
DREAM4: Simulated mRNA Expression Data for
Assessing Network Inference Software

Paul Shannon

October 15, 2015

Contents

1 Introduction 2

2 The Data 3

2.1 As distributed by DREAM . 3

2.2 As repackaged into Bioc RangedSummarizedExperiments 4

3 The networkBMA Package 7

3.1 Overview . 7

3.2 Inference Using Expression Data Only 11

3.3 Add Prior Probabilities . 13

4 Conclusion 20

5 Bibliography 20

1

1 Introduction

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) (http:
//www.the-dream-project.org) organizes annual challenges in which systems biology
questions are posed, solutions invited from interested groups, and winners selected.
As with the the CASP (http://predictioncenter.org) protein structure contest,
DREAM poses questions to which the sponsors know the solution, but the contestants
do not. DREAM4 challenges fall into two categories: cellular network inference and
quantitative model building.

This vignette uses one of the simpler 2009 DREAM4 network inference challenges to
introduce Bioconductor users to the inference of genetic regulatory networks from gene
expression (and possibly additional) data. Synthetic gene expression data, generated
by software, and based upon patterns found in model organisms, provides the basis for
inference in the examples presented here. Ancillary data may be helpful when it is
available and when, as with networkBMA, the inference package supports it. Both of
these scenarios are demonstrated below.

At present, we discuss only the Bioconductor package networkBMA (which implements
the method described in Lo et al. (2012)). Subsequent revisions of this vignette will
include more network inference packages.

A crucial feature of the DREAM4 challenge is that the underlying network (the gold
standard) is distributed along with the simulated expression data. This allows us to
assess the quality of any inference made with the data. The gold standard matrix was
withheld during the original challenge, which took place in 2009, and which is described
in full here:

http://wiki.c2b2.columbia.edu/dream/index.php/D4c2

There were three sub-challenges. Quoting from the DREAM4 website:

� Wild-type, knockouts, knockdowns, multifactorial perturbations, and time series
simulated expression data, in five networks of size 10. Participants are challenged
to predict the directed unsigned topology of these networks.

� similar to the first one, except that the five networks are of size 100.

� five networks of size 100. In this challenge, we assume that extensive knockout
/ knockdown or time series experiments can’t be performed. Instead, different
variations of the network can be observed (e.g., samples from different patients).
Thus, only the multifactorial perturbation dataset described below is provided.

2

http://www.the-dream-project.org
http://www.the-dream-project.org
http://predictioncenter.org
http://wiki.c2b2.columbia.edu/dream/index.php/D4c2

2 The Data

2.1 As distributed by DREAM

The simulated expression data is generated by GeneNetWeaver (http://gnw.sourceforge.
net/) based on network and gene expression characteristics of two well-studied sytems,
E.coli and S.cerevisiae. Gene regulatory patterns found in these organisms are used to
construct the gold standard network of regulators and targets, from which simulated
expression data is then generated. Successful inference consists of reverse-engineering
the gold standard network from the simulated expression data.

The DREAM4 dataset is distributed by the DREAM project in multiple directories, each
containing a gold standard network and a number of tab-delimited files with expression
data generated under different (simulated) conditions: wildtype steady state, time se-
ries after perturbation, knockouts, knockdowns, dual knockouts, and “multifactorial”.
Drawing again from the DREAM4 description:

� Wild-type: the steady-state levels of the unperturbed network

� Time series data: The files *timeseries.tsv contain time courses showing how the
network responds to a perturbation and how it relaxes upon removal of the per-
turbation. For networks of size 10 we provide 5 different time series, for networks
of size 100 we provide 10 time series. Each time series has 21 time points. The
initial condition always corresponds to a steady-state measurement of the wild-
type. At t=0, a perturbation is applied to the network as described below. The
first half of the time series (until t=500) shows the response of the network to the
perturbation. At t=500, the perturbation is removed (the wild-type network is
restored). The second half of the time series (until t=1000) shows how the gene
expression levels go back from the perturbed to the wild-type state. In contrast to
the multifactorial perturbations described in the previous section, which affect all
the genes simultaneously, the perturbations applied here only affect about a third
of all genes, but basal activation of these genes can be strongly increased or de-
creased. For example, these experiments could correspond to physical or chemical
perturbations applied to the cells, which would cause (via regulatory mechanisms
not explicitly modeled here) some genes to have an increased or decreased basal
activation. The genes that are directly targeted by the perturbation may then
cause a change in the expression level of their downstream target genes.

