an alignment
fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
dna <- readDNAStringSet(fas)

Treeline 159

alignments <- AlignTranslation(dna, verbose=FALSE, type="both")
dna <- alignments[[1]]
aa <- alignments[[2]]
dna # input alignment
d <- DistanceMatrix(dna, type="dist") # returns an object of class 'dist'
complete <- Treeline(myDistMatrix=d, method="complete", cutoff=0.05, showPlot=TRUE)

example of minimum evolution (ME) tree optimization (the default)
treeME <- Treeline(dna, processors=1L) # the recommended way to build trees
plot(treeME)

compare the distance matrix to the cophenetic (patristic) distance matrix
plot(d, Cophenetic(treeME),
xlab="Pairwise distance", ylab="Patristic distance",
asp=1, pch=46, col="#00000033")

abline(a=0, b=1)

example of maximum parsimony (MP) tree optimization
costs <- matrix(c(0, 2, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 2, 0), 4)
dimnames(costs) <- list(DNA_BASES, DNA_BASES)
costs # the cost matrix
treeMP <- Treeline(dna, method="MP", reconstruct=TRUE, costMatrix=costs, maxTime=0.001)

display ancestral states on each edge
start <- 50 # starting position in alignment
end <- 52 # ending position in alignment
tree <- dendrapply(treeMP,
function(x) {
attr(x, "edgetext") <- substring(attr(x, "state"),
start,
end)
x
})

plot(tree,
edgePar=list(p.col=NA,
p.border=NA,
t.col=c("#AA3355", "#33FFFF")),
edge.root=FALSE,
leaflab="none")

example of maximum likelihood tree optimization
treeML <- Treeline(head(dna, 10), method="ML", reconstruct=TRUE, maxTime=0.001)

example of accessing and using the attributes
attributes(treeML) # show all attributes at a node
plot(dendrapply(treeML,
function(x) {
s <- attr(x, "probability")
if (!is.null(s))
attr(x, "edgetext") <- formatC(as.numeric(s), digits=2, format="f")
attr(x, "edgePar") <- list(p.col=NA, p.border=NA, t.col="#CC55AA", t.cex=0.7)
x
}),
horiz=TRUE)

construct a tanglegram comparing two trees back-to-back
layout(matrix(1:2, ncol=2))

160 TrimDNA

tree1 <- treeME # tree on left
tree2 <- treeMP # tree on right
tree1 <- reorder(tree1, unlist(tree1))
tree2 <- reorder(tree2, unlist(tree2))
layout(matrix(1:2, nrow=1))
par(mai=c(0.5, 0, 0.5, 0.5)) # add space on right
plot(tree1,
main="First tree",
horiz=TRUE, leaflab="none")

par(mai=c(0.5, 0.5, 0.5, 0)) # add space on left
plot(tree2,
main="Second tree",
horiz=TRUE, leaflab="none",
xlim=c(0, attr(tree2, "height")))

segments(par("usr")[1] - 1.05*diff(grconvertX(0:1, 'inches', 'user')),
match(unlist(tree2), unlist(tree1)),
-0.05*diff(grconvertX(0:1, 'inches', 'user')),
seq_len(attr(tree2, "members")),
xpd=NA)

example of supplying an amino acid cost matrix for MP
codons <- getGeneticCode("1") # the standard genetic code
codons <- tapply(names(codons), codons, c)
costs <- outer(codons,
codons,
function(x, y)
mapply(function(x, y) mean(adist(x, y)), x, y))

costs # minimum number of nucleotide changes to switch amino acids
treeMP_AA1 <- Treeline(aa, method="MP", costMatrix=costs, maxTime=0.001)
plot(Cophenetic(treeMP_AA1), Cophenetic(treeMP))

alternative approach to obtaining an amino acid cost matrix
data(BLOSUM)
subM <- BLOSUM[AA_STANDARD, AA_STANDARD, "62"] # BLOSUM62 matrix
subM <- diag(subM) - subM # standardize to diagonal = 0
subM <- (subM + t(subM))/2 # make symmetric
treeMP_AA2 <- Treeline(aa, method="MP", costMatrix=subM, maxTime=0.001)
plot(Cophenetic(treeMP_AA1), Cophenetic(treeMP_AA2)) # different lengths

TrimDNA Trims DNA Sequences to the High Quality Region Between Patterns

Description

Aids in trimming DNA sequences to the high quality region between a set of patterns that are
potentially present on the left and right sides.

