
PODKAT
An R Package for Association Testing Involving

Rare and Private Variants

Ulrich Bodenhofer

Institute of Bioinformatics, Johannes Kepler University Linz
Altenberger Str. 69, 4040 Linz, Austria

podkat@bioinf.jku.at

Version 1.2.0, June 16, 2015

Institute of Bioinformatics, Johannes Kepler University Linz

Software Manual

Institute of Bioinformatics
Johannes Kepler University Linz
A-4040 Linz, Austria

Tel. +43 732 2468 4520
Fax +43 732 2468 4539

http://www.bioinf.jku.at

mailto:podkat@bioinf.jku.at

2

Scope and Purpose of this Document

This document is a user manual for PODKAT, an R package implementing non-burden association
tests for rare and private variants, most importantly, the position-dependent kernel association test
(PODKAT). It provides a gentle introduction into how to use PODKAT. Not all features of the R
package are described in full detail. Such details can be obtained from the documentation enclosed
in the R package. Further note the following: (1) this is not an introduction to statistical genetics or
association testing; (2) this is not an introduction to R or any of the Bioconductor packages used in
this document; (3) this is not an introduction to statistical hypothesis testing or probability theory.
If you lack the background for understanding this manual, you first have to read introductory
literature on the subjects mentioned above.

All R code in this document is written to be runnable by any user. However, some of the code
chunks require the download of external files, require an Internet connection, or require too much
computation time to be runnable when the package is built, checked, or installed. The output lines
of R code chunks that are not actually executed when processing this document are marked with
‘##!!##’ and, in case that the user needs to perform extra steps to execute the code, these steps
are listed explicitly.

Contents 3

Contents

1 Introduction 4

2 Installation 6

3 PODKAT for the Impatient 6

4 Training a Null Model 12

5 Selection of Regions of Interest 18
5.1 Regions of Interest for Whole-Genome Association Testing 18
5.2 Regions of Interest for Whole-Exome Association Testing 26
5.3 Defining Custom Regions of Interest . 29

6 Performing an Association Test 31

7 Analyzing and Visualizing Results 37
7.1 Multiple Testing Correction . 37
7.2 Visualization . 40
7.3 Filtering Significant Regions . 44
7.4 Contributions of Individual Variants . 45

8 Miscellanea 53
8.1 Creating Suitable VCF Files . 53

8.1.1 Software tools . 53
8.1.2 Merging VCF files . 54
8.1.3 Concatenating VCF files . 55
8.1.4 Filtering VCF files . 55

8.2 Reading from VCF Files . 55
8.3 Using Genotypes from Other Data Sources . 57
8.4 Preparations for a New Genome . 59
8.5 Handling Large Data Sets . 61

8.5.1 Chunking . 61
8.5.2 Parallel Processing . 62

9 More Details About PODKAT 64
9.1 Test Statistics . 64
9.2 Kernels . 68
9.3 Weighting Functions . 71
9.4 Computing Single-Variant Contributions . 73
9.5 Details on the Small Sample Correction . 74

10 Future Extensions 77

11 Change Log 77

12 How to Cite This Package 77

4 1 Introduction

1 Introduction

This user manual describes the R package PODKAT. This R package implements non-burden
association tests for rare and private variants, most importantly, the position-dependent kernel
association test (PODKAT).

Before discussing details of how to use the package, let us first discuss the general aim and
setup of association studies. Suppose we have a certain number of samples (study participants,
patients, etc.) for each of which we can measure/sequence the genotype and for each of which we
know/have measured/have observed a certain trait that we want to study. This trait may be contin-
uous, i.e. real-valued on a continuous scale (for instance, age, height, body mass index, etc.), or
categorical, i.e. from a discrete set of categories (for instance, case vs. control, treatment outcome,
disease type, etc.). In the following, we will only consider continuous traits and categorical traits
with two categories and refer to this case as a binary trait (sometimes called dichotomous trait as
well) with values 0 or 1.

The goal of association testing is to find out whether there are any statistically significant
associations between the genotype and the trait.

In some studies, additional information about the samples’ phenotypes or environmental con-
ditions is available that might also have an influence on the trait (for instance, age, sex, ethnicity,
family status, etc.). Such additional features can be treated as covariates. More specifically, it
is rather common to train a model that predicts the trait from the covariates first. Then the asso-
ciation between the genotype and those components of the traits is studied which have not been
sufficiently explained by the covariates. In the case of PODKAT, this is done by a kernel-based
variance-component score test [10, 16].

Assume that, for a given set of samples, we are given a trait vector (one entry for each sample),
genotypes of all samples (in matrix format or as a VCF file1), and a matrix of covariates (if any).
Then an association test using PODKAT consists of the following basic steps:

Training of null model: pre-processing of trait vector and covariates (if any) for later use in an
association test (see Section 4);

Selection of regions of interest: specification of one or more genomic regions for which associ-
ation tests should be performed (see Section 5);

Association testing: testing of association between genotype and trait/null model for each se-
lected region of interest (see Section 6);

Analysis of results: post-processing (such as, multiple testing correction or filtering) and visual-
ization of results (see Section 7);

Figure 1 shows a graphical overview of these basic steps along with dependencies and data types.

This manual is organized as follows: after some basic instructions how to install the package
(Section 2), Section 3 provides a simple, yet complete, example that illustrates the general work-
flow. Sections 4–7 provide more details about the steps necessary to perform association tests with
PODKAT. Sections 8–12 provide miscellaneous additional information.

1Variant Call Format; see http://www.1000genomes.org/wiki/analysis/variant-call-format/

vcf-variant-call-format-version-42 for a detailed specification of this file format

http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42
http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42

1 Introduction 5

Trait (binary or
continuous)

numeric vector, factor or
column of data frame

Trait (binary or
continuous)

numeric vector, factor or
column of data frame

Covariates
(if any)

numeric matrix or
columns of data frame

Covariates
(if any)

numeric matrix or
columns of data frame

Genotypes
matrix or VCF file

Genotypes
matrix or VCF file

Training of null modelTraining of null model

Null model
linear, logistic linear, or

Bernoulli distribution

Null model
linear, logistic linear, or

Bernoulli distribution

Genome /
genome

annotations

Genome /
genome

annotations

Selection of
regions

of interest

Selection of
regions

of interest

Regions of
interest

Regions of
interest

Association testAssociation test

Association test results
filtered / adjusted p-values,

variants' contributions

Association test results
filtered / adjusted p-values,

variants' contributions

Post-processing of results
multiple testing correction, filtering

Post-processing of results
multiple testing correction, filtering

Visualization of results
Manhattan plot, Q-Q plot

Visualization of results
Manhattan plot, Q-Q plot

Association test results
test statistics, p-values

Association test results
test statistics, p-values

PlotsPlots

Figure 1: Overview of the basic steps of the data analysis pipeline offered by PODKAT for ana-
lyzing associations between traits and genotypes.

6 3 PODKAT for the Impatient

2 Installation

The PODKAT R package (current version: 1.2.0) is available via Bioconductor. The simplest way
to install the package is the following:

source("http://www.bioconductor.org/biocLite.R")

biocLite("podkat")

If you wish to install the package manually instead, you can download the package archive
that fits best to your computer system from the Bioconductor homepage.

To test the installation of the PODKAT package, enter

library(podkat)

in your R session. If this command terminates without any error message or warning, you can be
sure that the PODKAT package has been installed successfully. If so, the PODKAT package is
ready for use now and you can start performing association tests.

3 PODKAT for the Impatient

In order to illustrate the basic workflow, this section presents two simple examples without going
into the details of each step. Let us first retrieve the file names of the example files that are supplied
as part of the PODKAT package:

phenoFileLin <- system.file("examples/example1lin.csv", package="podkat")

phenoFileLog <- system.file("examples/example1log.csv", package="podkat")

vcfFile <- system.file("examples/example1.vcf.gz", package="podkat")

Now let us train the null model for the continuous trait contained in the file example1lin.csv:

pheno.c <- read.table(phenoFileLin, header=TRUE, sep=",")

model.c <- nullModel(y ~ ., pheno.c)

model.c

Linear model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Variance of residuals: 1.541756

No resampling

The examples are based on the small artificial genome hgA that is also supplied as part of
PODKAT. So we load it first and then partition it into overlapping windows:

3 PODKAT for the Impatient 7

data(hgA)

hgA

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 200000] *

seqinfo: 1 sequence from hgA genome

windows <- partitionRegions(hgA)

windows

GRanges object with 79 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 5000] *

[2] chr1 [2501, 7500] *

[3] chr1 [5001, 10000] *

[4] chr1 [7501, 12500] *

[5] chr1 [10001, 15000] *

...

[75] chr1 [185001, 190000] *

[76] chr1 [187501, 192500] *

[77] chr1 [190001, 195000] *

[78] chr1 [192501, 197500] *

[79] chr1 [195001, 200000] *

seqinfo: 1 sequence from hgA genome

The VCF file used for these two examples is small enough to be loadable at once:

geno <- readGenotypeMatrix(vcfFile)

geno

Genotype matrix:

Number of samples: 200

Number of variants: 962

##

Mean MAF: 0.05674116

Median MAF: 0.0075

Minimum MAF: 0.0025

Maximum MAF: 0.455

Now we can already perform the two association tests. Let us start with the continuous trait:

8 3 PODKAT for the Impatient

res.c <- assocTest(geno, model.c, windows)

print(res.c)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 0.05: 8

##

Results for the 8 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.34 1.294084e-07

2 chr1 10001 15000 5000 33 764828.81 4.874460e-06

3 chr1 140001 145000 5000 15 79937.68 3.599077e-03

4 chr1 5001 10000 5000 34 152555.30 9.785569e-03

5 chr1 132501 137500 5000 21 89287.55 1.349559e-02

6 chr1 142501 147500 5000 23 94629.68 3.338620e-02

7 chr1 42501 47500 5000 19 58191.23 3.341032e-02

8 chr1 25001 30000 5000 23 103713.12 3.754557e-02

Now we perform multiple testing correction:

res.c <- p.adjust(res.c)

print(res.c)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: holm

##

Overview of significance of results:

Number of tests with p < 0.05: 8

Number of tests with adj. p < 0.05: 2

3 PODKAT for the Impatient 9

##

Results for the 8 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.34 1.294084e-07

2 chr1 10001 15000 5000 33 764828.81 4.874460e-06

3 chr1 140001 145000 5000 15 79937.68 3.599077e-03

4 chr1 5001 10000 5000 34 152555.30 9.785569e-03

5 chr1 132501 137500 5000 21 89287.55 1.349559e-02

6 chr1 142501 147500 5000 23 94629.68 3.338620e-02

7 chr1 42501 47500 5000 19 58191.23 3.341032e-02

8 chr1 25001 30000 5000 23 103713.12 3.754557e-02

p.value.adj

1 1.022327e-05

2 3.802079e-04

3 2.771289e-01

4 7.437033e-01

5 1.000000e+00

6 1.000000e+00

7 1.000000e+00

8 1.000000e+00

Finally, we create a Manhattan plot:

plot(res.c, which="p.value.adj")

Chromosome chr1 of hgA

−
lo

g 1
0(p

)

0 50,000 100,000 150,000 200,000

1 200,000

0
1

2
3

4
5

0.
05

For a binary trait, the whole pipeline looks the same. The nullModel() function automatically
detects that the trait is binary and this information is passed on to the subsequent steps without the
need of making additional settings:

10 3 PODKAT for the Impatient

pheno.b <- read.table(phenoFileLog, header=TRUE, sep=",")

model.b <- nullModel(y ~ ., pheno.b)

small sample correction applied

model.b

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

Now we can already perform the association tests for the binary trait. This time, however,
we do not load the entire genotype first, but we let assocTest() read from the VCF file directly
(which is only done piece by piece in order to avoid excessive use of memory):

res.b <- assocTest(vcfFile, model.b, windows)

print(res.b)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 0.05: 23

##

Results for the 10 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 38386.55 1.828167e-05

2 chr1 10001 15000 5000 33 43084.90 4.156230e-05

3 chr1 22501 27500 5000 27 25640.34 7.801524e-04

4 chr1 20001 25000 5000 23 16120.63 2.424690e-03

5 chr1 25001 30000 5000 23 10650.48 3.935653e-03

6 chr1 77501 82500 5000 17 4890.26 7.083429e-03

7 chr1 87501 92500 5000 30 12891.61 7.611585e-03

8 chr1 35001 40000 5000 23 22436.29 7.926316e-03

9 chr1 37501 42500 5000 25 22570.67 8.980398e-03

10 chr1 27501 32500 5000 27 32423.04 9.919251e-03

3 PODKAT for the Impatient 11

Multiple testing correction again:

res.b <- p.adjust(res.b)

print(res.b)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: holm

##

Overview of significance of results:

Number of tests with p < 0.05: 23

Number of tests with adj. p < 0.05: 2

##

Results for the 10 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 38386.55 1.828167e-05

2 chr1 10001 15000 5000 33 43084.90 4.156230e-05

3 chr1 22501 27500 5000 27 25640.34 7.801524e-04

4 chr1 20001 25000 5000 23 16120.63 2.424690e-03

5 chr1 25001 30000 5000 23 10650.48 3.935653e-03

6 chr1 77501 82500 5000 17 4890.26 7.083429e-03

7 chr1 87501 92500 5000 30 12891.61 7.611585e-03

8 chr1 35001 40000 5000 23 22436.29 7.926316e-03

9 chr1 37501 42500 5000 25 22570.67 8.980398e-03

10 chr1 27501 32500 5000 27 32423.04 9.919251e-03

p.value.adj

1 0.001444252

2 0.003241860

3 0.060071732

4 0.184276424

5 0.295174011

6 0.524173744

7 0.555645737

8 0.570694719

9 0.637608280

10 0.694347583

Finally, we create a Manhattan plot:

12 4 Training a Null Model

plot(res.b, which="p.value.adj")

Chromosome chr1 of hgA

−
lo

g 1
0(p

)

0 50,000 100,000 150,000 200,000

1 200,000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
05

The following sections provide details and more background information about the functions used
in the above steps.

4 Training a Null Model

Before an association test can be performed, we have to pre-process the trait vector and create a
so-called null model, i.e. a probabilistic model of the trait under the null assumption that the trait
is independent of the genotype and only depends on the covariates (if any). PODKAT currently
offers three types of such null models:

Linear model: the trait is continuous and depends linearly on the covariates, i.e.

y = α0 +αT · x + ε,

where y is the trait, α0 is the intercept,α is a weight vector, x is the vector of covariates, and
ε is normally distributed random noise. If there are no covariates, y is normally distributed
around the intercept α0.

Logistic linear model: the trait is binary and depends on the covariates in the following way
(with the same notations as above):

logit
(
p(y = 1)

)
= α0 +αT · x

If there are no covariates, y is a binary Bernoulli-distributed random variable with constant
p(y = 1) = logit−1(α0) = 1/(1 + exp(−α0)).

Bernoulli-distributed trait: the trait is binary, does not depend on any covariates, and follows a
simple Bernoulli distribution with constant p.

4 Training a Null Model 13

PODKAT offers one function nullModel() that allows for the creation of any of the above
three types of null models. In order to demonstrate how nullModel() works, we first load two
examples that are shipped with the PODKAT package.