� Multifactorial data: The files *multifactorial.tsv contain steady-state levels of vari-
ations of the network, which are obtained by applying multifactorial perturbations
to the original network. Each line gives the steady state of a different perturbation
experiment, i.e., of a different variation of the network. One may think of each

3

http://gnw.sourceforge.net/
http://gnw.sourceforge.net/

experiment as a gene expression profile from a different patient, for example. We
simulate multifactorial perturbations by slightly increasing or decreasing the basal
activation of all genes of the network simultaneously by different random amounts.

� Knockout and knockdown data are NxN matrices in which the expression of all
genes is measured, as the expression of each gene in turn is eliminated (for knock-
outs) or substantially reduced (for knockdowns).

� Dual knockouts consist of simulating each of the five networks in which two gene
are knocked-out simultaneously. Gene expression data for dual knockouts is not
provided to the participants. Instead, participants may predict steady-state levels
for dual knockouts in the bonus round described in the previous section. The files
*dualknockouts indexes.tsv indicate the pairs of genes for which a dual knockout
should be predicted. For example, the line labeled ”6 8” means that participants
should predict the steady-state of the network after knocking out genes 6 and 8.
For networks of size 10 we ask for predictions for 5 dual knockout experiments, for
networks of size 100 we ask for 20 predictions.

The data sets are complete, in the sense that the expression levels of all regulators and
all of their targets are known. This advantage is offset by a corresponding disadvan-
tage: inasmuch as the synthetic expression data is not from an actual biological system,
various sorts of prior and related information about gene regulation is not avaialable.
Transcription factor binding motifs, ChIP-seq, DNAseI footprinting, and methylation
data simply do not exist.

2.2 As repackaged into Bioc RangedSummarizedExperiments

There are ten artifical gene regulatory datasets in DREAM4, five describing networks
of 10 nodes, five describing networks of 100. These networks are all defined by a gold
standard adjacency matrix. All networks are accompanied by wild-type, timeseries,
knockout, dual-knockout, and knockdown simulated expression data. The hundred-node
networks also have multifactorial data. (In the DREAM4 distribution, the multifactorial
data is separated out into five additional directories; we have added them to the data
object which has the corresponding gold standard matrix and expression data.)

We use the Bioconductor RangedSummarizedExperiment class from the SummarizedEx-
periment package to store the DREAM4 data. We provide ten instances, one for each
simulated data set. Each can be loaded via a data statement, for instance:

> data(dream4_010_01)

4

We examine this dataset, loading its RangedSummarizedExperiment object into an R
session, then getting a brief summary via the show command.

But first, some initializations: a convenience function for printing, and a command to
set the display width for subsequent R output, so that it is visible within the printed
version of this document.

> printf <- function(...)print(noquote(sprintf(...)))

> options(width=60)

> library(DREAM4)

> data(dream4_010_01)

> show(dream4_010_01)

class: RangedSummarizedExperiment

dim: 10 136

metadata(2): goldStandardAdjacencyMatrix

doubleKnockoutGenePairs

assays(1): simulated

rownames(10): G1 G2 ... G9 G10

rowRanges metadata column names(0):

colnames(136): wt perturbation.1.t0 ... MF.9 MF.10

colData names(0):

This tells us that dream4_010_01 has

� One assay matrix called simulated with 10 rows and 136 columns

� 10 row names: G1 - G10

� 136 column names: wt, perturbation.t0, ... MF.9, MF.10

� No metadata for rows or columns (rowRanges and colData are both empty)