Usage

TrimDNA(myDNAStringSet,
leftPatterns,
rightPatterns,
type = "ranges",
quality = NULL,

TrimDNA 161

maxDistance = 0.1,
minOverlap = 5,
allowInternal = TRUE,
alpha = 0.1,
threshold = 0.01,
maxAverageError = threshold,
maxAmbiguities = 0.1,
minWidth = 36,
verbose = TRUE)

Arguments

myDNAStringSet A DNAStringSet or QualityScaledDNAStringSet object containing the se-
quences to be trimmed. If "type" is "sequences" then the output class will
match the class of myXStringSet. Note that the qualities of a QualityScaledDNAStringSet
are ignored because the quality argument must be supplied separately.

leftPatterns A DNAStringSet or character vector of patterns to remove from the left side of
myDNAStringSet, or "" to prevent trimming patterns on the left.

rightPatterns A DNAStringSet or character vector of patterns to remove from the right side
of myDNAStringSet, or "" to prevent trimming patterns on the right.

type Character string indicating the type of results desired. This should be (an abbre-
viation of) either "ranges", "sequences" or "both".

quality Either NULL (the default) to skip quality trimming, or a PhredQuality, SolexaQuality,
or IlluminaQuality object containing the quality scores corresponding to myDNAStringSet.

maxDistance Numeric between zero and one giving the maximum distance of a match from
the leftPatterns and rightPatterns to initiate trimming. For example, 0.1
(the default) would allow up to 10% mismatches between a pattern and se-
quence.

minOverlap Integer specifying the minimum number of nucleotides the leftPatterns and
rightPatterns must overlap a sequence to initiate trimming.

allowInternal Logical initiating whether to search for the leftPatterns and rightPatterns
within myDNAStringSet, or (FALSE for) only overlapping the ends.

alpha Numeric between zero and one giving the smoothing parameter for an exponen-
tial moving average that is applied to the quality scores before trimming. Higher
values result in less smoothing than lower values.

threshold Numeric between zero and one specifying the threshold above which to trim the
poor quality regions of the sequence. Higher values allow more sequence to be
preserved at the expense of a greater error rate.

maxAverageError

Numeric between zero and threshold indicating the maximum average error
rate of the trimmed region of the sequence. Trimmed sequences with average
error rates above maxAverageError will be rejected. Note that the expected
number of errors in a sequence is equal to the average error rate multiplied by
the length of the sequence.

maxAmbiguities Numeric between zero and one giving the maximum fraction of ambiguous (e.g.,
"N") positions that are tolerated within the trimmed region of the sequence.
Trimmed sequences with a greater fraction of ambiguities than maxAmbiguities
will be rejected.

minWidth Integer giving the minimum number of nucleotides a pattern must overlap the
sequence to initiate trimming.

verbose Logical indicating whether to display progress.

162 TrimDNA

Details

After a sequencing run, it is often necessary to trim the resulting sequences to the high quality
region located between a set of patterns. TrimDNA works as follows: first left and right patterns
are identified within the sequences if allowInternal is TRUE (the default). If the patterns are not
found internally, then a search is conducted at the flanking ends for patterns that partially overlap
the sequence. The region between the leftPatterns and rightPatterns is then returned, un-
less quality information is provided. Note that the patterns must be in the same orientation as the
sequence, which may require using the reverseComplement of a PCR primer.

If quality contains quality scores, these are converted to error probabilities and an exponential
moving average is applied to smooth the signal. The longest region between the leftPatterns and
rightPatterns where the average error probability is below threshold is then returned, so long
as it has an average error rate of at most maxAverageError. Note that it is possible to only filter
by maxAverageError by setting threshold to 1, or vise-versa by setting maxAverageError to the
same value as threshold.