For the subsequent examples, we consider the two data frames pheno.c and pheno.b that we
created in Section 3 and investigate them in more detail. The object pheno.c is a data frame with
two covariate columns and one column y containing a continuous trait:

colnames(pheno.c)

[1] "X.1" "X.2" "y"

summary(pheno.c)

X.1 X.2 y

Min. :-2.75343 Min. :-3.56170 Min. :-2.9853

1st Qu.:-0.68484 1st Qu.:-0.78153 1st Qu.:-0.3625

Median : 0.04127 Median :-0.02714 Median : 0.5965

Mean : 0.02007 Mean :-0.03562 Mean : 0.5835

3rd Qu.: 0.78158 3rd Qu.: 0.73964 3rd Qu.: 1.6966

Max. : 2.29429 Max. : 2.73488 Max. : 3.8589

The object pheno.b is a data frame with two covariate columns and one column y containing
a binary trait.

colnames(pheno.b)

[1] "X.1" "X.2" "y"

summary(pheno.b)

X.1 X.2 y

Min. :-2.75343 Min. :-3.56170 Min. :0.00

1st Qu.:-0.68484 1st Qu.:-0.78153 1st Qu.:0.00

Median : 0.04127 Median :-0.02714 Median :0.00

Mean : 0.02007 Mean :-0.03562 Mean :0.05

3rd Qu.: 0.78158 3rd Qu.: 0.73964 3rd Qu.:0.00

Max. : 2.29429 Max. : 2.73488 Max. :1.00

table(pheno.b$y)

##

0 1

190 10

14 4 Training a Null Model

As we have seen in Section 3 already, the simplest way of creating a null model is to call
nullModel() via the formula interface, in a way that is largely analogous to the R standard
functions lm() and glm():

model.c <- nullModel(y ~ ., pheno.c)

model.c

Linear model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Variance of residuals: 1.541756

No resampling

model.b <- nullModel(y ~ ., pheno.b)

small sample correction applied

model.b

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

Note that, in the above calls to nullModel(), we did not explicitly specify the type of the
model. Whenever the type argument is not specified, nullModel() tries to guess the right type
of model. If the trait vector/column is a factor or a numeric vector containing only 0’s and 1’s
(where both values must be present, otherwise an association test would be meaningless), the trait
is supposed to be binary and a logistic linear model is trained, unless the following conditions are
satisfied:

1. The number of samples does not exceed 100.

2. No intercept and no covariates have been specified.

If these two conditions are fulfilled for a binary trait, nullModel() considers the trait as a
Bernoulli-distributed random variable (i.e. as the third type of model described above). If the
trait is numeric and not binary, a linear model is trained. If the user wants to enforce a specific
type of model explicitly, he/she can do so by setting the argument type to one of the three choices
"linear", "logistic", or "bernoulli" (see ?nullModel for details).

An example using only the intercept, but no covariates:

4 Training a Null Model 15

nullModel(y ~ 1, pheno.c)

Linear model:

Only intercept (no covariates)

Number of samples: 200

Variance of residuals: 2.089638

No resampling

An example in which we want to consider the traits as a Bernoulli-distributed variable:

nullModel(y ~ 0, pheno.b, type="bernoulli")

Simple Bernoulli model:

Raw phenotypes (no covariates, no intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Apart from the formula interface used above, nullModel() also allows for supplying a co-
variate matrix as first argument X (optional, omit if no covariates should be considered) and a trait
vector as second argument y:

covX <- as.matrix(pheno.c[, 1:2])

traitY <- pheno.c$y

nullModel(covX, traitY)

Linear model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Variance of residuals: 1.541756

No resampling

nullModel(y=traitY)

Linear model:

Only intercept (no covariates)

Number of samples: 200

Variance of residuals: 2.089638

No resampling

covX <- as.matrix(pheno.b[, 1:2])

traitY <- pheno.b$y

nullModel(covX, traitY)

16 4 Training a Null Model

small sample correction applied

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

nullModel(y=traitY)

small sample correction applied

Logistic model:

Only intercept (no covariates)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 10000 repeats (bootstrap)

nullModel(y=traitY, type="bernoulli")

Simple Bernoulli model:

Raw phenotypes (no covariates, no intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

In the same way this works for many other R functions, it is also possible to attach the data
frame with the phenotype data (trait plus covariates) to the global environment. Then it is no
longer necessary to the pass the data frame to the nullModel() function. However, one has to be
more cautious with the selection of the covariates. The option to simply select all covariates with
. is no longer available then.

attach(pheno.c)

nullModel(y ~ X.1 + X.2)

Linear model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Variance of residuals: 1.541756

No resampling

Regardless of the type of model and of which interface has been used to call nullModel(), the
function always creates an R object of class NullModel (the objects named model.c and model.b

4 Training a Null Model 17

in the examples above) that can be used in subsequent association tests.

Variance-score component tests based on linear logistic models may not necessarily determine
the null distribution of the test statistic correctly [8, 10] and, therefore, they may not control the
type-I error rate correctly. Following a philosophy inspired by the SKAT package [8, 16] PODKAT
offers two means to counteract this issue:

Resampling: under the null assumption that the trait only depends on the covariates (if any)
and not on the genotype, a certain number of model residuals are sampled. Then, when
association testing is performed, p-values are computed also for all these sampled residuals,
and an additional estimated p-value is computed as the relative frequency of p-values of
sampled residuals that are at least as significant as the test’s p-value. The number of sampled
residuals is controlled with the n.resampling argument (the default is 0) and the type of
sampling procedure is controlled with the type.resampling argument (see ?nullModel

for more details).

Small sample correction and adjustment of higher moments: Lee et al. [8] proposed a correc-
tion of the null distribution for small samples and a sampling method for adjusting higher
moments of the null distribution of the test statistic (see also Subsections 9.1 and 9.5). POD-
KAT implements both corrections (see Subsection 9.5 about implementation details). The
argument adj controls whether the null model is created such that any of the two corrections
can be used later. The default is that the corrections are switched on for samples sizes up to
2,000, while adj="force" always turns corrections on and adj="none" always turns cor-
rections off. The adjustment of higher moments requires sampled null model residuals. The
number of those is controlled with the n.resampling.adj argument and the type of sam-
pling procedure is again controlled with the type.resampling argument (see ?nullModel
and Subsection 9.5 for more details).

For linear models, there is no need for any correction of the null distribution (cf. Subsection 9.1).
Consequently, small sample correction is not available for linear models. Resampling, however, is
available for linear models, too. None of the two methods is available for association tests using a
Bernoulli-distributed trait.

Some examples showing how to control resampling and small sample corrections for logistic
linear models:

nullModel(y ~ ., pheno.b, n.resampling=1000, adj="none")

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

Resampling: 1000 repeats (bootstrap)

nullModel(y ~ ., pheno.b, n.resampling.adj=2000)

small sample correction applied

18 5 Selection of Regions of Interest

Logistic model:

Number of covariates: 2 (+ intercept)

Number of samples: 200

Number of positives (cases): 10

No resampling

Adjustment of higher moments: 2000 repeats (bootstrap)

5 Selection of Regions of Interest

Association tests with PODKAT typically consider multiple regions of interest along the samples’
genome. The most common scenarios are whole-genome association testing, whole-exome as-
sociation testing, or association tests for specific user-defined regions. In the following, we will
highlight the basic steps necessary for each of these three scenarios.

5.1 Regions of Interest for Whole-Genome Association Testing

Suppose that the samples’ genotypes have been determined by whole-genome sequencing or any
other technology that covers variants across the whole genome. The first step for this case is
to define the genome and where it has been sequenced. PODKAT comes with four ready-made
GRangesList objects (see Bioconductor package GenomicRanges) that define these regions for
autosomal chromosomes, sex chromosomes, and the mitochondrial DNA of the human genome.
Those objects are called hg18Unmasked, hg19Unmasked, hg38Unmasked, b36Unmasked, and
b37Unmasked. The three former are the standard hg18, hg19, and hg38 builds as shipped with
the Bioconductor packages

BSgenome.Hsapiens.UCSC.hg18.masked,

BSgenome.Hsapiens.UCSC.hg19.masked, and

BSgenome.Hsapiens.UCSC.hg38.masked.

The two latter are basically the same regions as in hg18Unmasked and hg19Unmasked, but with
chromosomes named as in the genomes b36 and b37 that are frequently used by the Genome
Analysis Toolkit (GATK).2 The five objects are available upon data() calls as in the following
example:

data(hg38Unmasked)

hg38Unmasked

GRangesList object of length 31:

$chr1

GRanges object with 15 ranges and 0 metadata columns:

2https://www.broadinstitute.org/gatk/

https://www.broadinstitute.org/gatk/

5 Selection of Regions of Interest 19

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10001, 207666] *

[2] chr1 [257667, 297968] *

[3] chr1 [347969, 535988] *

[4] chr1 [585989, 2702781] *

[5] chr1 [2746291, 12954384] *

...

[11] chr1 [125131848, 125171347] *

[12] chr1 [125173584, 125184587] *

[13] chr1 [143184588, 223558935] *

[14] chr1 [223608936, 228558364] *

[15] chr1 [228608365, 248946422] *

##

...

<30 more elements>

seqinfo: 25 sequences (1 circular) from hg38 genome

names(hg38Unmasked)

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6"

[7] "chr7" "chr8" "chr9" "chr10" "chr11" "chr12"

[13] "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"

[19] "chr19" "chr20" "chr21" "chr22" "chrX" "chrY"

[25] "chrM" "X.PAR1" "X.PAR2" "X.XTR" "Y.PAR1" "Y.PAR2"

[31] "Y.XTR"

hg38Unmasked$chr1

GRanges object with 15 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10001, 207666] *

[2] chr1 [257667, 297968] *

[3] chr1 [347969, 535988] *

[4] chr1 [585989, 2702781] *

[5] chr1 [2746291, 12954384] *

...

[11] chr1 [125131848, 125171347] *

[12] chr1 [125173584, 125184587] *

[13] chr1 [143184588, 223558935] *

[14] chr1 [223608936, 228558364] *

[15] chr1 [228608365, 248946422] *

seqinfo: 25 sequences (1 circular) from hg38 genome

20 5 Selection of Regions of Interest

Table 1: Overview of how the GRangesList objects hg18Unmasked, hg19Unmasked,
hg38Unmasked, b36Unmasked, and b37Unmasked are organized: each row corresponds to one
chromosome/sequence of the human genome and lists the names of those list components that
contain regions from these chromosomes/sequences.

Chromosome hg*Unmasked b36Unmasked b37Unmasked

1 "chr1" "1" "1"

...
...

...
...

22 "chr22" "22" "22"

X "chrX", "X.PAR1", "X", "X.PAR1", "X", "X.PAR1",
"X.PAR2", "X.XTR" "X.PAR2", "X.XTR" "X.PAR2", "X.XTR"

Y "chrY", "Y.PAR1", "Y", "Y.PAR1", "Y", "Y.PAR1",
"Y.PAR2", "Y.XTR" "Y.PAR2", "Y.XTR" "Y.PAR2", "Y.XTR"

mtDNA "chrM" "M" "MT"

seqinfo(hg38Unmasked)

Seqinfo object with 25 sequences (1 circular) from hg38 genome:

seqnames seqlengths isCircular genome

chr1 248956422 FALSE hg38

chr2 242193529 FALSE hg38

chr3 198295559 FALSE hg38

chr4 190214555 FALSE hg38

chr5 181538259 FALSE hg38

...

chr21 46709983 FALSE hg38

chr22 50818468 FALSE hg38

chrX 156040895 FALSE hg38

chrY 57227415 FALSE hg38

chrM 16569 TRUE hg38

All four objects are organized in the same way; they consist of 31 components: one for each
of the 22 autosomal chromosomes, one for each of the two sex chromosomes, one for the mito-
chondrial DNA, and two for each of the three pseudoautosomal regions. This structure has been
chosen to allow the user to consider different chromosomes and pseudoautosomal regions sepa-
rately. Table 1 gives an overview of the list components of each of those GRangesList objects,
how their list components are named, and how they relate to chromosomes in the human genome.

A simpler structure can be created easily. As an example, the pseudoautosomal regions can be
re-united with the X and Y chromosomes as follows:

hg38basic <- hg38Unmasked[paste0("chr", 1:22)]

hg38basic$chrX <- reduce(unlist(hg38Unmasked[c("chrX", "X.PAR1",

5 Selection of Regions of Interest 21

"X.PAR2", "X.XTR")]))

hg38basic$chrY <- reduce(unlist(hg38Unmasked[c("chrY", "Y.PAR1",

"Y.PAR2", "Y.XTR")]))

hg38basic

GRangesList object of length 24:

$chr1

GRanges object with 15 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10001, 207666] *

[2] chr1 [257667, 297968] *

[3] chr1 [347969, 535988] *

[4] chr1 [585989, 2702781] *

[5] chr1 [2746291, 12954384] *

...

[11] chr1 [125131848, 125171347] *

[12] chr1 [125173584, 125184587] *

[13] chr1 [143184588, 223558935] *

[14] chr1 [223608936, 228558364] *

[15] chr1 [228608365, 248946422] *

##

...

<23 more elements>

seqinfo: 25 sequences (1 circular) from hg38 genome

names(hg38basic)

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7"

[8] "chr8" "chr9" "chr10" "chr11" "chr12" "chr13" "chr14"

[15] "chr15" "chr16" "chr17" "chr18" "chr19" "chr20" "chr21"

[22] "chr22" "chrX" "chrY"

If the user prefers to have all unmasked regions in one single GRanges object, this can be done
as follows:

hg38all <- reduce(unlist(hg38Unmasked))

hg38all

GRanges object with 357 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10001, 207666] *

[2] chr1 [257667, 297968] *

22 5 Selection of Regions of Interest

[3] chr1 [347969, 535988] *

[4] chr1 [585989, 2702781] *

[5] chr1 [2746291, 12954384] *

...

[353] chrY [21750315, 21789281] *

[354] chrY [21805282, 26673214] *

[355] chrY [56673215, 56771509] *

[356] chrY [56821510, 57217415] *

[357] chrM [1, 16569] *

seqinfo: 25 sequences (1 circular) from hg38 genome

If association testing should be done for any other genome, the user must specify unmasked
regions as a GRanges or GRangesList object first. This can be done manually, but it is more
convenient to start from a MaskedBSgenome object. Subsection 8.4 provides more details.

It makes little sense to perform association tests for whole chromosomes (or unmasked re-
gions thereof). The most common approach is to split these regions into overlapping windows
of (almost) equal lengths. In order to do this conveniently, PODKAT provides the function
partitionRegions(). A toy example:

gr <- GRanges(seqnames="chr1", ranges=IRanges(start=1, end=140000))

partitionRegions(gr, width=10000, overlap=0.5)

GRanges object with 27 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 10000] *

[2] chr1 [5001, 15000] *

[3] chr1 [10001, 20000] *

[4] chr1 [15001, 25000] *

[5] chr1 [20001, 30000] *

...

[23] chr1 [110001, 120000] *

[24] chr1 [115001, 125000] *

[25] chr1 [120001, 130000] *

[26] chr1 [125001, 135000] *

[27] chr1 [130001, 140000] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

partitionRegions(gr, width=15000, overlap=0.8)

GRanges object with 43 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

5 Selection of Regions of Interest 23

[1] chr1 [1, 14500] *

[2] chr1 [2501, 17500] *

[3] chr1 [5501, 20500] *

[4] chr1 [8501, 23500] *

[5] chr1 [11501, 26500] *

...

[39] chr1 [113501, 128500] *

[40] chr1 [116501, 131500] *

[41] chr1 [119501, 134500] *

[42] chr1 [122501, 137500] *

[43] chr1 [125501, 140000] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

partitionRegions(gr, width=10000, overlap=0)

GRanges object with 14 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 10000] *

[2] chr1 [10001, 20000] *

[3] chr1 [20001, 30000] *

[4] chr1 [30001, 40000] *

[5] chr1 [40001, 50000] *

...

[10] chr1 [90001, 100000] *

[11] chr1 [100001, 110000] *

[12] chr1 [110001, 120000] *

[13] chr1 [120001, 130000] *

[14] chr1 [130001, 140000] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Obviously, the width argument controls the width of the windows (the default is 5,000) and
the overlap argument controls the relative overlap (the default is 0.5, which corresponds to 50%
overlap). The windows are placed such that possible overhangs are balanced at the beginning and
end of the partitioned region.

The choice of the right window width is crucial. If the windows are too narrow, causal regions
may be split across multiple windows which may impair statistical power and requires more ag-
gressive multiple testing correction. However, if the windows are too large, associations may be
diluted by the large number of variants considered by every single test. We recommend a width
between 5,000 bp and 50,000 bp along with 50% overlap.

If called for a GRanges object, partitionRegions() returns a GRanges object with parti-
tioned regions. If called for a GRangesList object, partitionRegions() returns a GRangesList

24 5 Selection of Regions of Interest

object, where each component of the output object corresponds to the partitioning of one of the
components of the input object.

partitionRegions(hg38Unmasked, width=20000)

GRangesList object of length 31:

$chr1

GRanges object with 23041 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10001, 28833] *

[2] chr1 [18834, 38833] *

[3] chr1 [28834, 48833] *

[4] chr1 [38834, 58833] *

[5] chr1 [48834, 68833] *

...

[23037] chr1 [248887394, 248907393] *

[23038] chr1 [248897394, 248917393] *

[23039] chr1 [248907394, 248927393] *

[23040] chr1 [248917394, 248937393] *

[23041] chr1 [248927394, 248946422] *

##

...