� Two objects in metadata: the gold standard matrix, and double knockout data

The standard Bioconductor RangedSummarizedExperiment class, when used to hold real
experimental data, encourages the storage of experiment metadata with the experimen-
tal measurements. This facilitates reproducibility, reanalysis and simplified data storage.
However this class is, in one regard, a slightly awkward fit to the DREAM4 data: the
timeseries, knockout, knockdown, double knockout and multiparameter measurements
all have different dimensions. RangedSummarizedExperiments can only “stack up” mul-
tiple measurement arrays if their dimensions are the same. We have worked around this

5

restriction by combining all of the matrices in each simulation into a single assay matrix.
We use column names which allow for the easy extraction of the original matrices, as
demonstrated below.

We now extract the full 10 x 136 combined expression matrix from the first (and only)
element of the list in the assays slot, displaying the first 10 rows and 3 columns to give
a sense of the data, along with a sampling of the column names:

> mtx.all <- assays (dream4_010_01)[[1]]

> dim(mtx.all)

[1] 10 136

> mtx.all[1:10, c(1,2,126)]

wt perturbation.1.t0 G10.kd

G1 0.6046824 0.6665114 0.6891057

G2 0.1231706 0.1272186 0.1386172

G3 0.3287936 0.3550646 0.4537613

G4 0.6047832 0.7745716 0.7476172

G5 0.1464854 0.1004299 0.0827235

G6 0.3258775 0.2754930 0.3004501

G7 0.4967330 0.6067846 0.6386655

G8 0.6496271 0.7430983 0.6910927

G9 0.6140849 0.6656366 0.8119234

G10 0.7481792 0.6950638 0.2645752

> set.seed(37)

> print(colnames(mtx.all)[sort(sample(1:ncol(mtx.all), 16))])

[1] "wt"

[2] "perturbation.1.applied.t450"

[3] "perturbation.1.removed.t850"

[4] "perturbation.2.applied.t200"

[5] "perturbation.3.applied.t100"

[6] "perturbation.3.applied.t150"

[7] "perturbation.3.applied.t300"

[8] "perturbation.3.applied.t450"

[9] "perturbation.4.applied.t100"

6

[10] "perturbation.4.applied.t500"

[11] "perturbation.5.applied.t50"

[12] "perturbation.5.applied.t250"

[13] "perturbation.5.applied.t450"

[14] "perturbation.5.removed.t550"

[15] "G4.ko"

[16] "G6.ko"

3 The networkBMA Package

3.1 Overview

networkBMA (Regression-based network inference using Bayesian Model Averaging) is
a Bioconductor package

http://www.bioconductor.org/packages/release/bioc/html/networkBMA.html

designed to work with time-series expression data with the capability to integrate prior
knowledge. We will demonstrate networkBMA using the first the five DREAM4 10-node
time-series simulated expression sets. One of the strengths of networkBMA is its ability
to incorporate prior knowledge in the inference process. We will illustrate the gains such
knowledge confers: the first inference run uses no priors, while the second run does.

The gold standard adjacency matrix is stored as the first element in the metadata (or
“metadata” slot) of the RangedSummarizedExperiment:

> mtx.goldStandard <- metadata (dream4_010_01)[[1]]

We want to extract only one of the ten perturbation timeseries included in dream4_010_01.
Examine these self-describing column names:

> grep("perturbation.1.", colnames(mtx.all), v=T, fixed=TRUE)

[1] "perturbation.1.t0"

[2] "perturbation.1.applied.t50"

[3] "perturbation.1.applied.t100"

[4] "perturbation.1.applied.t150"

[5] "perturbation.1.applied.t200"

[6] "perturbation.1.applied.t250"

7

http://www.bioconductor.org/packages/release/bioc/html/networkBMA.html

[7] "perturbation.1.applied.t300"

[8] "perturbation.1.applied.t350"

[9] "perturbation.1.applied.t400"

[10] "perturbation.1.applied.t450"

[11] "perturbation.1.applied.t500"

[12] "perturbation.1.removed.t550"

[13] "perturbation.1.removed.t600"