Value

TrimDNA can return two types of results: IRanges that can be used for trimming myDNAStringSet,
or a trimmed DNAStringSet or QualityScaledDNAStringSet containing only those sequences
over minWidth nucleotides after trimming. Note that ambiguity codes (IUPAC_CODE_MAP) are sup-
ported in the leftPatterns and rightPatterns, but not in myDNAStringSet to prevent trivial
matches (e.g., runs of N’s).

If type is "ranges" (the default) the output is an IRanges object with the start, end, and width of
every sequence. This information can be accessed with the corresponding accessor function (see
examples below). Note that the start will be 1 and the end will be 0 for sequences that were not at
least minWidth nucleotides after trimming.

If type is "sequences" then the trimmed sequences are returned that are at least minWidth nu-
cleotides in length.

If type is "both" the output is a list of two components, the first containing the ranges and the
second containing the sequences.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

CorrectFrameshifts

Examples

simple example of trimming a single sequence
dna <- DNAStringSet("AAAAAAAAAATTACTTCCCCCCCCCC")
qscores <- PhredQuality("0000000000AAAAAAAAAAAAAAAA")

x <- TrimDNA(dna,
leftPatterns="AAAAAA",
rightPatterns="CCCCCC",
quality=qscores,
minWidth=1,
allowInternal=TRUE,
type="both")

WriteDendrogram 163

x[[1]]
start(x[[1]])
end(x[[1]])
width(x[[1]])
subseq(dna, start(x[[1]]), end(x[[1]]))
x[[2]]

example of trimming a FASTQ file by quality scores
fpath <- system.file("extdata",
"s_1_sequence.txt",
package="Biostrings")

reads <- readQualityScaledDNAStringSet(fpath)
trimmed <- TrimDNA(reads,
leftPatterns="",
rightPatterns="",
type="sequences",
quality=quality(reads))

trimmed
DNAStringSet(trimmed) # drop the qualities

WriteDendrogram Write a Dendrogram to Newick Format

Description

Writes a dendrogram object to a file in Newick (also known as New Hampshire) parenthetic format.

Usage

WriteDendrogram(x,
file = "",
quote = "'",
space = " ",
internalLabels = TRUE,
digits = 10,
append = FALSE)

Arguments

x An object of class dendrogram.
file A connection or a character string naming the file path where the tree should be

exported. If "" (the default), the tree is printed to the standard output connection,
the console unless redirected by sink.

quote A single character used to quote labels, or an empty character string (i.e., "") to
avoid quoting labels.

space A single character (e.g., "_") used to replace spaces in labels, or a space (i.e., "
") to leave spaces intact.

internalLabels Logical indicating whether to write any “edgetext” preceding a node as an inter-
nal node label.

digits The maximum number of digits to print for edge lengths.
append Logical indicating whether to append to an existing file. Only applicable if

file is a character string. If FALSE (the default), then the file is overwritten.

164 WriteGenes

Details

WriteDendrogram will write a dendrogram object to a file in standard Newick format. Note that
special characters (commas, square brackets, colons, semi-colons, and parentheses) present in leaf
labels will likely cause a broken Newick file unless quote is a single or double quotation mark (the
default).

Value

NULL.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

Treeline, ReadDendrogram

Examples

dists <- matrix(c(0, 10, 20, 10, 0, 5, 20, 5, 0),
nrow=3,
dimnames=list(c("dog", "elephant", "horse")))

dend <- Treeline(myDistMatrix=dists, method="NJ")
WriteDendrogram(dend)

WriteGenes Write Genes to a File

Description

Writes predicted genes to a file in GenBank (gbk) or general feature format (gff).

Usage

WriteGenes(x,
file = "",
format = "gbk",
append = FALSE)

Arguments

x An object of class Genes.

file A connection or a character string naming the file path where the tree should be
exported. If "" (the default), the tree is printed to the standard output connection,
the console unless redirected by sink.

format Character specifying "gbk" or "gff" output format.

append Logical indicating whether to append to an existing file. Only applicable if
file is a character string. If FALSE (the default), then the file is overwritten.