<30 more elements>

seqinfo: 25 sequences (1 circular) from hg38 genome

The partitionRegions() functions also allows for partitioning only a subset of chromo-
somes. This can be done by specifying the chrs argument, e.g. chrs="chr22" only consid-
ers regions on chromosome 22 and omits all other regions. This works both for GRanges and
GRangesList objects. However, partitionRegions() works for any GRangesList object and
makes no prior assumption about which chromosomes appear in each of the list components.
Technically, this means that all list components will be searched for regions that lie on the speci-
fied chromosome(s). The GRangesList objects hg18Unmasked, hg19Unmasked, hg38Unmasked,
b36Unmasked, and b37Unmasked included in the PODKAT package, however, are organized that
all list components only contain regions from one chromosome (see Table 1). Therefore, it is
not necessary to search all list components. The following example does this more efficiently by
restricting to chromosomes 21 and 22 from the beginning:

partitionRegions(hg38Unmasked[c("chr21", "chr22")], width=20000)

GRangesList object of length 2:

$chr21

GRanges object with 3997 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

5 Selection of Regions of Interest 25

[1] chr21 [5010001, 5028123] *

[2] chr21 [5018124, 5038123] *

[3] chr21 [5028124, 5048123] *

[4] chr21 [5038124, 5058123] *

[5] chr21 [5048124, 5068123] *

...

[3993] chr21 [46641223, 46661222] *

[3994] chr21 [46651223, 46671222] *

[3995] chr21 [46661223, 46681222] *

[3996] chr21 [46671223, 46691222] *

[3997] chr21 [46681223, 46699983] *

##

...

<1 more element>

seqinfo: 25 sequences (1 circular) from hg38 genome

The following call using the chrs argument would give exactly the same result as the com-
mand above, but takes approximately 10 times as much time:

partitionRegions(hg38Unmasked, chrs=c("chr21", "chr22"), width=20000)

##!!## GRangesList object of length 2:

##!!## $chr21

##!!## GRanges object with 3997 ranges and 0 metadata columns:

##!!## seqnames ranges strand

##!!## <Rle> <IRanges> <Rle>

##!!## [1] chr21 [5010001, 5028123] *

##!!## [2] chr21 [5018124, 5038123] *

##!!## [3] chr21 [5028124, 5048123] *

##!!## [4] chr21 [5038124, 5058123] *

##!!## [5] chr21 [5048124, 5068123] *

##!!##

##!!## [3993] chr21 [46641223, 46661222] *

##!!## [3994] chr21 [46651223, 46671222] *

##!!## [3995] chr21 [46661223, 46681222] *

##!!## [3996] chr21 [46671223, 46691222] *

##!!## [3997] chr21 [46681223, 46699983] *

##!!##

##!!## ...

##!!## <1 more element>

##!!## -------

##!!## seqinfo: 25 sequences (1 circular) from hg38 genome

26 5 Selection of Regions of Interest

5.2 Regions of Interest for Whole-Exome Association Testing

Suppose that the samples’ genotypes have been determined by whole-exome sequencing. In
this case, it makes little sense to use a partition of the whole genome as regions of interest.
Instead, the best way is to use exactly those regions that have been targeted by the capturing
technology. If these regions are available as a BED file3, this file can be read with the function
readRegionsFromBedFile(). In the following example, we demonstrate this for a BED file that
specifies the regions targeted by the Illumina R© TruSeq Exome Enrichment Kit. The regions are
based on the hg19 human genome build. In order to make this code example work, users must first
download the file from the Illumina R© website4:

readRegionsFromBedFile("truseq_exome_targeted_regions.hg19.bed.chr.gz")

##!!## GRanges object with 201071 ranges and 0 metadata columns:

##!!## seqnames ranges

##!!## <Rle> <IRanges>

##!!## chr1:14363-14829:WASH5P chr1 [14362, 14829]

##!!## chr1:14970-15038:WASH5P chr1 [14969, 15038]

##!!## chr1:15796-15947:WASH5P chr1 [15795, 15947]

##!!## chr1:16607-16765:WASH5P chr1 [16606, 16765]

##!!## chr1:16858-17055:WASH5P chr1 [16857, 17055]

##!!##

##!!## chrY:24457542-24457645:RBMY2FP chrY [24457541, 24457645]

##!!## chrY:24460640-24462350:RBMY2FP chrY [24460639, 24462350]

##!!## chrY:24549623-24549729:RBMY1J chrY [24549622, 24549729]

##!!## chrY:26980008-26980063:DAZ2 chrY [26980007, 26980063]

##!!## chrY:26980089-26980276:DAZ3 chrY [26980088, 26980276]

##!!## strand

##!!## <Rle>

##!!## chr1:14363-14829:WASH5P *

##!!## chr1:14970-15038:WASH5P *

##!!## chr1:15796-15947:WASH5P *

##!!## chr1:16607-16765:WASH5P *

##!!## chr1:16858-17055:WASH5P *

##!!##

##!!## chrY:24457542-24457645:RBMY2FP *

##!!## chrY:24460640-24462350:RBMY2FP *

##!!## chrY:24549623-24549729:RBMY1J *

##!!## chrY:26980008-26980063:DAZ2 *

##!!## chrY:26980089-26980276:DAZ3 *

##!!## -------

##!!## seqinfo: 24 sequences from an unspecified genome; no seqlengths

3http://genome.ucsc.edu/FAQ/FAQformat.html#format1
4http://support.illumina.com/downloads/truseq_exome_targeted_regions_bed_file.ilmn

http://genome.ucsc.edu/FAQ/FAQformat.html#format1
http://support.illumina.com/downloads/truseq_exome_targeted_regions_bed_file.ilmn

5 Selection of Regions of Interest 27

Since a BED file does not contain any genomic annotation, readRegionsFromBedFile() is
not able to set chromosome names and chromosome lengths properly. In order to overcome this
limitation, readRegionsFromBedFile() allows for passing a Seqinfo object via the seqInfo

argument. Then the metadata of the returned object are properly set to those passed as seqInfo
argument:

data(hg19Unmasked)

reg <- readRegionsFromBedFile("truseq_exome_targeted_regions.hg19.bed.chr.gz",

seqInfo=seqinfo(hg19Unmasked))

seqinfo(reg)

##!!## Seqinfo object with 25 sequences from hg19 genome:

##!!## seqnames seqlengths isCircular genome

##!!## chr1 249250621 <NA> hg19

##!!## chr2 243199373 <NA> hg19

##!!## chr3 198022430 <NA> hg19

##!!## chr4 191154276 <NA> hg19

##!!## chr5 180915260 <NA> hg19

##!!##

##!!## chr21 48129895 <NA> hg19

##!!## chr22 51304566 <NA> hg19

##!!## chrX 155270560 <NA> hg19

##!!## chrY 59373566 <NA> hg19

##!!## chrM 16571 <NA> hg19

Locations of transcripts can be used as regions of interest, too:

library(TxDb.Hsapiens.UCSC.hg38.knownGene)

hg38tr <- transcripts(TxDb.Hsapiens.UCSC.hg38.knownGene, columns="tx_name")

hg38tr

GRanges object with 104178 ranges and 1 metadata column:

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] chr1 [11874, 14409] + |

[2] chr1 [11874, 14409] + |

[3] chr1 [11874, 14409] + |

[4] chr1 [30366, 30503] + |

[5] chr1 [69091, 70008] + |

...

[104174] chrUn_KI270750v1 [97573, 97600] - |

[104175] chrUn_KI270750v1 [105967, 105996] - |

[104176] chrUn_KI270751v1 [71440, 73694] - |

[104177] chrUn_KI270754v1 [8630, 22177] - |

[104178] chrUn_KI270755v1 [7472, 7499] - |

tx_name

28 5 Selection of Regions of Interest

<character>

[1] uc001aaa.3

[2] uc001aab.3

[3] uc010nxq.1

[4] uc031tlb.1

[5] uc001aal.1

... ...

[104174] uc033dok.1

[104175] uc033dom.1

[104176] uc033don.1

[104177] uc033doo.1

[104178] uc033dop.1

seqinfo: 455 sequences (1 circular) from hg38 genome

The GRanges object returned by transcripts() in the above example code includes strand
information. This does no harm to a subsequent association test, since all assocTest() methods
ignore all information except the chromosome and the start of the region. In any case, the user
is advised rather to use exactly those regions that were targeted by the biotechnology that was
applied. If this information is not available, we rather recommend to use transcripts, perhaps
extended to promotor regions and untranslated regions. Alternatively, to narrow down association
analysis by removing introns, it is also possible to use exons only. This can simply be done by
replacing the above call to transcripts() by exons().

If regions located on sex chromosomes or in pseudo-autosomal regions should be treated
differently, the best option is to split the regions object first such that the different regions are
grouped together. For convenience, PODKAT provides a split() method that allows for split-
ting a GRanges object along grouped regions contained in a GRangesList object. The following
example splits up transcripts (for the sake of shorter computation times, we restrict to the X chro-
mosome and pseudo-autosomal regions located on the X chromosome):

strand(hg38tr) <- "*"

split(hg38tr, hg38Unmasked[c("chrX", "X.PAR1", "X.PAR2", "X.XTR")])

GRangesList object of length 4:

$chrX

GRanges object with 1377 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrX [2781480, 2816501] *

[2] chrX [2828822, 2882820] *

[3] chrX [2903970, 2929375] *

[4] chrX [2934632, 2968310] *

[5] chrX [3006087, 3006112] *

...

[1373] chrX [155380706, 155381299] *

5 Selection of Regions of Interest 29

[1374] chrX [155382100, 155383801] *

[1375] chrX [155456914, 155458615] *

[1376] chrX [155459415, 155460008] *

[1377] chrX [155466540, 155612961] *

##

...

<3 more elements>

seqinfo: 455 sequences (1 circular) from hg38 genome

The split() function is strand-specific, that is why we have to discard the strand information
in hg38tr first (whereas hg38Unmasked does not contain any strand information anyway).

The lengths of exons, transcripts, and captured target sequences vary quite a lot. In order to
avoid that the results of an association test are biased to the lengths of the regions of interest,
we suggest to partition longer exons or transcripts as well. This can be done by simply call-
ing partitionRegions() for the GRanges objects containing exons or transcripts (the call to
reduce() removes duplicates and unifies partial overlaps):

partitionRegions(reduce(hg38tr))

GRanges object with 566489 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [11874, 15917] *

[2] chr1 [13418, 18417] *

[3] chr1 [15918, 20917] *

[4] chr1 [18418, 23417] *

[5] chr1 [20918, 25917] *

...

[566485] chrUn_KI270754v1 [10404, 15403] *

[566486] chrUn_KI270754v1 [12904, 17903] *

[566487] chrUn_KI270754v1 [15404, 20403] *

[566488] chrUn_KI270754v1 [17904, 22177] *

[566489] chrUn_KI270755v1 [7472, 7499] *

seqinfo: 455 sequences (1 circular) from hg38 genome

5.3 Defining Custom Regions of Interest

If a user is not interested in a genome-wide analysis, he/she might want to restrict to a particular
genomic region, for example, a particular gene or set of genes that are likely to be relevant for
his/her study. In such a case, there are multiple options to define regions of interest. The simplest,
but also most tedious, approach is to enter the regions manually. Let us consider the simple
example that we are interested in the two human hemoglobin alpha genes HBA1 and HBA2. If

30 5 Selection of Regions of Interest

we search for these genes in the UCSC Genome Browser5 [7], we see that the genes are in the
following regions (according to the hg38 human genome build):

hbaGenes <- GRanges(seqnames="chr16",

ranges=IRanges(start=c(176680, 172847),

end=c(177521, 173710)))

names(hbaGenes) <- c("HBA1", "HBA2")

hbaGenes

GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

HBA1 chr16 [176680, 177521] *

HBA2 chr16 [172847, 173710] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Another variant is to use the TxDb.Hsapiens.UCSC.hg38.knownGene package to access the
genes’ locations. In order to do that, we have to take into account that the corresponding transcripts
have the UCSC IDs uc002cfx.1 anduc002cfv.4 (which enable us to select the right regions by
searching for these IDs in the tx_name metadata column):

hbaGenes <- hg38tr[which(mcols(hg38tr)$tx_name %in%

c("uc002cfx.1", "uc002cfv.4"))]

names(hbaGenes) <- c("HBA1", "HBA2")

hbaGenes

GRanges object with 2 ranges and 1 metadata column:

seqnames ranges strand | tx_name

<Rle> <IRanges> <Rle> | <character>

HBA1 chr16 [172847, 173710] * | uc002cfv.4

HBA2 chr16 [176680, 177521] * | uc002cfx.1

seqinfo: 455 sequences (1 circular) from hg38 genome

The probably most general, most automatic, and most elegant way to determine the genes’
locations is via direct access to some biological database. The Bioconductor package biomaRt

facilitates such interfaces. However, this interface returns its results as data frames. So, we have
to convert the data to a GRanges object ourselves. The hemoglobin alpha example again, this time
using biomaRt:

library(biomaRt)

ensem <- useMart("ensembl")

hsEnsem <- useDataset("hsapiens_gene_ensembl", mart=ensem)

5http://genome.ucsc.edu/

http://genome.ucsc.edu/

6 Performing an Association Test 31

res <- getBM(attributes=c("hgnc_symbol", "chromosome_name",

"start_position", "end_position", "ucsc"),

filters="hgnc_symbol", values=c("HBA1", "HBA2"),

mart=hsEnsem)

res

##!!## hgnc_symbol chromosome_name start_position end_position

##!!## 1 HBA1 16 176680 177522

##!!## 2 HBA1 16 176680 177522

##!!## 3 HBA2 16 172847 173710

##!!## 4 HBA2 16 172847 173710

##!!## ucsc

##!!## 1 uc002cfx.1

##!!## 2

##!!## 3 uc002cfv.4

##!!## 4

hbaGenes <- GRanges(seqnames=paste0("chr", res$chromosome_name),

ranges=IRanges(start=res$start_position,

end=res$end_position))

names(hbaGenes) <- res$hgnc_symbol

hbaGenes

##!!## GRanges object with 4 ranges and 0 metadata columns:

##!!## seqnames ranges strand

##!!## <Rle> <IRanges> <Rle>

##!!## HBA1 chr16 [176680, 177522] *

##!!## HBA1 chr16 [176680, 177522] *

##!!## HBA2 chr16 [172847, 173710] *

##!!## HBA2 chr16 [172847, 173710] *

##!!## -------

##!!## seqinfo: 1 sequence from an unspecified genome; no seqlengths

As already mentioned at the end of Subsection 5.2, the lengths of exons and transcripts vary
quite a lot. So it is recommended to partition even custom-defined regions of interest using
partitionRegions() if the regions’ lengths differ strongly and/or if the regions are longer than
the window size one would usually employ for whole-genome studies.

6 Performing an Association Test

We have already seen in Section 3 that the function for performing the actual association tests is
assocTest(). We have also seen that there are basically two ways how to use this function. The
simpler one is to load the genotype data into a matrix-like object first and to perform an association
test on this matrix-like object. To first load the genotype, the following command can be used:

32 6 Performing an Association Test

geno <- readGenotypeMatrix(vcfFile)

geno

Genotype matrix:

Number of samples: 200

Number of variants: 962

##

Mean MAF: 0.05674116

Median MAF: 0.0075

Minimum MAF: 0.0025

Maximum MAF: 0.455

The object returned by readGenotypeMatrix() is of class GenotypeMatrix. This class is
defined by PODKAT and essentially consists of the genotypes in column-oriented sparse matrix
format (with rows corresponding to samples and columns corresponding to variants) along with
information about the genomic positions of the variants. The readGenotypeMatrix() function
has some additional arguments for controlling how variants are pre-processed and filtered (see
?readGenotypeMatrix and Subsection 8.2 for more details). Information about the genomic
positions of the variants can be obtained as follows:

variantInfo(geno)

VariantInfo object with 962 ranges and 1 metadata column:

seqnames ranges strand | MAF

<Rle> <IRanges> <Rle> | <numeric>

snv:6 chr1 [428, 428] * | 0.1025

snv:7 chr1 [501, 501] * | 0.09

snv:9 chr1 [607, 607] * | 0.005

snv:11 chr1 [739, 739] * | 0.0025

snv:12 chr1 [808, 808] * | 0.0025

...

snv:3838 chr1 [199637, 199637] * | 0.0175

snv:3840 chr1 [199676, 199676] * | 0.25

snv:3842 chr1 [199696, 199696] * | 0.0025

snv:3843 chr1 [199812, 199812] * | 0.0025

snv:3844 chr1 [199879, 199879] * | 0.0025

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Obviously, this is a GRanges object that also contains a metadata column with minor allele
frequencies (MAFs). For convenience, there is a separate accessor function MAF() for retrieving
these MAFs:

6 Performing an Association Test 33

summary(MAF(geno))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00250 0.00250 0.00750 0.05674 0.05500 0.45500

The simplest approach is to perform a test for the association between the null model the entire
genotype:

assocTest(geno, model.c)

Association test results:

Null model: linear

Number of samples: 200

Number of variants: 962

Kernel: linear.podkat

Test statistic: 3034597

p-value: 0.05875229

assocTest(geno, model.b)

Association test results:

Null model: logistic

Number of samples: 200

Number of variants: 962

Kernel: linear.podkat

Test statistic: 257220.9

p-value: 0.01062048

(small sample correction + correction for higher moments applied)

As already mentioned in Section 5, it is not necessarily the best idea to consider associations
between the null model and all variants of the whole genome at once. The larger the number of
variants is that are considered at once, the smaller is the ratio of potentially associated variants.
Thus, it may become harder for the test to disentangle random effects from true associations.
Therefore, the better and more common approach is to split the genome into a set of (overlapping)
windows/regions of interest as described in Section 5 — hoping that potentially causal variants will
accumulate in certain regions and, thereby, lead to highly significant p-values for these regions. If
we already have a certain set of regions of interest, we can simply pass them to assocTest() as
third argument:

res.c <- assocTest(geno, model.c, windows)

print(res.c)

Overview of association test:

Null model: linear

34 6 Performing an Association Test

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 0.05: 8

##

Results for the 8 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.34 1.294084e-07

2 chr1 10001 15000 5000 33 764828.81 4.874460e-06

3 chr1 140001 145000 5000 15 79937.68 3.599077e-03

4 chr1 5001 10000 5000 34 152555.30 9.785569e-03

5 chr1 132501 137500 5000 21 89287.55 1.349559e-02

6 chr1 142501 147500 5000 23 94629.68 3.338620e-02

7 chr1 42501 47500 5000 19 58191.23 3.341032e-02

8 chr1 25001 30000 5000 23 103713.12 3.754557e-02

Obviously, assocTest() performs the association test for each region independently and
computes a p-value for each region.