[14] "perturbation.1.removed.t650"

[15] "perturbation.1.removed.t700"

[16] "perturbation.1.removed.t750"

[17] "perturbation.1.removed.t800"

[18] "perturbation.1.removed.t850"

[19] "perturbation.1.removed.t900"

[20] "perturbation.1.removed.t950"

[21] "perturbation.1.removed.t1000"

The man page for networkBMA ?networkBMA explains that there are two required and
eight optional parameters. We will start with the required two, data, and nTimePoints,
to which we add the optional self, by which we specify that there are no self-edges (no
self-regulating genes) in this data set.

data: A matrix whose columns correspond to variables or genes and

whose rows correspond to the observations at different time

points.

nTimePoints: The number of time points at which expression measurements

are available. The number of columns in 'data' should be a

multiple of 'nTimePoints', which could be greater than 1 if

there are replicates.

To prepare the data for networkBMA we need to extract one timeseries of the ten offered,
and then transpose the result into a matrix in the form expected by networkBMA.

> ts1.columns <- grep("perturbation.1.", colnames(mtx.all), fixed=TRUE)

> mtx.ts1 <- t(mtx.all[, ts1.columns])

> print(mtx.ts1[1:3, 1:3])

8

G1 G2 G3

perturbation.1.t0 0.6665114 0.1272186 0.3550646

perturbation.1.applied.t50 0.3257748 0.1218223 0.3464115

perturbation.1.applied.t100 0.1775012 0.0443587 0.5712888

Extract the gold standard matrix, convert it successively to a graphAM, then a graph-
NEL, and display it with RCytoscape.

> print(names(metadata(dream4_010_01)))

[1] "goldStandardAdjacencyMatrix"

[2] "doubleKnockoutGenePairs"

> mtx.goldStandard <- metadata(dream4_010_01)[[1]]

Transform the gold standard matrix into an explict table of regulators and targets.

> idx <- which(mtx.goldStandard == 1)

> idx.m1 <- idx -1

> rows <- idx.m1 %% nrow (mtx.goldStandard) + 1

> cols <- idx.m1 %/% nrow (mtx.goldStandard) + 1

> tbl.goldStandard <- data.frame(Regulator=rownames(mtx.goldStandard)[rows],

+ Target=colnames(mtx.goldStandard)[cols],

+ Source=rep('goldStandard', length(rows)),

+ stringsAsFactors=FALSE)

Here is an RCytosxcape rendering of this network, followed by the code which produced
it.

9

> library(RCytoscape)

> print(dim(mtx.goldStandard))

> print(mtx.goldStandard[1:5, 1:5])

> g.gsam <- graphAM(mtx.goldStandard, edgemode="directed")

> g.gs <- as(g.gsam, "graphNEL")

> g.gs <- initEdgeAttribute(g.gs, "edgeType", "char", "not yet assigned")

> source.nodes <- tbl.goldStandard$Regulator

> target.nodes <- tbl.goldStandard$Target

> edgeData(g.gs, source.nodes, target.nodes, attr="edgeType") <- "regulates"

> cw <- new.CytoscapeWindow("goldStandard 010-01", g.gs, overwriteWindow=TRUE)

> hideAllPanels(cw)

> setWindowSize(cw,800,600)

> showGraphicsDetails(cw,TRUE)

> displayGraph(cw)

> layoutFile <- system.file("extdata", "gs010-01-layout.RData",

+ package="DREAM4")

> setEdgeTargetArrowRule(cw, "edgeType",

+ c("not yet assigned", "regulates"),

+ c("No Arrow", "Arrow"))

> restoreLayout(cw, layoutFile)

> fitContent(cw)

> setZoom(cw, 0.8*getZoom(cw))

10

3.2 Inference Using Expression Data Only

Now we load networkBMA, infer the network from twenty-one timepoints of expression
over ten genes, assuming no prior knowledge, and sort the predictions.