WriteGenes 165

Details

WriteGenes will write a "Genes" object to a GenBank (if format is "gbk") or general feature
format (if format is "gff") file.

Value

NULL.

Author(s)

Erik Wright <eswright@pitt.edu>

See Also

ExtractGenes, FindGenes, Genes-class

Examples

import a test genome
fas <- system.file("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

genome <- readDNAStringSet(fas)

x <- FindGenes(genome)
WriteGenes(x[1:10,], format="gbk")
WriteGenes(x[1:10,], format="gff")

Index

∗ datasets
BLOSUM, 29
deltaGrules, 55
deltaGrulesRNA, 56
deltaHrules, 56
deltaHrulesRNA, 57
deltaSrules, 58
deltaSrulesRNA, 59
HEC_MI, 94
MIQS, 116
MMLSUM, 117
NonCodingRNA, 123
PAM, 125
PFASUM, 126
RESTRICTION_ENZYMES, 134
TrainingSet_16S, 153

∗ data
AA_REDUCED, 6
MODELS, 118

∗ package
DECIPHER-package, 3

[.Genes (Genes), 92
[.Synteny (Synteny), 145
[.Taxa (Taxa), 148

AA_REDUCED, 6, 43
Add2DB, 7, 84, 99
AdjustAlignment, 8, 22, 145
AlignDB, 10, 19, 22, 25
AlignPairs, 13, 103, 141
AlignProfiles, 9, 12, 15, 16, 21–23, 25
AlignSeqs, 10, 12, 19, 20, 24, 25, 113, 134,

136, 145
AlignSynteny, 19, 22, 22, 25, 74, 90, 148
AlignTranslation, 10, 12, 19, 22, 24, 50
AmplifyDNA, 26, 40, 65, 71, 115
Array2Matrix, 28, 61, 121
as.dist.Synteny (Synteny), 145

BLOSUM, 29
BrowseDB, 7, 30, 33, 143
BrowseSeqs, 31, 31

c.Taxa (Taxa), 148

CalculateEfficiencyArray, 35
CalculateEfficiencyFISH, 37, 68
CalculateEfficiencyPCR, 26, 27, 38, 65, 71,

115
Clusterize, 40, 158
Codec, 11, 44, 143
ConsensusSequence, 33, 45, 77, 96
Cophenetic, 47, 158
CorrectFrameshifts, 25, 48, 124, 162
CreateChimeras, 51, 84

DB2Seqs, 53, 139, 143
DECIPHER (DECIPHER-package), 3
DECIPHER-package, 3
deltaGrules, 36, 55
deltaGrulesRNA, 56, 127
deltaHrules, 56
deltaHrulesRNA, 57
deltaSrules, 58
deltaSrulesRNA, 59
DesignArray, 29, 60, 121
DesignPrimers, 27, 40, 62, 71, 153
DesignProbes, 38, 65
DesignSignatures, 27, 40, 65, 68, 76, 115
DetectRepeats, 72
DigestDNA, 71, 75
Disambiguate, 37, 39, 46, 71, 77
DistanceMatrix, 43, 78, 158

ExtractGenes, 81, 86, 88, 93, 165

FindChimeras, 52, 82
FindGenes, 82, 85, 93, 165
FindNonCoding, 86, 87, 106, 122
FindSynteny, 6, 23, 73, 74, 88, 148
FormGroups, 91, 97

Genes, 92
Genes-class (Genes), 92

HEC_MI, 94
HEC_MI1, 132
HEC_MI1 (HEC_MI), 94
HEC_MI2, 132
HEC_MI2 (HEC_MI), 94

166

INDEX 167

IdConsensus, 46, 95
IdentifyByRank, 92, 96
IdLengths, 98, 151
IdTaxa, 99, 108, 109, 150
IndexSeqs, 15, 101, 104, 141
InvertedIndex, 104
InvertedIndex-class (InvertedIndex), 104