The assocTest() as used above has a few arguments that influence the way the tests are
performed. Most importantly, the kernel argument allows for choosing among 6 different ker-
nels. Details about these kernels are available in Subsection 9.2. We suggest the default setting
"linear.podkat", i.e. the position-dependent linear kernel, PODKAT’s most important contri-
bution and achievement. For comparison purposes, PODKAT also provides an up-to-date imple-
mentation of the SKAT test [16] which can be chosen by setting kernel="linear.SKAT". The
four other kernels have not turned out to be advantageous in simulations, moreover, they require
much longer computation times. Anyway, they are available and ready to be used.

Another important decision is the choice of a weighting schemes, i.e. whether and how to
choose weights for variants depending on their minor allele frequency (MAF). Details are provided
in Subsection 9.3.

If the genotype matrix is too large to fit into the computer’s main memory or if parallelization
is desired, the alternative, as already mentioned, is to call assocTest() for a VCF file name.
Then assocTest() splits the regions of interest into batches and only loads those variants from
the VCF file at once (see Subsection 8.5.1). If called for a VCF file name (or TabixFile object),
the same arguments for controlling how variants are pre-processed and filtered are available as
for the readGenotypeMatrix() function (see ?assocTest, ?readGenotypeMatrix, and Sub-
section 8.2 of this manual for more details). This interface also allows for carrying out these
computations on multiple processor cores and/or on a computing cluster (see Subsection 8.5.2).
We first provide a simple example here without any parallelization:

6 Performing an Association Test 35

res.c <- assocTest(vcfFile, model.c, windows)

print(res.c)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 0.05: 8

##

Results for the 8 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.34 1.294084e-07

2 chr1 10001 15000 5000 33 764828.81 4.874460e-06

3 chr1 140001 145000 5000 15 79937.68 3.599077e-03

4 chr1 5001 10000 5000 34 152555.30 9.785569e-03

5 chr1 132501 137500 5000 21 89287.55 1.349559e-02

6 chr1 142501 147500 5000 23 94629.68 3.338620e-02

7 chr1 42501 47500 5000 19 58191.23 3.341032e-02

8 chr1 25001 30000 5000 23 103713.12 3.754557e-02

The above steps can be carried out for binary traits as well. For brevity, we only show the
variant with the genotype matrix here:

res.b <- assocTest(geno, model.b, windows)

print(res.b)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 0.05: 22

36 6 Performing an Association Test

##

Results for the 10 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 38386.55 2.027088e-05

2 chr1 10001 15000 5000 33 43084.90 5.885611e-05

3 chr1 22501 27500 5000 27 25640.34 7.413942e-04

4 chr1 20001 25000 5000 23 16120.63 1.756380e-03

5 chr1 25001 30000 5000 23 10650.48 3.916781e-03

6 chr1 87501 92500 5000 30 12891.61 7.162114e-03

7 chr1 77501 82500 5000 17 4890.26 7.558220e-03

8 chr1 35001 40000 5000 23 22436.29 8.199761e-03

9 chr1 37501 42500 5000 25 22570.67 9.472915e-03

10 chr1 27501 32500 5000 27 32423.04 9.829131e-03

So, it seems as if the computations were completely analogous to continuous traits. However,
there is an important aspect that indeed makes a difference: small sample adjustment. As the
reader may have noticed above, the null model model.b includes 10,000 resampled residuals for
correction of higher moments of the null distribution. This correction has actually been performed
by the above association test. Let us shortly run the association test without any correction:

res.b.noAdj <- assocTest(geno, model.b, windows, adj="none")

print(res.b.noAdj)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 0.05: 27

##

Results for the 10 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 38386.55 1.142026e-06

2 chr1 22501 27500 5000 27 25640.34 2.299380e-06

3 chr1 10001 15000 5000 33 43084.90 2.878117e-06

4 chr1 20001 25000 5000 23 16120.63 6.565331e-05

5 chr1 27501 32500 5000 27 32423.04 1.818834e-04

6 chr1 30001 35000 5000 32 32024.75 2.270615e-04

7 chr1 25001 30000 5000 23 10650.48 3.966917e-04

8 chr1 77501 82500 5000 17 4890.26 4.788232e-04

7 Analyzing and Visualizing Results 37

9 chr1 87501 92500 5000 30 12891.61 1.809554e-03

10 chr1 35001 40000 5000 23 22436.29 3.330749e-03

Obviously, the p-values seem to have become more significant. Actually, this is not the case,
but only the result of a too crude approximation of the null distribution for smaller sample sizes.
So, in a case like this one, small sample adjustment and correction of higher moments are essential.

7 Analyzing and Visualizing Results

7.1 Multiple Testing Correction

As soon as multiple tests are performed in parallel, the tests’ raw p-values do not allow for a
correct assessment of the overall type I error rate anymore and multiple testing correction must be
employed. PODKAT provides a simple method for multiple testing correction that is a wrapper
around the R standard function p.adjust() from the stats package. If called for an object
of class AssocTestResultRanges (the class of objects the assocTest() function creates when
called for multiple regions), p.adjust() adds a metadata column named p.value.adj with
adjusted p-values:

print(p.adjust(res.c))

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: holm

##

Overview of significance of results:

Number of tests with p < 0.05: 8

Number of tests with adj. p < 0.05: 2

##

Results for the 8 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.34 1.294084e-07

2 chr1 10001 15000 5000 33 764828.81 4.874460e-06

3 chr1 140001 145000 5000 15 79937.68 3.599077e-03

4 chr1 5001 10000 5000 34 152555.30 9.785569e-03

5 chr1 132501 137500 5000 21 89287.55 1.349559e-02

6 chr1 142501 147500 5000 23 94629.68 3.338620e-02

7 chr1 42501 47500 5000 19 58191.23 3.341032e-02

38 7 Analyzing and Visualizing Results

8 chr1 25001 30000 5000 23 103713.12 3.754557e-02

p.value.adj

1 1.022327e-05

2 3.802079e-04

3 2.771289e-01

4 7.437033e-01

5 1.000000e+00

6 1.000000e+00

7 1.000000e+00

8 1.000000e+00

For consistency with the standard p.adjust() function, the default correction procedure is
"holm", which corresponds to the Holm-Bonferroni method for controlling the familywise error
rate (FWER) [6]. If a different method is desired, e.g. the popular Benjamini-Hochberg false dis-
covery rate (FDR) correction [2], the method argument must be used to select the desired method:

res.c.adj <- p.adjust(res.c, method="BH")

print(res.c.adj)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: BH

##

Overview of significance of results:

Number of tests with p < 0.05: 8

Number of tests with adj. p < 0.05: 2

##

Results for the 8 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.34 1.294084e-07

2 chr1 10001 15000 5000 33 764828.81 4.874460e-06

3 chr1 140001 145000 5000 15 79937.68 3.599077e-03

4 chr1 5001 10000 5000 34 152555.30 9.785569e-03

5 chr1 132501 137500 5000 21 89287.55 1.349559e-02

6 chr1 142501 147500 5000 23 94629.68 3.338620e-02

7 chr1 42501 47500 5000 19 58191.23 3.341032e-02

8 chr1 25001 30000 5000 23 103713.12 3.754557e-02

p.value.adj

1 1.022327e-05

7 Analyzing and Visualizing Results 39

2 1.925412e-04

3 9.477570e-02

4 1.932650e-01

5 2.132303e-01

6 3.707625e-01

7 3.707625e-01

8 3.707625e-01

res.b.adj <- p.adjust(res.b, method="BH")

print(res.b.adj)

Overview of association test:

Null model: logistic

Number of samples: 200

Number of regions: 79

Number of regions without variants: 0

Average number of variants in regions: 24.1

Genome: hgA

Kernel: linear.podkat

p-value adjustment: BH

##

Overview of significance of results:

Number of tests with p < 0.05: 22

Number of tests with adj. p < 0.05: 4

##

Results for the 10 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 38386.55 2.027088e-05

2 chr1 10001 15000 5000 33 43084.90 5.885611e-05

3 chr1 22501 27500 5000 27 25640.34 7.413942e-04

4 chr1 20001 25000 5000 23 16120.63 1.756380e-03

5 chr1 25001 30000 5000 23 10650.48 3.916781e-03

6 chr1 87501 92500 5000 30 12891.61 7.162114e-03

7 chr1 77501 82500 5000 17 4890.26 7.558220e-03

8 chr1 35001 40000 5000 23 22436.29 8.199761e-03

9 chr1 37501 42500 5000 25 22570.67 9.472915e-03

10 chr1 27501 32500 5000 27 32423.04 9.829131e-03

p.value.adj

1 0.001601399

2 0.002324816

3 0.019523380

4 0.034688514

5 0.061885140

6 0.073987126

7 0.073987126

8 0.073987126

40 7 Analyzing and Visualizing Results

9 0.073987126

10 0.073987126

The user has to make sure to choose a correction method the assumptions of which are fulfilled
by the given setup. Note that the tests performed by PODKAT are usually not independent of each
other, at least not if overlapping windows and/or windows close to each other are tested.

7.2 Visualization

PODKAT also offers functions for visualizing the results of association tests. Suppose we have
carried out an association test involving multiple regions, e.g. a whole-genome or whole-exome
association test. In such cases, the assocTest() returns an AssocTestResultRanges object that
contains a metadata column with p-values and, if multiple testing correction has been employed
(see Subsection 7.1 above), another metadata column with adjusted p-values. If the R standard
generic function plot() is called on such an object, a so-called Manhattan plot is produced, that
is, log-transformed p-values are plotted along the genome:

plot(res.c.adj)

Chromosome chr1 of hgA

−
lo

g 1
0(p

)

0 50,000 100,000 150,000 200,000

1 200,000

0
1

2
3

4
5

6
7

0.
05

Obviously, the function plots raw (uncorrected) p-values, where the ones passing the significance
threshold are plotted in red and the insignificant ones are plotted in gray. In order to correctly
account for multiple testing, we would either have to choose a stricter threshold or use adjusted
p-values instead. The latter can be accomplished by choosing a different p-value column for
plotting:

7 Analyzing and Visualizing Results 41

plot(res.c.adj, which="p.value.adj")

Chromosome chr1 of hgA

−
lo

g 1
0(p

)

0 50,000 100,000 150,000 200,000

1 200,000

0
1

2
3

4
5

0.
05

If the genome consists of multiple chromosomes, the default is to plot the insignificant p-values in
alternating colors (gray/light gray by default). If very many regions have been tested, in particular
in whole-genome studies, it is advisable to use semi-transparent colors (using the alpha channel
of functions like gray(), rgb(), or hsv()) to get an impression of the density of p-values. Al-
though this simple example does not necessitate this technique, we show an example in order to
demonstrate how it works:

plot(res.c.adj, which="p.value.adj", col=gray(0.5, alpha=0.25))

Chromosome chr1 of hgA

−
lo

g 1
0(p

)

0 50,000 100,000 150,000 200,000

1 200,000

0
1

2
3

4
5

0.
05

42 7 Analyzing and Visualizing Results

PODKAT further provides a function for making quantile-quantile (Q-Q) plots. If called for
a single AssocTestResultRanges object, the function qqplot() plots log-transformed p-values
against a uniform distribution of p-values (which one would expect under the null hypothesis):

qqplot(res.c)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Expected − log10(p)

−
lo

g 1
0(p

) i
n

re
s.

c

●

●

●

●
●

●●●
●●●

The same function can also be used to compare two association test results in terms of their distri-
butions of p-values, e.g. to compare two different kernels or to compare results with and without
small-sample correction:

qqplot(res.b, res.b.noAdj)

7 Analyzing and Visualizing Results 43

0 1 2 3 4 5 6

0
1

2
3

4
5

6

− log10(p) in res.b

−
lo

g 1
0(p

) i
n

re
s.

b.
no

A
dj

●

●
●

●

●
●

●
●

●

●●
●●●●

●●●●

●●
●●●●

●●
●●●

●
●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

For the above example, we see that the p-values without small-sample correction are supposedly
more significant. The reason is that, in this example, the p-values without correction are actually
systematically inflated:

qqplot(res.b.noAdj)

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Expected − log10(p)

−
lo

g 1
0(p

) i
n

re
s.

b.
no

A
dj

●

●
●

●

●
●

●
●

●

●●
●●●●

●●●●

●●
●●●●

●●
●●●

●
●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

44 7 Analyzing and Visualizing Results

7.3 Filtering Significant Regions

PODKAT offers a simple method for stripping off all insignificant results from an association test
result. The method is called filterResult() and can be applied to association test results given
as objects of class AssocTestResultRanges. The user can choose the significance threshold and
which p-value column the filter should be applied to. The result is a subset of the input object
consisting of those regions the p-value of which passed the threshold.

res.c.f <- filterResult(res.c, cutoff=1.e-6)

print(res.c.f, cutoff=1.e-6)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 1

Number of regions without variants: 0

Average number of variants in regions: 31.0

Genome: hgA

Kernel: linear.podkat

p-value adjustment: none

##

Overview of significance of results:

Number of tests with p < 1e-06: 1

##

Results for the 1 most significant regions:

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.3 1.294084e-07

res.c.adj.f <- filterResult(res.c.adj, filterBy="p.value.adj")

print(res.c.adj.f)

Overview of association test:

Null model: linear

Number of samples: 200

Number of regions: 2

Number of regions without variants: 0

Average number of variants in regions: 32.0

Genome: hgA

Kernel: linear.podkat

p-value adjustment: BH

##

Overview of significance of results:

Number of tests with p < 0.05: 2

Number of tests with adj. p < 0.05: 2

##

Results for the 2 most significant regions:

7 Analyzing and Visualizing Results 45

seqnames start end width n Q p.value

1 chr1 7501 12500 5000 31 769748.3 1.294084e-07

2 chr1 10001 15000 5000 33 764828.8 4.874460e-06

p.value.adj

1 1.022327e-05

2 1.925412e-04

7.4 Contributions of Individual Variants

The association tests provided by PODKAT do not test single-locus variants, but consider multiple
variants located in the same genomic window simultaneously, i.e. multiple variants are “collapsed”
into a single score and tested together. As a consequence, PODKAT provides association test re-
sults per window, but does not allow for pinpointing which individual variants may have made a
major contribution to the test’s outcome. For linear kernels (choices kernel="linear.podkat"
and kernel="linear.SKAT"), PODKAT offers a method named weights() that allows for com-
puting the individual contribution that individual variants made to the outcome of a test. It should
be clear that this makes little sense for non-significant windows. Hence, this method should be
applied to a filtered result.

w.res.c.adj <- weights(res.c.adj.f, geno, model.c)

w.res.c.adj

GRangesList object of length 2:

$chr1:7501-12500

GRanges object with 31 ranges and 2 metadata columns:

seqnames ranges strand | weight.raw

<Rle> <IRanges> <Rle> | <numeric>

snv:160 chr1 [7713, 7713] * | -44.4915214738852

snv:164 chr1 [7834, 7834] * | -40.8922243097158

snv:166 chr1 [7932, 7932] * | -43.5583181677057

snv:167 chr1 [7976, 7976] * | -44.3762021678535

snv:177 chr1 [8342, 8342] * | -56.9143639802579

...

snv:249 chr1 [11888, 11888] * | 324.93127428678

snv:256 chr1 [12191, 12191] * | 189.297136566301

snv:258 chr1 [12273, 12273] * | 161.128284537927

snv:261 chr1 [12307, 12307] * | 144.858945312137

snv:264 chr1 [12369, 12369] * | 115.201751621058

weight.contribution

<numeric>

snv:160 0.000833988385587964

snv:164 0.000704509666285363

snv:166 0.000799369719837965

snv:167 0.000829670694537205

46 7 Analyzing and Visualizing Results

snv:177 0.00136473792799336

... ...

snv:249 0.044482431119455

snv:256 0.015097101560757

snv:258 0.0109382804504061

snv:261 0.00884089281254714

snv:264 0.0055914397873343

##

...