> library(networkBMA)

> tbl.inferred <- networkBMA(mtx.ts1, nTimePoints=nrow(mtx.ts1), self=FALSE)

> tbl.inferred <- tbl.inferred[order(tbl.inferred$PostProb, decreasing=TRUE),]

The networkBMA package provides a function with which to assess the inferred network
with respect to a reference network. The standard measure of inferential success is
AUPR – or “area under the precision recall curve”. After introducing those quantities
and their calculation, we plot the AUPR for this just-completed run.

“Precision” and “Recall” are standard measures of success in the fields of pattern recog-
nition and information retrieval; see Wikipedia, “Precision and recall”. In the following,
true positives (TP), false positives (FP) and false negative (FN) counts are used.

� precision: the fraction of all retrieved instances which are relevant. Formally:
TP/(TP+FP)

� recall : the fraction of all relevant instances which have been retrieved. Formally:
TP/(TP+FN)

Both quantities range from 0.0 to 1.0. In the AUPR plot, precision is typically plotted
on the Y axis, and recall on the X axis. A perfect retrieval or inference method would
always retrieve 100 per cent of all relevant instances, and all retrieved instances would
be relevant. In this idealized case, the AUPR would be infinite. Even the best network
inference algorithms fare considerably worse than this ideal case. Let us examine the
networkBMA inference we just ran, using the contabs.netwBMA function provided by
the networkBMA package, and the (prc) function. (prc stands for “Precision-Recall
Curve”.)

> tbl.contingency <- contabs.netwBMA(tbl.inferred, tbl.goldStandard[,-3])

> pr <- scores(tbl.contingency, what = c("precision","recall"))

> colors <- c ("blue", "darkred")

> plot(pr$recall, pr$precision, type='b',

+ xlab='RECALL', ylab='PRECISION',

+ col=colors[1],

+ xlim=c(0,1), ylim=c(0,1))

11

http://en.wikipedia.org/wiki/Precision_and_recall

●●●●
●

●●●
●●
●●
●●

●
●●●
●●●●

●●
●

●●
●
●
●
●

●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RECALL

P
R

E
C

IS
IO

N

The AUPR information:

> print(prc(tbl.contingency, plotit=FALSE))

area sector width

0.397478 0.397478 1.000000

To make sense of these results, let us look at a few rows selected from the the contingency
table.

> last.row <- nrow(tbl.contingency)

> mid.row <- as.integer(round(last.row)/2)

> print(tbl.contingency[c(1,mid.row,last.row),])

TP FN FP TN

0.166714 14 0 36 6

12

0.4469614 9 5 18 24

0.990476427458142 0 14 0 42

The first row has perfect recall: all regulatory edges from the gold standard have been
inferred, but a very large number of non-existent edges have been inferred as well.

The last row has perfect precision: three edges were accurately inferred, no non-existent
edges were proposed, eleven edges were missed.

Further insight into the inferred network is provided by examining the first few entries
in the sorted output of networkBMA.

> print(head(tbl.inferred, n=10))

Regulator TargetGene PostProb

37 G1 G5 0.9904764

28 G1 G4 0.9755612

55 G3 G7 0.8032557

56 G4 G7 0.7077637

57 G6 G7 0.6971455

1 G4 G1 0.6867537

2 G9 G1 0.6446486

46 G10 G6 0.6096357

82 G7 G10 0.5810526

38 G4 G5 0.5781810

The three regulatory relationships with a posterior probability score of 1 are accurately
inferred. The remaining edges are either reversals of edges in the gold standard network,
or incorrect.

3.3 Add Prior Probabilities

It can be seen from these results that the inference of gene regulatory relationships from
mRNA expression alone, even for an idealized network with complete information, is
imperfect. These strategies are among those used to improve inference:

� Incorporate ancillary data (derived, for instance, from ChiP-seq experiments, or
interaction databases)

13

� Create novel algorithms (for instance, Castelo and Roverato (2009), and Danaher
et al. (2011))

� Perform meta-inference, in which several inference tools are used together [Green-
field et al. (2010)]

Bayesian methods, of which the networkBMA package is one (see the package vignette
for more information and references), exploit prior information (prior probabilities) to
improve inference. Recent trends in molecular biology, and the ENCODE project in
particular, and public interaction databases, provide a large amount of useful prior
regulatory information.