LearnNonCoding, 88, 105, 122
LearnTaxa, 6, 100, 101, 106, 150, 153

MapCharacters, 110, 158
MaskAlignment, 112
MeltDNA, 27, 71, 114
MIQS, 19, 116
MMLSUM, 117
MODELS, 79, 118, 158

NNLS, 29, 61, 120
NonCoding, 122
NonCoding-class (NonCoding), 122
NonCodingRNA, 123
NonCodingRNA_Archaea (NonCodingRNA), 123
NonCodingRNA_Bacteria (NonCodingRNA),

123
NonCodingRNA_Eukarya (NonCodingRNA), 123

OrientNucleotides, 50, 123

pairs.Synteny (Synteny), 145
PAM, 125
PFASUM, 6, 10, 12, 19, 50, 126, 136
plot.Genes (Genes), 92
plot.Synteny (Synteny), 145
plot.Taxa (Taxa), 148
PredictDBN, 126, 132
PredictHEC, 129, 130
print.Genes (Genes), 92
print.InvertedIndex (InvertedIndex), 104
print.NonCoding (NonCoding), 122
print.Synteny (Synteny), 145
print.Taxa (Taxa), 148

ReadDendrogram, 22, 132, 158, 164
RemoveGaps, 133
RESTRICTION_ENZYMES, 69, 71, 76, 134

ScoreAlignment, 74, 135
SearchDB, 7, 137, 143
SearchIndex, 15, 103, 104, 139
Seqs2DB, 7, 52, 96, 139, 142
StaggerAlignment, 10, 22, 144
Synteny, 145
Synteny-class (Synteny), 145

Taxa, 148
Taxa-class (Taxa), 148
TerminalChar, 150
TileSeqs, 38, 65, 68, 151
TrainingSet_16S, 153
TreeLine (Treeline), 154
Treeline, 22, 43, 48, 80, 111, 113, 120, 133,

144, 145, 154, 164
TrimDNA, 160

WriteDendrogram, 133, 158, 163
WriteGenes, 82, 86, 88, 93, 164

	DECIPHER-package
	AA_REDUCED
	Add2DB
	AdjustAlignment
	AlignDB
	AlignPairs
	AlignProfiles
	AlignSeqs
	AlignSynteny
	AlignTranslation
	AmplifyDNA
	Array2Matrix
	BLOSUM
	BrowseDB
	BrowseSeqs
	CalculateEfficiencyArray
	CalculateEfficiencyFISH
	CalculateEfficiencyPCR
	Clusterize
	Codec
	ConsensusSequence
	Cophenetic
	CorrectFrameshifts
	CreateChimeras
	DB2Seqs
	deltaGrules
	deltaGrulesRNA
	deltaHrules
	deltaHrulesRNA
	deltaSrules
	deltaSrulesRNA
	DesignArray
	DesignPrimers
	DesignProbes
	DesignSignatures
	DetectRepeats
	DigestDNA
	Disambiguate
	DistanceMatrix
	ExtractGenes
	FindChimeras
	FindGenes
	FindNonCoding
	FindSynteny
	FormGroups
	Genes
	HEC_MI
	IdConsensus
	IdentifyByRank
	IdLengths
	IdTaxa
	IndexSeqs
	InvertedIndex
	LearnNonCoding
	LearnTaxa
	MapCharacters
	MaskAlignment
	MeltDNA
	MIQS
	MMLSUM
	MODELS
	NNLS
	NonCoding
	NonCodingRNA
	OrientNucleotides
	PAM
	PFASUM
	PredictDBN
	PredictHEC
	ReadDendrogram
	RemoveGaps
	RESTRICTION_ENZYMES
	ScoreAlignment
	SearchDB
	SearchIndex
	Seqs2DB
	StaggerAlignment
	Synteny
	Taxa
	TerminalChar
	TileSeqs
	TrainingSet_16S
	Treeline
	TrimDNA
	WriteDendrogram
	WriteGenes
	Index