<1 more element>

seqinfo: 1 sequence from hgA genome

Obviously, weights() returns a GRangesList object with as many components as the first
argument has regions. Each of the list components is a GRanges object with two metadata columns
weight.raw and weight.contribution. The former corresponds to the raw contributions of the
variants. For each variant, the corresponding entry in the column weight.raw is positive if the
variant is positively associated with the residual/trait. It is negative if the variant is negatively
associated with the residual/trait. The value is around zero if there is (almost) no association. The
absolute value gives an indication about the magnitude of contribution to the test’s statistic. The
metadata column weight.contribution corresponds to the relative contribution of each variant.
It is nothing else but the squares of the weight.raw column, but normalized to a sum of 1. As an
example, a value of 0.2 means that this variant contributed 20% to the test statistic of this region.
Subsection 7.4 provides more details about the contributions are computed.

As an example, we plot a histogram of relative contributions of variants of the first region:

hist(mcols(w.res.c.adj[[1]])$weight.contribution, col="lightblue",

border="lightblue", xlab="weight.contribution", main="")

weight.contribution

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0
5

10
15

7 Analyzing and Visualizing Results 47

The histogram shows a bimodal distribution which indicates that the major contributions are made
by only a few variants, whereas all others only make a minor contribution.

The PODKAT package provides a method for plotting numerical metadata columns of GRanges
objects. This method can be used to plot the contributions of individual variants in a window:

plot(w.res.c.adj[[1]], "weight.contribution")

w
ei

gh
t.c

on
tr

ib
ut

io
n

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

sn
v:

16
0

sn
v:

16
4

sn
v:

16
6

sn
v:

16
7

sn
v:

17
7

sn
v:

17
9

sn
v:

18
1

sn
v:

18
9

sn
v:

19
1

sn
v:

19
3

sn
v:

19
6

sn
v:

20
1

sn
v:

20
2

sn
v:

20
3

sn
v:

20
4

sn
v:

20
5

sn
v:

22
3

sn
v:

22
7

sn
v:

23
3

sn
v:

23
4

sn
v:

23
7

sn
v:

23
9

sn
v:

24
0

sn
v:

24
3

sn
v:

24
6

sn
v:

24
7

sn
v:

24
9

sn
v:

25
6

sn
v:

25
8

sn
v:

26
1

sn
v:

26
4

In the above plot, each variant is visualized as an equally large bar/interval along the horizontal
axis. Alternatively, the function can also plot contributions (or any other numerical metadata
column) along the genome. In the following plot, the type "b" has been chosen with the aim to
indicate the positions of variants:

plot(w.res.c.adj[[1]], "weight.raw", alongGenome=TRUE, type="b")

48 7 Analyzing and Visualizing Results

● ● ●●
●●

●

●
●

●

●

●

●●●●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

chr1

w
ei

gh
t.r

aw

8000 9000 10000 11000 12000

−
10

0
0

10
0

20
0

30
0

40
0

50
0

In order to allow the user to easily find the most indicative variant, the filterResult()

method can be applied to weights, too. If called for GRanges or GRangesList objects, the function
filterResult() checks if a metadata column weight.contribution is available and strips off
all variant with a relative contribution lower than the given threshold cutoff (the default is 0.1):

filterResult(w.res.c.adj, cutoff=0.07)

GRangesList object of length 2:

$chr1:7501-12500

GRanges object with 7 ranges and 2 metadata columns:

seqnames ranges strand | weight.raw

<Rle> <IRanges> <Rle> | <numeric>

snv:233 chr1 [11173, 11173] * | 441.156554709988

snv:234 chr1 [11242, 11242] * | 460.51532169312

snv:237 chr1 [11387, 11387] * | 494.787767873738

snv:239 chr1 [11392, 11392] * | 495.983773653802

snv:240 chr1 [11402, 11402] * | 494.259038387

snv:243 chr1 [11459, 11459] * | 472.102402291111

snv:246 chr1 [11547, 11547] * | 438.813319755277

weight.contribution

<numeric>

snv:233 0.0819956777922736

snv:234 0.0893498145851996

snv:237 0.103143863855037

snv:239 0.103643107206047

snv:240 0.1029235428705

snv:243 0.0939026628867125

snv:246 0.0811269391712615

##

7 Analyzing and Visualizing Results 49

$chr1:10001-15000

GRanges object with 7 ranges and 2 metadata columns:

seqnames ranges strand | weight.raw

snv:233 chr1 [11173, 11173] * | 441.156554709988

snv:234 chr1 [11242, 11242] * | 460.51532169312

snv:237 chr1 [11387, 11387] * | 494.787767873738

snv:239 chr1 [11392, 11392] * | 495.983773653802

snv:240 chr1 [11402, 11402] * | 494.259038387

snv:243 chr1 [11459, 11459] * | 472.102402291111

snv:246 chr1 [11547, 11547] * | 438.813319755277

weight.contribution

snv:233 0.0825230905029524

snv:234 0.0899245305846015

snv:237 0.103807305956991

snv:239 0.104309760541765

snv:240 0.103585567823516

snv:243 0.0945066637231773

snv:246 0.0816487639801957

##

seqinfo: 1 sequence from hgA genome

That the same variants stand out twice in the above result is neither an error nor a coincidence:
the most indicative variants of both windows appear are located in their overlap.

As a further analysis tool, PODKAT offers to plot the genotype in a heatmap-like fashion, as it
is or with respect to traits/phenotypes. In the following example, we read the region that has been
identified as most significant from the VCF file and display it:

res.c.adj.sorted <- sort(res.c.adj, sortBy="p.value.adj")

Zi <- readGenotypeMatrix(vcfFile, regions=res.c.adj.sorted[1])

plot(Zi, labRow=NA)

50 7 Analyzing and Visualizing Results

sn
v:

16
0

sn
v:

16
4

sn
v:

16
6

sn
v:

16
7

sn
v:

17
7

sn
v:

17
9

sn
v:

18
1

sn
v:

18
9

sn
v:

19
1

sn
v:

19
3

sn
v:

19
6

sn
v:

20
1

sn
v:

20
2

sn
v:

20
3

sn
v:

20
4

sn
v:

20
5

sn
v:

22
3

sn
v:

22
7

sn
v:

23
3

sn
v:

23
4

sn
v:

23
7

sn
v:

23
9

sn
v:

24
0

sn
v:

24
3

sn
v:

24
6

sn
v:

24
7

sn
v:

24
9

sn
v:

25
6

sn
v:

25
8

sn
v:

26
1

sn
v:

26
4

The plot is more expressive if the genotypes are plotted along with the trait/phenotype:

plot(Zi, y=pheno.c$y, labRow=NA)

7 Analyzing and Visualizing Results 51

sn
v:

16
0

sn
v:

16
4

sn
v:

16
6

sn
v:

16
7

sn
v:

17
7

sn
v:

17
9

sn
v:

18
1

sn
v:

18
9

sn
v:

19
1

sn
v:

19
3

sn
v:

19
6

sn
v:

20
1

sn
v:

20
2

sn
v:

20
3

sn
v:

20
4

sn
v:

20
5

sn
v:

22
3

sn
v:

22
7

sn
v:

23
3

sn
v:

23
4

sn
v:

23
7

sn
v:

23
9

sn
v:

24
0

sn
v:

24
3

sn
v:

24
6

sn
v:

24
7

sn
v:

24
9

sn
v:

25
6

sn
v:

25
8

sn
v:

26
1

sn
v:

26
4

−3 −2 −1 0 1 2 3 4

In this plot, the samples (rows) are sorted according to the phenotype value. This allows for better
finding variants whose minor alleles (gray or black) accumulate in the upper or lower part of the
plot. For instance, it is clearly visible that the minor alleles of variant snv:239, the one that had
the highest contribution, accumulate in the upper part of the plot.

Note, however, that the genotypes have not been tested for associations with the trait directly,
but for associations with the trait after correction for covariates (i.e. with the null model residuals):

plot(Zi, y=residuals(model.c), labRow=NA)

52 7 Analyzing and Visualizing Results

sn
v:

16
0

sn
v:

16
4

sn
v:

16
6

sn
v:

16
7

sn
v:

17
7

sn
v:

17
9

sn
v:

18
1

sn
v:

18
9

sn
v:

19
1

sn
v:

19
3

sn
v:

19
6

sn
v:

20
1

sn
v:

20
2

sn
v:

20
3

sn
v:

20
4

sn
v:

20
5

sn
v:

22
3

sn
v:

22
7

sn
v:

23
3

sn
v:

23
4

sn
v:

23
7

sn
v:

23
9

sn
v:

24
0

sn
v:

24
3

sn
v:

24
6

sn
v:

24
7

sn
v:

24
9

sn
v:

25
6

sn
v:

25
8

sn
v:

26
1

sn
v:

26
4

−3 −2 −1 0 1 2 3 4

Now the accumulation of minor alleles of variant snv:239 in the upper part of the plot becomes
even more prominent.

Analogous functionality is also available for binary traits. In such a case, however, samples
are sorted according to class (trait 0 or 1) and color-coded:

res.b.adj.sorted <- sort(res.b.adj, sortBy="p.value.adj")

Zi <- readGenotypeMatrix(vcfFile, regions=res.b.adj.sorted[1])

plot(Zi, y=factor(pheno.b$y), labRow=NA)

8 Miscellanea 53

sn
v:

16
0

sn
v:

16
4

sn
v:

16
6

sn
v:

16
7

sn
v:

17
7

sn
v:

17
9

sn
v:

18
1

sn
v:

18
9

sn
v:

19
1

sn
v:

19
3

sn
v:

19
6

sn
v:

20
1

sn
v:

20
2

sn
v:

20
3

sn
v:

20
4

sn
v:

20
5

sn
v:

22
3

sn
v:

22
7

sn
v:

23
3

sn
v:

23
4

sn
v:

23
7

sn
v:

23
9

sn
v:

24
0

sn
v:

24
3

sn
v:

24
6

sn
v:

24
7

sn
v:

24
9

sn
v:

25
6

sn
v:

25
8

sn
v:

26
1

sn
v:

26
4

Note that, if the binary trait is numerical, it must be passed as a factor in order to ensure that
plot() correctly recognizes it as a categorical entity.

8 Miscellanea

8.1 Creating Suitable VCF Files

The main file format for storing variant calls, no matter whether they have been determined by
microarrays or next-generation sequencing, is the Variant Call Format (VCF).6 Not surprisingly,
this is the main file format that is used and supported by PODKAT. However, in order to make VCF
files suitable as input files for PODKAT, some preparations may be necessary. Most importantly,
PODKAT expects all samples of a study to be included in one single VCF file. In other words, if
samples are spread over multiple VCF files, these files must be merged before PODKAT can be
used.

8.1.1 Software tools

All steps described below require that tabix and bgzip are available on the computer system on
which the VCF preprocessing steps are to be performed. If they are not yet available, the latest
version of tabix [9] must be downloaded,7 compiled, and installed. This package also includes

6http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42
7http://sourceforge.net/projects/samtools/files/tabix/

http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42
http://sourceforge.net/projects/samtools/files/tabix/

54 8 Miscellanea

bgzip, so no extra effort is necessary to install bgzip. Make sure that the executables tabix and
bgzip are in the default search path.

For merging and concatentating VCF files, either install the Perl-based VCFtools8 [4] or the
faster bcftools/htslib VCF commands.9 Make sure that the necessary executables are in the default
search path.

All examples below are supposed to run on Unix-like systems (including Linux and Mac OS
X). The examples below that are prefixed with $ are supposed to be run in a Unix/Linux terminal,
not in an R session. If the user wants to run them on a MS Windows system, some modifications
may be necessary.

8.1.2 Merging VCF files

Suppose that the samples of a study are distributed across multiple Gnu-zipped VCF files, e.g.
s1.vcf.gz – s100.vcf.gz. Further suppose that a Tabix index file is available for each of these
files. If this is not the case, tabix must be run on the VCF files to create this index file. As an
example,

$ tabix -p vcf s1.vcf.gz

will create an index file s1.vcf.gz.tbi. As said, if an index file is available for each VCF file,
the files are ready to be merged. Using the Perl-based VCFtools, this can be done as follows:

$ vcf-merge -c both s*.vcf.gz | bgzip -c > merged.vcf.gz

$ tabix -p vcf merged.vcf.gz

The first command above merges all files s1.vcf.gz – s10.vcf.gz into a newly created VCF
file merged.vcf.gz. The second command again creates a Tabix index file of the merged VCF
file. The option -c both ensures that single-nucleotide variants (SNVs)10 and indels ocurring at
overlapping locations are kept separate and not merged.

If the bcftools/htslib VCF commands are used, merging can be done in a very similar way:

$ bcftools merge -m both s*.vcf.gz | bgzip -c > merged.vcf.gz

$ tabix -p vcf merged.vcf.gz

Note that -c both must be replaced by -m both in this variant; the meaning, however, is the
same.

The above commands are to be used in cases where the sample sets of the individual VCF
files are disjoint/non-overlapping. Do not use them in case that the sample sets of the VCF files
overlap, as this would lead to duplication of samples in the merged VCF file!

8http://vcftools.sourceforge.net/
9http://vcftools.sourceforge.net/htslib.html

10which of course includes single-nucleotide polymorphisms (SNPs)

http://vcftools.sourceforge.net/
http://vcftools.sourceforge.net/htslib.html

8 Miscellanea 55

8.1.3 Concatenating VCF files

Suppose that the study data are split over multiple files each of which contains the same sam-
ples, but each of which contains different variants, e.g. each file contains variants of one chromo-
some. Then PODKAT can be used in two ways: (1) by running association tests for each VCF
file/chromosome independently and merging the results afterwards or (2) by concatenating the
VCF files into one single VCF file. The latter can be accomplished as follows (for an example in
which we have files chr1.vcf.gz – chr22.vcf.gz and chrX.vcf.gz all of which have been
indexed previously):

$ vcf-concat chr*.vcf.gz | bgzip -c > concat.vcf.gz

$ tabix -p vcf concat.vcf.gz

Suppose the same scenario as above, but with an additional file chrY.vcf.gz which contains
only the male samples of the study. This case can be handled with the -p option which merges
files even if the sample sets do not agree. In such a case, missing values are imputed on the Y
chromosome for female samples:

$ vcf-concat -p chr*.vcf.gz | bgzip -c > concat.vcf.gz

$ tabix -p vcf concat.vcf.gz

8.1.4 Filtering VCF files

If some special filtering steps should be performed prior to running an association test with POD-
KAT, the commands vcf-annotate or bcftools annotate can be used. See the tools’ docu-
mentation for more information [4].

8.2 Reading from VCF Files

The PODKAT package provides a lightweight, fast, and memory-efficient method for reading
genotypes from VCF files. Like the readVcf() function from the VariantAnnotation pack-
age [15], it uses the tabix API provided by the Rsamtools package [9, 14]. In contrast to
readVcf(), however, it concentrates on the absolutely necessary minimum and passes the re-
sult as a sparse matrix, which greatly reduces memory usage, in particular, if many variants have
a low minor allele frequency. The name of the function that has already been used above is
readGenotypeMatrix(). As a first argument, it expects a TabixFile object or simply the file-
name of a VCF file. The function allows for reading the entire VCF file at once or for limiting
to certain genomic regions. The latter can be accomplished by passing a GRanges object with the
regions of interest to readGenotypeMatrix() as argument regions. All of this functionality has
been used above already (cf. Sections 3 and 6 above).