DREAM4 is synthetic data, so neither of these broad classes of prior information is
available. We can, however, simulate priors by extracting a few regulatory relationships
from the gold standard network, adjusting them with randomly generated probabilities
to better approximate real data, and thereby demonstrate how to use networkBMA with
priors.

There are two arguments to the networkBMA function whe used to with prior information:

� prior.prob: an adjacency matrix, where each value is a probability between 0 and
1. This is well-suited for, e.g., experimental data, such as ChIP-seq.

� known: a two-column matrix with known (unqualified) regulatory matrices.

We shall use the first of these two parameters, leaving the second to default NULL.

Note that in the inference run above, none of the actual targets of regulator G10 were
reported with a significant score:

> print(subset(tbl.inferred, Regulator=="G10"))

Regulator TargetGene PostProb

46 G10 G6 0.6096357

13 G10 G2 0.4567721

26 G10 G3 0.4303525

61 G10 G7 0.4253910

72 G10 G8 0.4224411

81 G10 G9 0.4209458

6 G10 G1 0.4006032

40 G10 G5 0.2691155

33 G10 G4 0.1964631

14

But the gold standard shows two targets:

> mtx.goldStandard["G10",]

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0 0 1 1 0 0 0 0 0 0

Since this is synthetic network, we have no experimental data with which to improve
the inference. However, we can simulate ChIP-seq data for G10, first by setting low
probabilities for all interactions, then adding two probabilities for the G10->G3 and
G10->G4 edges:

> set.seed(37)

> tbl.priors <- matrix(data=runif(100, 0, 0.4), nrow=10, ncol=10,

+ dimnames=list(rownames(mtx.goldStandard),

+ colnames(mtx.goldStandard)))

> tbl.priors["G10", c("G3", "G4")] <- runif(2, 0.8, 1.0)

Run the inference again:

> tbl.inferredWithPriors <- networkBMA(mtx.ts1, nTimePoints=nrow(mtx.ts1),

+ prior.prob=tbl.priors, self=FALSE)

> tbl.inferredWithPriors <-

+ tbl.inferredWithPriors[order(tbl.inferredWithPriors$PostProb,

+ decreasing=TRUE),]

> print(tbl.inferredWithPriors)

Regulator TargetGene PostProb

28 G1 G4 0.9999710531

37 G1 G5 0.9952946000

19 G10 G3 0.9546089000

1 G4 G1 0.7338241000

38 G4 G5 0.5894235000

55 G3 G7 0.4965834000

46 G10 G6 0.4407034000

56 G6 G7 0.4177721000

82 G6 G10 0.4080539000

20 G7 G3 0.3964939000

73 G7 G9 0.3747885000

15

21 G6 G3 0.3679018000

64 G7 G8 0.3579010000

83 G5 G10 0.3389112000

2 G5 G1 0.3388313000

10 G10 G2 0.3362281000

84 G8 G10 0.3201253000

47 G9 G6 0.3044811000

57 G2 G7 0.2998596000

22 G2 G3 0.2778042000

23 G9 G3 0.2757589000

11 G7 G2 0.2752194000

24 G8 G3 0.2647638000

12 G5 G2 0.2578058000

48 G3 G6 0.2548358000

58 G4 G7 0.2510126000

13 G6 G2 0.2409387000

74 G2 G9 0.2067339000

59 G5 G7 0.2067174000

85 G2 G10 0.2031888000

86 G1 G10 0.1960115000

25 G5 G3 0.1824667000

60 G8 G7 0.1769256000

75 G1 G9 0.1733800000

14 G9 G2 0.1695565000

49 G5 G6 0.1657558000

61 G1 G7 0.1628025000

15 G1 G2 0.1607274000

65 G9 G8 0.1507207000

66 G5 G8 0.1499059000

67 G1 G8 0.1480656000

50 G2 G6 0.1479644000

68 G4 G8 0.1474138000

87 G3 G10 0.1362227000

51 G8 G6 0.1209756000

26 G1 G3 0.1150399000

69 G2 G8 0.1054485000

27 G4 G3 0.1044979000

39 G10 G5 0.1027690000

52 G1 G6 0.0966448000

3 G6 G1 0.0935315000

88 G7 G10 0.0875563000

29 G5 G4 0.0861099000

16

16 G3 G2 0.0859564000

40 G2 G5 0.0825089000

53 G4 G6 0.0822431000

41 G8 G5 0.0794257000

70 G6 G8 0.0782316000

42 G3 G5 0.0772084000

71 G10 G8 0.0742550000

4 G9 G1 0.0720636000

76 G6 G9 0.0654681000

62 G9 G7 0.0614382000

5 G3 G1 0.0600934000

6 G8 G1 0.0574313000

77 G4 G9 0.0573925000

89 G9 G10 0.0521405000

7 G7 G1 0.0487031000

72 G3 G8 0.0473790000

78 G8 G9 0.0341217000

43 G9 G5 0.0336247000

90 G4 G10 0.0271082000

79 G3 G9 0.0239630000

80 G10 G9 0.0238524000

17 G8 G2 0.0225216000

81 G5 G9 0.0205909000

30 G10 G4 0.0199499000

8 G10 G1 0.0177882000

31 G7 G4 0.0171970000

54 G7 G6 0.0088348915

63 G10 G7 0.0072199000

32 G8 G4 0.0068228941

33 G2 G4 0.0064695132

44 G6 G5 0.0064087000

9 G2 G1 0.0048108000

34 G9 G4 0.0044105779

35 G6 G4 0.0032741339

45 G7 G5 0.0009414626

18 G4 G2 0.0006409585

36 G3 G4 0.0003465549

G10->G3 and G10->G4 now show non-negligible posterior probabilities

Here we plot the precision-recall curves for both runs together, for easy comparison:

17

> tbl.contingencyWithPriors <- contabs.netwBMA(tbl.inferredWithPriors, tbl.goldStandard[,-3])

> plot(pr$recall, pr$precision, type='b',

+ xlab='RECALL', ylab='PRECISION',

+ col=colors[1],

+ xlim=c(0,1), ylim=c(0,1))

> prWithPriors <- scores(tbl.contingencyWithPriors, what = c("precision","recall"))

> lines(prWithPriors$recall, prWithPriors$precision, type='b',

+ xlab='RECALL', ylab='PRECISION',

+ col=colors[2],

+ xlim=c(0,1), ylim=c(0,1))

> legend.titles = c("expression only", "with priors")

> legend (0.6, 0.9, legend.titles, colors)

> print(prc(tbl.contingencyWithPriors, plotit=FALSE))

area sector width

0.3441728 0.3263156 0.8571429

18

And examine the contingency table of the second run:

> print(tbl.contingencyWithPriors)