The function readGenotypeMatrix() can be used as an alternative to the readVcf() func-
tion from the VariantAnnotation package [15]. However, the following restrictions have to be
taken into account:

56 8 Miscellanea

The returned object does not provide the exact genotypes. Instead, only integer values are
returned in sparse matrix format. A 1 corresponds to one minor allele, whereas higher
numbers correspond to a higher number of minor alleles. Phasing information is not taken
into account and different minor alleles are not distinguished either. All values not present
in the sparse matrix object are considered as major alleles only.

The readGenotypeMatrix() function does not allow for returning missing values. The
na.action option allows for three ways of treating missing values in the VCF file: if
"impute.major" (the default), all missing values are imputed with major alleles; if "omit",
all variants with missing values are ignored and omitted from the output object; if "fail",
the function stops with an error when it encounters the first missing value.

The function further allows for omitting indels, for omitting variants that do not have a PASS in
the FILTERS column of the VCF file, for omitting variants exceeding a certain ratio of missing
values, for omitting variants with an MAF above a certain threshold, and for swapping minor
and major alleles if a variant has an MAF greater than 50%. For details, see the help page of
readGenotypeMatrix().

The PODKAT package further provides a method for reading basic info, such as, alleles, types
of mutations, and minor allele frequencies (MAFs), from a VCF file without actually reading the
genotypes:

vInfo <- readVariantInfo(vcfFile, omitZeroMAF=FALSE, refAlt=TRUE)

vInfo

VariantInfo object with 3117 ranges and 4 metadata columns:

seqnames ranges strand | type

<Rle> <IRanges> <Rle> | <factor>

snv:1 chr1 [79, 79] * | TRANSITION

snv:2 chr1 [281, 281] * | TRANSVERSION

snv:6 chr1 [428, 428] * | TRANSVERSION

snv:7 chr1 [501, 501] * | TRANSITION

snv:8 chr1 [536, 536] * | TRANSVERSION

...

snv:3840 chr1 [199676, 199676] * | TRANSVERSION

snv:3842 chr1 [199696, 199696] * | TRANSVERSION

snv:3843 chr1 [199812, 199812] * | TRANSVERSION

snv:3844 chr1 [199879, 199879] * | TRANSVERSION

snv:3845 chr1 [199956, 199956] * | TRANSVERSION

MAF ref alt

<numeric> <character> <character>

snv:1 0.0000 C T

snv:2 0.0000 G C

snv:6 0.1025 A C

snv:7 0.0900 G A

snv:8 0.0000 A T

...

8 Miscellanea 57

snv:3840 0.2500 T A

snv:3842 0.0025 G C

snv:3843 0.0025 A C

snv:3844 0.0025 T A

snv:3845 0.0000 G T

seqinfo: 1 sequence from an unspecified genome; no seqlengths

summary(vInfo)

Variant info:

Number of variants: 3117

##

Mean MAF: 0.01751203

Median MAF: 0

Minimum MAF: 0

Maximum MAF: 0.455

##

INDEL: 0 (0.0%)

MULTIPLE: 0 (0.0%)

TRANSITION: 1098 (35.2%)

TRANSVERSION: 2019 (64.8%)

UNKNOWN: 0 (0.0%)

The object returned by readVariantInfo() is of class VariantInfo which is essentially a
GRanges object with the information about the variants stored in its metadata columns. By default,
readVariantInfo() does not return reference and alternate alleles. This must be enforced by
refAlt=TRUE. In any case, even if reference and alternate alleles are not returned, the function
returns information about the type of mutation (transition, transversion, multiple alternate alleles,
indel, or unknown/other).

8.3 Using Genotypes from Other Data Sources

The Variant Call Format11 (VCF) is the primary file format supported by the PODKAT package.
If a user has genotype data in another format, there are basically two ways of using such data:

1. Use some software tool to convert the genotype data into a VCF file.

2. Convert the data to a matrix format (inside or outside of R) and pass the matrix data to
PODKAT.

The first approach above obviously requires no adapation of the PODKAT workflow. For the
second approach, the matrix data have to be converted to a GenotypeMatrix object first. This
can be done simply by the genotypeMatrix() constructor. This function converts the matrix to a

11http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42

http://www.1000genomes.org/wiki/analysis/variant-call-format/vcf-variant-call-format-version-42

58 8 Miscellanea

columnwise sparse matrix and attaches positional information to it. The original matrix has to be
passed to genotypeMatrix() such that rows correspond to samples and columns correspond to
variants. The values in the matrix need to conform to PODKAT’s interpretation (0 . . . only major
alleles / other values . . . number of minor alleles). Here is a simple example with a random matrix:

A <- matrix(rbinom(10000, size=1, prob=0.05), 200, 50)

pos <- sort(sample(1:200000, 50))

Z <- genotypeMatrix(A, pos=pos, seqnames="chr1")

Z

Genotype matrix:

Number of samples: 200

Number of variants: 50

##

Mean MAF: 0.0257

Median MAF: 0.025

Minimum MAF: 0.0125

Maximum MAF: 0.0425

variantInfo(Z)

VariantInfo object with 50 ranges and 1 metadata column:

seqnames ranges strand | MAF

<Rle> <IRanges> <Rle> | <numeric>

[1] chr1 [9759, 9759] * | 0.0275

[2] chr1 [15001, 15001] * | 0.0175

[3] chr1 [19281, 19281] * | 0.0225

[4] chr1 [25299, 25299] * | 0.0425

[5] chr1 [36005, 36005] * | 0.03

...

[46] chr1 [175121, 175121] * | 0.035

[47] chr1 [175288, 175288] * | 0.02

[48] chr1 [177348, 177348] * | 0.0325

[49] chr1 [180437, 180437] * | 0.0175

[50] chr1 [193816, 193816] * | 0.02

seqinfo: 1 sequence from an unspecified genome; no seqlengths

In the example above, positions and chromosome names are supplied as a numeric vector and
a character vector, respectively. It is also possible to supply a GRanges object directly.

Though PODKAT has mainly been designed for analyzing sequencing data, there are also
genotypeMatrix() constructors that create a GenotypeMatrix object from an expression set
(eSet) object. Finally, it is worth to mention that PODKAT also can handle VCF data that are
stored in an object of class VCF (cf. package VariantAnnotation [15]). For details, see the help

8 Miscellanea 59

page of genotypeMatrix().

8.4 Preparations for a New Genome

As described in Section 5, it is necessary to define regions of interest for association testing. For
whole-genome association testing, this is typically done by partitioning the sequenced regions
of a genome into windows (overlapping or non-overlapping). The PODKAT package provides
readymade GRangesList objects with the sequenced regions of the following genomes: hg18,
hg19, hg38, b36, and b37. For other genomes, the sequenced regions must be pre-processed
first and stored to an object of class GRanges or GRangesList. PODKAT provides a func-
tion unmaskedRegions() that allows for performing this pre-processing step conveniently for
genomes given as MaskedBSgenome objects.

The following example shows how this can be done for the autosomal chromosomes of the
mouse mm10 genome:

library(BSgenome.Mmusculus.UCSC.mm10.masked)

regions <- unmaskedRegions(BSgenome.Mmusculus.UCSC.mm10.masked,

chrs=paste0("chr", 1:19))

names(regions)

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7"

[8] "chr8" "chr9" "chr10" "chr11" "chr12" "chr13" "chr14"

[15] "chr15" "chr16" "chr17" "chr18" "chr19"

regions$chr1

GRanges object with 21 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [3000001, 3002129] *

[2] chr1 [3003119, 22433268] *

[3] chr1 [22466511, 75055556] *

[4] chr1 [75121557, 78608149] *

[5] chr1 [78609095, 78610150] *

...

[17] chr1 [183503932, 192001776] *

[18] chr1 [192051777, 192152616] *

[19] chr1 [192152949, 192156656] *

[20] chr1 [192163814, 192184090] *

[21] chr1 [192185012, 195371971] *

seqinfo: 19 sequences from mm10 genome

PODKAT also allows for treating pseudo-autosomal regions separately. In order to facilitate
association testing in which pseudo-autosomal regions are treated like autosomal regions (and un-

60 8 Miscellanea

like sex chromosomes), it is necessary to define pseudo-autosomal regions from the beginning.
The unmaskedRegions() function can do that and all it needs is a data frame with positional
information about pseudo-autosomal regions. The format of the data frame has been chosen de-
liberately to make direct use of the definitions of pseudo-autosomal regions as provided by the
GWASTools package. The following code shows how to extract unmasked regions of sex chromo-
somes taking pseudoautosomal regions into account (based on hg38):

library(BSgenome.Hsapiens.UCSC.hg38.masked)

library(GWASTools)

pseudoautosomal.hg38 ## from GWASTools package

chrom region start.base end.base

X.PAR1 X PAR1 10001 2781479

X.PAR2 X PAR2 155701383 156030895

X.XTR X XTR 89140830 93328068

Y.PAR1 Y PAR1 10001 2781479

Y.PAR2 Y PAR2 56887903 57217415

Y.XTR Y XTR 3058342 6675059

psaut <- pseudoautosomal.hg38

psaut$chrom <- paste0("chr", psaut$chrom)

psaut

chrom region start.base end.base

X.PAR1 chrX PAR1 10001 2781479

X.PAR2 chrX PAR2 155701383 156030895

X.XTR chrX XTR 89140830 93328068

Y.PAR1 chrY PAR1 10001 2781479

Y.PAR2 chrY PAR2 56887903 57217415

Y.XTR chrY XTR 3058342 6675059

regions <- unmaskedRegions(BSgenome.Hsapiens.UCSC.hg38.masked,

chrs=c("chrX", "chrY"), pseudoautosomal=psaut)

names(regions)

[1] "chrX" "chrY" "X.PAR1" "X.PAR2" "X.XTR" "Y.PAR1"

[7] "Y.PAR2" "Y.XTR"

regions$chrX

GRanges object with 12 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrX [2781480, 37099262] *

8 Miscellanea 61

[2] chrX [37285838, 49348394] *

[3] chrX [49528395, 50228964] *

[4] chrX [50278965, 58555579] *

[5] chrX [58605580, 62412542] *

...

[8] chrX [114331199, 115738949] *

[9] chrX [115838950, 116557779] *

[10] chrX [116595567, 120879381] *

[11] chrX [120929382, 144425606] *

[12] chrX [144475607, 155701382] *

seqinfo: 2 sequences from hg38 genome

regions$X.PAR1

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrX [10001, 44821] *

[2] chrX [94822, 133871] *

[3] chrX [222347, 1949345] *

[4] chrX [2132995, 2781479] *

seqinfo: 2 sequences from hg38 genome

Except for the fact that the above example only considers the two sex chromosomes, this is
exactly the R code that was used to create the hg38Unmasked data object provided by PODKAT.
The other objects for hg18, hg19, b36, and b37 also contain pseudo-autosomal regions as separate
components.

8.5 Handling Large Data Sets

Small or moderately sized association tests like the examples presented above can be performed
within seconds on a regular desktop computer. Large whole-genome studies, for example, the
two whole-genome cohorts from the UK10K project12 comprise thousands of samples and tens of
millions of variants, and the compressed VCF files amount to hundreds of gigabytes. In order to
analyze such vast amounts of data, PODKAT implements two complementary strategies, chunking
and parallelization, that we will describe in more detail in the following.

8.5.1 Chunking

The genotype data stored in a 300GB compressed VCF file would hardly fit into the main memory
of a supercomputer, let alone a desktop computer. It has already been mentioned above that

12http://www.uk10k.org/studies/cohorts.html

http://www.uk10k.org/studies/cohorts.html

62 8 Miscellanea

assocTest() can be called for a TabixFile object or simply the file name of a compressed
VCF file, though we have not yet gone into detail how assocTest() processes a VCF file. In
fact, it does not load the entire file (as we have done above by calling readGenotypeMatrix()

and then calling assocTest() on the returned GenotypeMatrix object). Instead, it processes
batches of regions, i.e. the variants from a certain number of regions are read from the VCF file
and processed at once. How many regions are processed at once is determined by the batchSize
argument (the default is 20). So suppose that assocTest() is called for a ranges argument that
contains 1000 regions to be tested, then 50 read operations are performed, each time 20 regions
are read from the VCF file at once and then processed.

The batchSize should be chosen such that the entire genotype matrix of the regions of the
batch still fits into the computer’s main memory. Otherwise swapping will severly slow down
the computations. A batch size of 1 is not optimal either, since the large number of reading
operations and the redundancies from reading variants of overlapping regions may lead to much
overhead. The default of 20 regions is a cautious choice that need not be optimal under all possible
circumstances. Depending on the number of samples and the size of the regions, one may safely
increase the batch size to 100 or even higher.

By means of its chunking strategy, PODKAT is in principle able to process large VCF files
even on desktop computers in a single-processor manner. The resulting computation times, how-
ever, can be considerably long. If this is not acceptable, a multi-core system must be used along
with PODKAT’s parallelization abilities (see next).

8.5.2 Parallel Processing

As mentioned above already, PODKAT allows for performing large association tests on multiple
processors. PODKAT makes use of R socket clusters as provided by the parallel package (for-
merly snow/snowfall). The simplest way of using this approach is to set the nnodes argument
to a number larger than 1:

assocTest(vcfFile, model.b, windows, nnodes=8)

##!!## Overview of association test:

##!!## Null model: logistic

##!!## Number of samples: 200

##!!## Number of regions: 79

##!!## Number of regions without variants: 0

##!!## Average number of variants in regions: 24.1

##!!## Genome: hgA

##!!## Kernel: linear.podkat

##!!## p-value adjustment: none

In this example, computations are carried out by 8 parallel R client processes. If the computer
system has 8 or more cores/processors, these R client processes are typically assigned to different
cores/processors. So it makes no sense to set nnodes to a number higher than the number of
cores/processors; otherwise only unnecessary overhead would be caused.

8 Miscellanea 63

If the nnodes argument is used, the assocTest() function creates the socket cluster internally
and also shuts it down as soon as the computations have been finished. This is surely acceptable
for one-time analyses, but starting and shutting down the cluster creates unnecessary overhead if
multiple association tests are to be performed. In such a scenario, it is more efficient if the user
creates the socket cluster outside of assocTest() and uses it multiple times via the cl argument,
as in the following example which creates a socket cluster with 8 R client processes, runs two
association tests on this cluster, and then shuts down the cluster:

cl <- makePSOCKcluster(8)

assocTest(vcfFile, model.b, windows, cl=cl)

##!!## Overview of association test:

##!!## Null model: logistic

##!!## Number of samples: 200

##!!## Number of regions: 79

##!!## Number of regions without variants: 0

##!!## Average number of variants in regions: 24.1

##!!## Genome: hgA

##!!## Kernel: linear.podkat

##!!## p-value adjustment: none

assocTest(vcfFile, model.c, windows, cl=cl)

##!!## Overview of association test:

##!!## Null model: linear

##!!## Number of samples: 200

##!!## Number of regions: 79

##!!## Number of regions without variants: 0

##!!## Average number of variants in regions: 24.1

##!!## Genome: hgA

##!!## Kernel: linear.podkat

##!!## p-value adjustment: none

stopCluster(cl)

The granularity of parallelization is determined by the batchSize argument described in 8.5.1
above: each client process reads and processes as many regions at once as determined by the
batchSize argument, then hands back control to the R master session until it is assigned the next
chunk/batch. Each client reads directly from the VCF file itself. Therefore, no large genomic data
need to be exchanged between master and client processes.

Note that socket connections are used for the communication between the R master session
and its clients. Since the number of connections that can be opened in an R session is currently
limited to 128, the maximum number of possible clients is also limited by 128 — or less if other
connections are open in the R master session at the same time.

64 9 More Details About PODKAT

The above examples are geared to running parallelized association tests on a multi-core/multi-
processor machine. The parallel package also allows for distributing computations over multi-
ple machines (see documentation of package parallel for more details). This also works with
PODKAT, however, only under the following two conditions:

1. All necessary packages (including PODKAT) are installed on all machines. Moreover, R
versions and package versions need to be at least compatible on the different machines.
(better: exactly the same)

2. The path to the VCF file that should be analyzed is accessible to all R processes (master
and clients). This can be accomplished by (1) storing a copy of the VCF file on each ma-
chine at exactly the same location or (2) by sharing the file between all machines over the
network or, in the ideal case, within a clustered file system. Moreover, when assocTest()

distributes its computations over multiple client processes, the exchange of the null model
object between the master process and the client processes is done via a temporary file. This
file must reside in a directory that is accessible with exactly the same path from all clients.
For details on how to ensure that, see ?assocTest for details (tmpdir argument).