TP FN FP TN

0.000346554862016032 13 1 37 5

0.00064095850563976 13 1 36 6

0.000941462613987145 13 1 36 6

0.00327413390919382 13 1 35 7

0.00441057789712965 13 1 33 9

0.0064087 13 1 33 9

0.00682289405800001 13 1 32 10

0.0072199 13 1 31 11

0.00883489148941122 13 1 29 13

0.017197 13 1 29 13

0.0199499 12 2 29 13

0.0225216 11 3 29 13

0.0271082 10 4 29 13

0.0336247 10 4 28 14

0.0521405 10 4 27 15

0.0614382 9 5 27 15

0.0772084 9 5 26 16

0.0794257 9 5 25 17

0.0822431 9 5 23 19

0.0859564 9 5 22 20

0.0875563 9 5 22 20

0.0966448 9 5 20 22

0.102769 9 5 20 22

0.1044979 9 5 19 23

0.1150399 8 6 19 23

0.1209756 7 7 19 23

0.1362227 6 8 19 23

0.1607274 6 8 18 24

0.1628025 6 8 17 25

0.1695565 6 8 16 26

0.1769256 6 8 15 27

0.1960115 6 8 14 28

0.2409387 5 9 13 29

0.2510126 5 9 13 29

0.2548358 5 9 12 30

0.2647638 5 9 11 31

19

0.2752194 5 9 10 32

0.2757589 5 9 9 33

0.3044811 5 9 8 34

0.3201253 5 9 7 35

0.3362281 5 9 6 36

0.3679018 5 9 5 37

0.3964939 4 10 4 38

0.4080539 4 10 4 38

0.4177721 4 10 3 39

0.4407034 4 10 2 40

0.4965834 4 10 1 41

0.5894235 3 11 1 41

0.9546089 3 11 0 42

0.9952946 2 12 0 42

0.999971053129436 1 13 0 42

4 Conclusion

The DREAM4 synthetic mRNA expression data, and the gold standard networks from
which they are generated, offer a useful test for gene regulatory network inference. One
result of such tests is the realization of how difficult such inference is. Incorporating prior
information into inference is beneficial. We anticipate that in the near future many other
kinds of regulatory data will begin to match mRNA expression for completeness, accu-
racy and cost, leading to increasingly constrained, and therefore increasingly accurate
network inference.

5 Bibliography

R. Castelo and A. Roverato. Reverse engineering molecular regulatory networks from
microarray data with qp-graphs. Journal of Computational Biology, 16(2):213–227,
2009.

P. Danaher, P. Wang, and D.M. Witten. The joint graphical lasso for inverse covariance
estimation across multiple classes. arXiv preprint arXiv:1111.0324, 2011.

C. Fraley, K.Y. Yeung, and A. Raftery. networkBMA: Regression-based network infer-
ence using Bayesian Model Averaging. http://www.bioconductor.org/packages/

release/bioc/html/networkBMA.html, 2012. R package version 1.1.0.

20

http://www.bioconductor.org/packages/release/bioc/html/networkBMA.html
http://www.bioconductor.org/packages/release/bioc/html/networkBMA.html

A. Greenfield, A. Madar, H. Ostrer, and R. Bonneau. Dream4: Combining genetic and
dynamic information to identify biological networks and dynamical models. PloS one,
5(10):e13397, 2010.

K. Lo, A.E. Raftery, K.M. Dombek, J. Zhu, E.E. Schadt, R.E. Bumgarner, and K.Y.
Yeung. Integrating external biological knowledge in the construction of regulatory
networks from time-series expression data. BMC Systems Biology, 6(1):101, 2012.

D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating realistic in silico
gene networks for performance assessment of reverse engineering methods. Journal of
Computational Biology, 16(2):229–239, 2009.

D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky.
Revealing strengths and weaknesses of methods for gene network inference. Proceedings
of the National Academy of Sciences, 107(14):6286–6291, 2010.

R.J. Prill, D. Marbach, J. Saez-Rodriguez, P.K. Sorger, L.G. Alexopoulos, X. Xue,
N.D. Clarke, G. Altan-Bonnet, and G. Stolovitzky. Towards a rigorous assessment of
systems biology models: the dream3 challenges. PloS one, 5(2):e9202, 2010.

R.J. Prill, J. Saez-Rodriguez, L.G. Alexopoulos, P.K. Sorger, and G. Stolovitzky. Crowd-
sourcing network inference: the dream predictive signaling network challenge. Science
Signalling, 4(189):mr7, 2011.

K.Y. Yeung, K.M. Dombek, K. Lo, J.E. Mittler, J. Zhu, E.E. Schadt, R.E. Bumgarner,
and A.E. Raftery. Construction of regulatory networks using expression time-series
data of a genotyped population. Proceedings of the National Academy of Sciences,
108(48):19436–19441, 2011.

21

	Introduction
	The Data
	As distributed by DREAM
	As repackaged into Bioc RangedSummarizedExperiments

	The networkBMA Package
	Overview
	Inference Using Expression Data Only
	Add Prior Probabilities

	Conclusion
	Bibliography