As said, it is in principle possible to distribute association tests over multiple machines, however,
it is more convenient and more efficient to run large association tests on sufficiently large multi-
core/multi-processor computers.

It is hard to give general estimations of computation times, since the performance of POD-
KAT’s association tests depends on various factors, such as, number of cores/processors, main
memory, bus architecture, file system performance, etc. So we restrict to one, not necessarily rep-
resentative example: Johannes Kepler University Linz (JKU) operates an SGI R© Altix R©UltraViolet
1000 compute server with 2,048 cores. On this system, a whole-genome association test (all au-
tosomal human chromosomes) with about 1,800 samples and about 570,000 regions completed
within less than 15 minutes (testing against continuous trait; size of compressed VCF file: about
350GB; computation distributed over 120 cores). Despite the intimidating figures of this example,
PODKAT is implemented such that it can perform this analysis also on a regular desktop computer
with a single processor only. The computation time, however, would amount to about 30 hours.

9 More Details About PODKAT

9.1 Test Statistics

In line with the SNP-set Kernel Association Test13 (SKAT) [16], PODKAT uses a variance com-
ponent score test to test for associations between genotypes and traits. SKAT assumes that traits
are distributed according to the following semi-parametric mixed models:

logit
(
p(y = 1)

)
= α0 +αT · x+ h(z) (binary trait)

y = α0 +αT · x+ h(z) + ε (continuous trait)

In the above formulas, y is the trait, x is the covariate vector, z is the genotype vector, α0 is the
intercept, α are the fixed effect coefficients, h(.) is an unknown centered smooth function and ε is

13formerly known as Sequence Kernel Association Test

9 More Details About PODKAT 65

the error term. SKAT and PODKAT both assume that the function h(.) is from a function space
that is generated by a given positive semi-definite kernel function K(., .) [11].

SKAT’s and PODKAT’s null hypothesis is that y is not influenced by the genotype:

p(y = 1) = logit−1
(
α0 +αT · x

)
(binary trait)

y = α0 +αT · x+ ε (continuous trait)

As mentioned above, we use a variance component score test [10, 11, 16] to test against the
null hypothesis. More specifically, assume that a study consists of l samples. The traits are,
therefore, given as a vector y ∈ {0, 1}l (if the trait is binary) or y ∈ Rl (if the trait is continuous).
Covariates are given as an l × n matrix X, and genotypes are given as an l × d matrix Z. Further
suppose that a (logistic) linear model has been trained to predict y from the covariates only. For
a continuous trait, we denote the obtained predictions/fitted values with ŷ. For a binary trait, ŷ
denotes the estimated/fitted probabilities that each sample belongs to the positive class. Then, in
both cases, y − ŷ corresponds to the null model residuals, i.e. what cannot be explained by the
covariates only. Then the test statistic is defined as

Q = (y − ŷ)T ·K · (y − ŷ),

where K is an l × l positive semi-definite kernel matrix defined as Ki,j = K(zi, zj), where zi
and zj are the genotypes of the i-th and j-th sample, respectively, i.e. the i-th and j-th row of the
genotype matrix Z. The kernel matrix K can be understood as a matrix that measures the pairwise
similarity of genotypes of samples. Since K is positive semi-definite, Q is non-negative. The
more structure the residual y− ŷ and the matrix K share, the largerQ (see Figure 2 for illustrative
examples). If the residuals and the genotypes are independent, i.e. if the test’s null hypothesis
holds true, large values can only occur by pure chance with a low probability. Hence, we test
whether the actually observed Q value is higher than expected by pure chance. In other words,
the test’s p-value is computed as the (estimated) probability of observing a value under the null
hypothesis of independence between genotypes and traits that is at least as large as the observed
Q.

In order to compute the p-value, we need to know the null distribution of Q, i.e. how Q is
distributed under the assumption that y does not depend on z. For continuous traits and normally
distributed noise ε, the residuals are normally distributed and the distribution of Q is obviously a
mixture of χ2 distributions. For binary traits, Q approximately follows a mixture of χ2 distribu-
tions, too [10, 16]. In either case,

Q ∼
q∑

k=1

λk · χ2
1,k, (1)

where χ2
1,k are independent χ2-distributed random variables with one degree of freedom and

λ1, . . . , λq are the non-zero eigenvalues of the positive semi-definite l × l matrix

P
1
2
0 ·K ·P

1
2
0 .

with
P0 = V −V · X̃ ·

(
X̃T ·V · X̃

)−1 · X̃T ·V. (2)

In (2), V is a diagonal matrix defined as V = σ̂ ·I for continuous traits (with σ̂ being the estimated
variance of regression residuals under the null hypothesis) and as V = diag

(
ŷ1(1−ŷ1), . . . , ŷl(1−

66 9 More Details About PODKAT

A

Q =

(y−ŷ)T︷ ︸︸ ︷(
1 1 1 1 −1 −1 −1 −1

)
·

K︷ ︸︸ ︷

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


·

y−ŷ︷ ︸︸ ︷

1
1
1
1

−1
−1
−1
−1


=

(y−ŷ)T ·K︷ ︸︸ ︷(
4 4 4 4 −4 −4 −4 −4

)
·

y−ŷ︷ ︸︸ ︷

1
1
1
1

−1
−1
−1
−1


= 32

B

Q =

(y−ŷ)T︷ ︸︸ ︷(
1 −1 1 −1 1 −1 1 −1

)
·

K︷ ︸︸ ︷

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1


·

y−ŷ︷ ︸︸ ︷

1
−1
1

−1
1

−1
1

−1


=

(y−ŷ)T ·K︷ ︸︸ ︷(
0 0 0 0 0 0 0 0

)
·

y−ŷ︷ ︸︸ ︷

1
−1
1

−1
1

−1
1

−1


= 0

C

Q =

(y−ŷ)T︷ ︸︸ ︷(
1 1 1 1 −1 −1 −1 −1

)
·

K︷ ︸︸ ︷

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


·

y−ŷ︷ ︸︸ ︷

1
1
1
1

−1
−1
−1
−1


=

(y−ŷ)T ·K︷ ︸︸ ︷(
4 4 4 4 0 0 0 0

)
·

y−ŷ︷ ︸︸ ︷

1
1
1
1

−1
−1
−1
−1


= 16

Figure 2: Examples with 8 samples illustrating the variance component test score. A: strong
correspondence between the signs of residuals and the blocks in the kernel matrix K results in
high Q. B: no correspondence between signs of residuals and blocks in K results in low Q.
C: even if there is only a partial correspondence between the signs of the residuals and the blocks
in K, a relatively high Q is obtained.

9 More Details About PODKAT 67

ŷl)
)

for binary traits, where the diagonal entries ŷi(1− ŷi) are obviously the estimated individual
variances of the fitted values of the null model [16]. Furthermore, X̃ = (1 | X) is the model
matrix of the (logistic) linear model trained on the covariates. Once the eigenvalues λ1, . . . , λq
have been determined, a method for estimating the probability distribution function of a mixture
of χ2 distributions can be used to compute the tests p-value, such as, Davies’ method [5] or Liu’s
method [12]. Like SKAT does too, PODKAT implements both methods and the method can be
chosen with the method argument (unless small sample correction is used; see Subsection 9.5
below).

PODKAT further implements a new variant of the above test that is suitable for smaller studies
with binary traits in which no covariates need to be taken into account. This test assumes the
following random effects model:

logit
(
p(y = 1)

)
= α0 + h(z)

The null hypothesis of this variant is that the trait is Bernoulli-distributed with a constant proba-
bility and independent of the genotype, i.e.

p(y = 1) = logit−1(α0).

With the same assumptions as above, the test statistic is given as

Q = yT ·K · y.

Since all yi are Bernoulli-distributed (we estimate the probability of a positive outcome as the
relative frequency of positive outcomes p̄ = 1

l

∑l
i=1 yi), Q is distributed according to a mixture of

Bernoulli distribitions and the exact p-value of the test can be computed as

p =
∑
y

p(y) ·
{

1 if yT ·K · y ≥ Q
0 otherwise

}
,

i.e. the sum of probabilities of outcomes that produce a test statistic at least as large as Q. For a
given outcome y = (y1, . . . , yl), the probability is given as

p(y) = p̄k · (1− p̄)l−k with k =

l∑
i=1

yi.

Since all yi are binary, Q = yT · K · y is nothing else but the sum of the sub-matrix of K
that consists of all those rows and columns i for which yi = 1 holds. If all entries of K are
non-negative, the test’s exact p-value can be computed by a recursive algorithm that starts from
y = (1, . . . , 1) and recursively removes ones as long as yT ·K · y ≥ Q holds.

In order to use this variant, the null model must be created with type="bernoulli". With
the default setting type="automatic", this variant is chosen if the trait is binary, no covariates
are present, and the number of samples does not exceed 100. The latter restriction is necessary to
avoid excessive computation times caused by the recursive computation of exact p-values.

68 9 More Details About PODKAT

9.2 Kernels

It is clear from the previous section that the association tests implemented in PODKAT rely on
the choice of a kernel function that computes the pairwise similarities of the samples’ genotypes.
The simplest kernel is the linear kernel that computes the similarities as the outer product of the
genotype matrices:

K = Z · ZT

This kernel can be used by calling assocTest() with the option kernel="linear.SKAT" and
without any weighting (weightFunc=NULL). The kernel’s name has been deliberately chosen to
indicate that this is nothing else but the linear SKAT test without weights. The same test can also
be carried out with the weighted linear kernel

K = Z ·W ·WT · ZT , (3)

where W is a diagonal matrix of weights W = diag(w1, . . . , wd) with which the columns
(i.e. variants) in the genotype matrix Z are scaled before the outer product is computed. If
assocTest() is called for a VCF file, the weighting must be done via a weighting function that
computes the variants’ weights as a function of their minor allele frequencies (see Subsection 9.3
below). If assocTest() is called for a matrix-like object, weights can be also specified as a
per-column weight vector using the weights argument.

The acronym PODKAT stands for Position-Dependent Kernel Association Test. This test uses
a position-dependent linear kernel:

K = Z ·W ·P ·PT ·WT · ZT , (4)

The d×dmatrix P is a positive semi-definite kernel matrix that measures the similarities/closeness
of positions of variants, i.e.

Pi,j = max
(
1− 1

w |posi − posj |, 0
)
,

where posi and posj are the genomic positions of the i-th and the j-th variant, respectively. The
parameter w determines the maximal radius of tolerance: if two positions are the same, the kernel
gives a similarity of 1; the similarity decreases linearly with increasing genomic distance of the
two variants under consideration; if the distance is w or larger, the positional similarity is 0. This
similarity is actually a positive semi-definite kernel [1, 3]. Figure 3 shows how the similarity
depends on the difference of positions. This kernel can be used by calling assocTest() with
the option kernel="linear.podkat" (which is the default). Weighting can be configured in the
same way as described for the linear kernel above. The radius of tolerance w can be set with the
parameter width (the default is 1,000 bp).

The motivation behind PODKAT’s position-dependent kernel is to better account for very rare
or even private variants, that is, variants that only occur in one sample. The linear kernel is not
able to take private variants into account. In order to demonstrate that, consider how a single entry
of the kernel matrix is computed (for simplicity without any weighting):

Ki,j =
d∑

k=1

Zi,k · Zj,k

9 More Details About PODKAT 69

difference of genomic positions

si
m

ila
rit

y

0.0

0.2

0.4

0.6

0.8

1.0

−w 0 w

Figure 3: Graph demonstrating how the similarity of genomic positions is computed depending
on the difference of positions.

If the k-th variant is private, there is only one i for which Zi,k > 0, whereas all other Zj,k = 0.
Hence, the k-th variant makes no contribution to Ki,j for i 6= j. The position-dependent kernel,
however, computes a convolution of the genotype matrix with the position kernel and thereby
makes use of agglomerations of private variants in the same genomic region.

Figure 4 shows a simple example that demonstrates how PODKAT’s position-dependent kernel
takes private variants into account. On the left, Panel A, shows the genotype matrix Z. Obviously,
Z consists of 6 samples and 11 variants, each of which occurs in only one sample. The right-
hand side of Panel A shows the kernel matrix that would be obtained for the linear kernel. Since
all variants are private, the kernel matrix is diagonal, which does not allow for any meaningful
association testing, since there are no blocks of similar samples in the kernel matrix (compare
with Section 9.1 and the examples in Figure 2). The left side of Panel B shows the convolution
of the genotype matrix Z with the positional similarities P, and the right side shows the resulting
kernel matrix for the position-dependent kernel. Suddenly, two blocks of samples (samples 1–3
and samples 4–6) become visible, as a result of the fact that samples 1–3 have minor alleles in
the left half of the sequence and samples 4–6 have minor alleles in the right half of the sequence.
Now suppose that samples 1–3 are cases and samples 4–6 are controls. If the mutations/minor
alleles in the left half of the sequence (e.g. a particular exon or transcription factor binding site)
are causal for the disease, PODKAT would be able to detect that, whereas SKAT with the regular
linear kernel would not be able to detect that.

PODKAT further provides the IBS (identity by state) kernel

Ki,j =
1∑d

k=1wd

d∑
k=1

wk · (2− |Zi,k − Zj,k|)

and the quadratic kernel

Ki,j =
(
1 +

d∑
k=1

wk · Zi,k · Zj,k
)2

that are also available in SKAT [16]. In order to make use of these two kernels, assocTest()
must be called with the parameters kernel="localsim.SKAT" or kernel="quadratic.SKAT",

70 9 More Details About PODKAT

A Z K = Z · ZT

SNVs

1 2 3 4 5 6 7 8 9 10 11

Sample 6

Sample 5

Sample 4

Sample 3

Sample 2

Sample 1

300 250 400 650 300 400 900 400 500 300} } } } } } } } } }
Sample 6

Sample 5

Sample 4

Sample 3

Sample 2

Sample 1

S
am

pl
e

1

S
am

pl
e

2

S
am

pl
e

3

S
am

pl
e

4

S
am

pl
e

5

S
am

pl
e

6

B Z ·P K = Z ·P ·PT · ZT

SNVs

1 2 3 4 5 6 7 8 9 10 11

Sample 6

Sample 5

Sample 4

Sample 3

Sample 2

Sample 1

300 250 400 650 300 400 900 400 500 300} } } } } } } } } }

Sample 6

Sample 5

Sample 4

Sample 3

Sample 2

Sample 1

S
am

pl
e

1

S
am

pl
e

2

S
am

pl
e

3

S
am

pl
e

4

S
am

pl
e

5

S
am

pl
e

6

Figure 4: Simple example demonstrating how PODKAT’s position-dependent kernel takes private
variants into account. A: genotype matrix Z (left) and kernel matrix of the linear kernel (right);
B: convolution of genotype matrix Z with positional similarities P (left) and kernel matrix of the
position-dependent kernel (right).

9 More Details About PODKAT 71

respectively. Analogously to the linear kernel, weighting must be controlled with the argument
weightFunc (or weights) and can be switched off with weightFunc=NULL which means that
assocTest() internally sets all wk = 1. Additionally, in order to enable these kernels also to
take private variants into account, there are position-dependent variants of the IBS kernel and the
quadratic kernel that can be used with kernels "localsim.podkat" or "quadratic.podkat",
respectively. These kernels first compute the convolution of the genotype matrix Z with the posi-
tional similarities P (compare with example in Figure 4B) and then compute the kernel matrices
according to the formulas above.

It must be pointed out that the linear kernel and the position-dependent linear kernel (ker-
nel choices linear.SKAT and linear.podkat) can be represented as outer products, which, in
many cases, allows for much more efficient computations than the other four kernels. So, the
computing times for large whole-genome studies with the four kernel choices localsim.SKAT,
localsim.podkat, quadratic.SKAT, and quadratic.podkat can be prohibitely long.

9.3 Weighting Functions

As mentioned above, all six kernels implemented in PODKAT can be used with and without
weighting. In all six kernels, weights need to be defined in a per-variant fashion (i.e. one weight
per column of the genotype matrix Z). If assocTest() is called for a VCF file, i.e. its argument Z
is the file name of a VCF file or a TabixFile object, then assocTest() requires a one-argument
function that computes a vector of weights from a vector of minor allele frequencies (MAFs). This
function must be passed as weightFunc argument (if it is NULL, then the kernels are used without
weights).

For convenience, PODKAT provides three built-in functions. Firstly, there is invSdWeights
which is defined as

f(x) =
1√

x · (1− x)
, (5)

i.e. it computes weights as the reciprocals of the standard deviations of minor allele probabilities
[13]:

wk =
1√

MAFk · (1−MAFk)

This variant is provided as function invSdWeights(). Figure 5A visualizes this weighting func-
tion.

Secondly, there is a parameterized family of weighting functions that correspond to the densi-
ties of the beta distribution:

fα,β(x) =
xα−1 · (1− x)β−1

B(α, β)
, (6)

where α, β are the two shape parameters and B(α, β) is a normalization constant that only de-
pends on the shape parameters. The package provides the function betaWeights(). If called
with the two arguments shape1 and shape2, this function creates the weighting function with
these particular shape parameters. The default weight parameters are α = 1 and β = 25 as sug-
gested by Wu et al. [16]. This is actually the default setting of the weightFunc parameter of the
assocTest() function. Figure 5B shows some examples with different shape parameters.

72 9 More Details About PODKAT

A

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

MAF

w
ei

gh
t

invSdWeights

B

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

MAF

w
ei

gh
t

betaWeights(shape1=1, shape2=10)
betaWeights(shape1=1, shape2=25)
betaWeights(shape1=1, shape2=40)

C

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MAF

w
ei

gh
t

logisticWeights(th=0.15, slope=25)
logisticWeights(th=0.07, slope=150)
logisticWeights(th=0.03, slope=400)

Figure 5: A: weighting function (5); B: beta distribution weighting functions 6 for different pa-
rameters; C: soft threshold weighting functions 7 for different parameters.

9 More Details About PODKAT 73

Thirdly, PODKAT offers the possibility to use a soft threshold function (logistic function)

f(x) =
1

1 + exp
(
a · (x− θ)

) , (7)

where θ is the threshold and a is the slope that determines how hard/soft the threshold is. The
function logisticWeights() can be used to create a weighting function with given threshold
and slope. Figure 5C shows some examples with parameters.

Users are not limited to the three weighting schemes described above: it is possible to pass
arbitrary weighting functions as weightFunc argument. However, user-provided weighting func-
tions must conform to some conventions: (1) they must be written such that MAFs can be passed
as first arguments; (2) MAFs can be passed as numeric vectors and the result is a numeric vector of
the same length; (3) the returned weights are non-negative; (4) the function requires no arguments
other than the first one.

9.4 Computing Single-Variant Contributions

As mentioned in Subsection 7.4 above, PODKAT allows for decomposing the test statistic Q into
individual contributions of single variants. This is possible for the linear kernel and the position-
dependent linear kernel. The linear kernel can be reformulated as

Q = (y − ŷ)T · Z ·W ·WT · ZT · (y − ŷ) = ‖WT · ZT · (y − ŷ)︸ ︷︷ ︸
=p

‖2,

where p = WT · ZT · (y − ŷ) is a vector of length d. In the same way, the position-dependent
linear kernel can be rewritten as

Q = (y − ŷ)T · Z ·W ·P ·PT ·WT · ZT · (y − ŷ) = ‖PT ·WT · ZT · (y − ŷ)︸ ︷︷ ︸
=p

‖2.

Again p = PT ·WT ·ZT · (y− ŷ) is a vector of length d. So, in both cases, Q can be represented
as the squared norm, i.e. the sum of squares, of a vector p of length d, i.e. with one entry per
variant:

Q = ‖p‖2 =
d∑

k=1

p2k

So, the k-th variant contributes p2k to the test statistic Q. The function weights() described in
Subsection 7.4 computes two values per variant: on the one hand, the raw contribution pk is stored
in the metadata column weight.raw. These values are particularly helpful to find out how a
variant is associated with the residuals y − ŷ. If it is positive, the association is positive. If it is
negative, the association is negative. On the other hand, the relative contribution

p′k =
p2k
‖p‖2

=
p2k
Q

is stored to the metadata column weight.contribution. This value measures how much each
variant contributes to the test statistic Q, where these contributions are normalized to sum up to
one.

74 9 More Details About PODKAT

9.5 Details on the Small Sample Correction

As mentioned in the Subsection 9.1, the test statistic of PODKAT’s association tests is assumed
to follow a mixture of χ2 distributions (1) [16], where, as already mentioned above, the mixture
weights λ = (λ1, . . . , λq) (with q ≤ l) are given as the non-zero eigenvalues of the matrix

P
1
2
0 ·K ·P

1
2
0 (8)

(with P0 being defined as described in (2) above). This is theoretically provable for continuous
traits under the assumptions of the null hypothesis, but holds only approximately for binary traits.
In many cases, the identifiation of the mixture of χ2 distributions as proposed above leads to
inflated type I error rates for binary traits. In order to overcome this problem, Lee et al. [8]
have proposed a small sample correction for binary traits for SKAT. PODKAT introduces a new
position-dependent kernel for being able to take private and very rare variants into account, but
otherwise builds upon the same test framework as SKAT. Therefore, PODKAT also implements
the small sample correction according to [8].

The small sample correction alternatively computes the p-value of an association test for binary
traits (as described in Subsection 9.1) as

1− Pχ2
df

((Q− µQ) ·
√

2df

σQ
+ df

)
, (9)

where Pχ2
df

is the cumulative distribution function of a χ2 distribution with df degrees of freedom,
µQ is the theoretical mean of the mixture

µQ =

q∑
k=1

λk (10)

i.e. the expected test statistic under the null hypothesis, σ2Q is the theoretical variance of the mixture

σ2Q = λT ·C · λ (11)

and df is the number of degrees of freedom that is computed as

df =

(l∑
k=1

λ′2k

)2
l∑

k=1

λ′4k

. (12)

In (11) above, C is a q × q matrix defined as

C = UT
2 · diag(ϕ) ·U2 + 2 · I

where U2 is an l × q matrix containing the elementwise squares of U, the l × q matrix of eigen-
vectors of non-zero eigenvalues of the matrix (8) and ϕ is a vector of length l the entries of which
are defined as

ϕk =
3p(yi = 1)2 − 3p(yi = 1) + 1

p(yi = 1)(1− p(yi = 1))
− 3.

9 More Details About PODKAT 75

Practically, the probabilities p(yi = 1) are estimated by the null model’s fitted probabilities ŷi (see
Subsection 9.1). Finally, the values λ′k in (12) are defined as

λ′k =
λk · Ck,k√

2
,

where Ck,k are the diagonal elements of the matrix C defined above.

The R package SKAT does not exactly use the above method, but uses the matrix

V
1
2 ·K ·V

1
2 (13)

(with V defined as in Subsection 9.1) instead to determine the mixture weights. This is mainly for
computational efficiency, since the square root of the diagonal matrix V is much easier to compute
than the square root of the dense matrix P0. It can be proven easily that the eigenvalues of matrix
(13) are the same as of matrix (8). However, the eigenvectors, which are needed for computing the
matrix C are not identical, but sufficiently close, as computational simulations have demonstrated.
PODKAT, by default, uses this approximation too, but also allows for using the exact matrix (8).
In order to make use of this option, the null model has to be created by calling nullModel()

with the option adjExact=TRUE. With this option, nullModel() pre-computes the square root of
matrix P and stores it to the slot P0sqrt of the returned NullModel object.

Lee et al. [8] further suggested to adjust the higher moments of the estimated null distri-
bution used in (9) by correcting the degrees of freedom parameter df such that the kurtosis fits
to the kurtosis observed in residuals sampled according to the null distribution. PODKAT, like
SKAT, offers two methods that can be specified when training a null model with nullModel():
type.resampling="bootstrap" creates residuals according the estimated Bernoulli distribu-
tions with probabilities ŷi; type.resampling="permutations" computes permutations of the
residuals. The former variant is the default and strongly recommended. So, given the test statistics
Q1, . . . , QN of N sampled vectors of residuals, the correction for higher moments estimates the
excess kurtosis γ̂ and then replaces the parameter df in (9) by

df =
12

γ̂
.

PODKAT offers multiple ways for estimating the excess kurtosis from the sampled test statistics
Q1, . . . , QN (the number N can be determined with the n.resampling.adj argument of the
function nullModel()). Which variant is chosen, can be determined with the argument method
when calling assocTest():

Unbiased sample kurtosis: this method uses the theoretical mean of the null distribution µQ (if
available; see (10)) and estimates the excess kurtosis as

γ̂ =

1
N

N∑
k=1

(Qk − µQ)4(
1
N

N∑
k=1

(Qk − µQ)2
)2 − 3.

This variant can be selected with method="unbiased".

76 9 More Details About PODKAT

Biased sample kurtosis: first computes the empirical mean µ̂1 of the sampled test and estimates
the excess kurtosis as

γ̂ =

1
N

N∑
k=1

(Qk − µ̂1)4(
1
N

N∑
k=1

(Qk − µ̂1)2
)2 − 3.

This variant can be selected with method="sample".

Corrected sample kurtosis: this variant is aimed at computing an (almost) unbiased estimator of
the excess kurtosis as

γ =
(N + 1) ·N · (N − 1)

(N − 2) · (N − 3)
·

N∑
k=1

(Qk − µ̂1)4(N∑
k=1

(Qk − µ̂1)2
)2 − 3 · (N − 1)2

(N − 2) · (N − 3)
.

This method can be selected with method="population".

SKAT compatibility mode: this variant is aimed at consistency with the implementation in the
R package SKAT; it estimates the excess kurtosis as

γ̂ =

1
N

N∑
k=1

(Qk − µ̂1)4(
1

N−1

N∑
k=1

(Qk − µ̂1)2
)2 − 3.

This method can be selected with method="SKAT".

As already mentioned briefly in Section 4, the argument adj of the nullModel() function
controls how the null model is prepared to be ready for small sample correction and higher moment
correction. The setting adj="force" creates sampled residuals for later higher moment correction
in any case, while adj="none" generally switches off the creation of sample residuals. The default
is adj="automatic" which creates sampled residuals if the number of samples in the study is at
most 2,000. The number of sampled residuals is controlled by the n.resampling.adj argument
as noted in Section 4 already. The default number of sampled residuals is 10,000.

The function assocTest() has an adj argument too, the meaning of which is similar to the
adj argument of the nullModel() function: if assocTest() is called with adj="automatic"

(which is the default), corrections are only made for at most 2,000 samples. For more than 2,000
samples, all corrections are switched off. For adj="force", corrections are generally switched
on, and for adj="none", corrections are generally switched off.

If corrections are switched on, the small sample correction described above is performed. As
already mentioned, which variant is used is determined by whether the null model has been created
with adjExact=TRUE or adjExact=FALSE.

If the null model includes sampled residuals, the small sample correction is complemented by
the higher moment correction described above. In case that assocTest() fails to compute the
mixture weights λ = (λ1, . . . , λq), it still uses the formula (9) for computing the p-values, but
uses values for µQ and σQ that were also estimated from the sampled test statistics.

10 Future Extensions 77

It must be emphasized that both small sample correction and higher moment correction, espe-
cially the latter, result in a significant increase of computation times. For larger studies, we suggest
to try assocTest() without small sample correction first and to create a Q-Q plot to analyze the
results. If the p-values in the Q-Q plot are sufficiently close to the diagonal, the test correctly
controls the type I error rate and no correction is necessary anyway. If this not the case and the
test is either too conservative (i.e. p-values in the Q-Q plot are consistently below the diagonal) or
the p-values are inflated (i.e. p-values in the Q-Q plot are consistently above the diagonal), some
correction should be applied. To use both corrections regardless of the number of samples, both
nullModel() and assocTest() must be called with adj="force". To use small sample cor-
rection, but without correction for higher moments, call nullModel() with adj="none" (which
turns off the creation of sampled residuals), but call assocTest() with adj="force".

10 Future Extensions

We plan or at least consider the following extensions in future version of this package:

Option in the VCF reader that allows for splitting up multiple minor alleles into separate
variants. Currently, multiple minor alleles are considered together as if they were synony-
mous.

11 Change Log

Version 1.1.3:

further fix of weights() method for signature ‘AssocTestResultRanges’

Version 1.1.2:

fix of weights() method for signature ‘AssocTestResultRanges’

Version 1.1.1:

fix of filterResults() method for signature ‘GRanges’

Version 1.1.0: new branch for Bioconductor 3.2 devel

Version 1.0.0: first official release as part of Bioconductor 3.1

12 How to Cite This Package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

U. Bodenhofer (2015). PODKAT: an R package for association testing involving rare
and private variants. R package version 1.2.0.

78 References

References

[1] L. Belanche, J. L. Vázquez, and M. Vázquez. Distance-based kernels for real-valued data. In
C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker, editors, Data Analysis, Ma-
chine Learning and Applications, Studies in Classification, Data Analysis, and Knowledge
Organization, pages 3–10. Springer, Berlin, 2008.

[2] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289–300, 1995.

[3] U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter. Modeling position speci-
ficity in sequence kernels by fuzzy equivalence relations. In J. P. Carvalho, D. Dubois,
U. Kaymak, and J. M. C. Sousa, editors, Proc. Joint 13th IFSA World Congress and 6th
EUSFLAT Conference, pages 1376–1381, Lisbon, July 2009.

[4] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker,
G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and 1000 Genomes Project
Analysis Group. The variant call format and VCFtools. Bioinformatics, 27(15):2156–2158,
2011.

[5] R. B. Davies. The distribution of a linear combination of χ2 random variables. J. R. Stat.
Soc. Ser. C-Appl. Stat., 29:323–333, 1980.

[6] S. Holm. A simple sequentially rejective multiple test procedure. Scand. J. Stat., 6(2):65–70,
1979.

[7] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and
D. Haussler. The human genome browser at UCSC. Genome Res., 12:996–1006, 2002.

[8] S. Lee, M. J. Emond, M. J. Bamshad, K. C. Barnes, M. J. Rieder, D. A. Nickerson, NHLBI
GO Exome Sequencing Project—ESP Lung Project Team, D. C. Christiani, M. M. Wurfel,
and X. Lin. Optimal unified approach for rare-variant association testing with application to
small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet., 91(2):224–
237, 2012.

[9] H. Li, B. Handsaker, A. Wysoker, T. Fenell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, and 1000 Genome Project Data Processing Subgroup. The sequence align-
ment/map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[10] X. Lin. Variance component testing in generalised linear models with random effects.
Biometrika, 84(2):309–326, 1997.

[11] D. Liu, D. Ghosh, and X. Lin. Estimation and testing for the effect of a genetic pathway on
a disease outcome using logistic kernel machine regression via logistic mixed models. BMC
Bioinformatics, 9:292, 2008.

[12] H. Liu, Y. Tang, and H. Zhang. A new chi-square approximation to the distribution of non-
negative definite quadratic forms in non-central normal variables. Comput. Stat. Data Anal.,
53:853–856, 2009.

References 79

[13] B. E. Madsen and S. R. Browning. A groupwise association test for rare mutations using a
weighted sum statistic. PLoS Genetics, 5(2):e1000384, 2009.

[14] M. Morgan, H. Pagès, V. Obenchain, and N. Hayden. Rsamtools: Binary alignment (BAM),
FASTA, variant call (BCF), and tabix file import, 2015. R package version 1.19.47.

[15] V. Obenchain, M. Lawrence, V. Carey, S. Gogarten, P. Shannon, and M. Morgan. Vari-
antAnnotation: a Bioconductor package for exploration and annotation of genetic variants.
Bioinformatics, 30(14):2076–2078, 2014.

[16] M. C. Wu, S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin. Rare-variant association testing for
sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89(1):82–93,
2011.

	Introduction
	Installation
	PODKAT for the Impatient
	Training a Null Model
	Selection of Regions of Interest
	Regions of Interest for Whole-Genome Association Testing
	Regions of Interest for Whole-Exome Association Testing
	Defining Custom Regions of Interest

	Performing an Association Test
	Analyzing and Visualizing Results
	Multiple Testing Correction
	Visualization
	Filtering Significant Regions
	Contributions of Individual Variants

	Miscellanea
	Creating Suitable VCF Files
	Software tools
	Merging VCF files
	Concatenating VCF files
	Filtering VCF files

	Reading from VCF Files
	Using Genotypes from Other Data Sources
	Preparations for a New Genome
	Handling Large Data Sets
	Chunking
	Parallel Processing

	More Details About PODKAT
	Test Statistics
	Kernels
	Weighting Functions
	Computing Single-Variant Contributions
	Details on the Small Sample Correction

	Future Extensions
	Change Log
	How to Cite This Package

