1 Introduction

The emergence of ChIP-seq technology for genome-wide profiling of transcription fac-
tor binding sites (TFBS) has made it possible to categorize very precisely the TFBS
motifs. How to harness the power of huge volume of data generated by this new tech-
nology presents many computational challenges. We propose a novel motif discovery
algorithm that is scalable to large databases, and performs discriminative motif dis-
covers by searching the most differential motifs between a foreground and background
sequence dataset. This tool can be used in a traditional setting in which the foreground
sequence dataset is derived from a ChIP-seq binding profile, and background sequence
dataset is either sampled from the genome or generated from a null model. It can also
be used for comparative study involving two TFBS binding profiles.

In a nutshell, the method works as the following: we enumerate all fixed-length n-mers
exhaustively, and measure their discriminative power by a logistic regression model. The
top ranking seed motif is then iteratively refined by allowing TUPAC degenerate letters
and extended to a longer motif automatically. We introduce a bootstrapping robustness
test to avoid over-fitting in the optimization process. The logistic regression framework
offers direct measurement of statistical significance, and we demonstrate by permuta-
tion tests that the z-value statistics do reflect the probability of occurrence by chance.
Compared to traditional motif finding tool, use of proper control sequences for compar-
ison avoids the difficulty of modeling true genomic background, which usually presents
complicated high order structure such as dinucleotide sequence preference, repeats, nu-
cleosome positions signals, etc. When used to compare two similar ChIP-Seq samples,
the discriminative motifs usually leads to insights on sample specificity.

2  Quick Start

The method requires foreground and background sequence datasets. The users can use
fasta files as input.

> library(motifRG)

> MD.motifs <- findMotifFasta(system.file("extdata", "MD.peak.fa",package="motifRG"),
+ system.file("extdata", "MD.control.fa", package="motifR
+ max.motif=3,enriched=T)

The output motifs are:
> motifLatexTable (main="MyoD motifs", MD.motifs, prefix="myoD")

The foreground sequences correspond to subset of MyoD ChIP-Seq peaks in mouse
fibroblast transfected with MyoD. MyoD binds to CANNTG ebox. The motif prediction
results suggest that MyoD binds to CAGCTG and CAGGTG eboxes.

Alternatively, the users can fetch sequence given the sequence coordinates.



Table 1: MyoD motifs

Consensus scores | ratio | fg.frac | bg.frac | logo
_CACCT.-
NNDCAGCTGN 21 4.6 |0.78 0.31
CA_CTC <
NNCAHCTGNYNN | 13 3.2 10.46 0.18
CAGC-
NNCAGCAGNN 11 3.0 |0.41 0.17

data(YY1.peak)

data(YY1.control)

library (BSgenome.Hsapiens.UCSC.hg19)

YY1.peak.seq <- getSequence(YY1l.peak, genome=Hsapiens)

YY1.control.seq <- getSequence(YY1.control, genome=Hsapiens)
YY1.motif.1 <- findMotifFgBg(YY1l.peak.seq, YY1.control.seq, enriched=T)
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3 Fine tuning results

Let’s examine the motif prediction results for the YY1 dataset.
> motifLatexTable (main="YY1 motifs", YY1.motif.1l, prefix="YY1-1")

All motifs are GC rich motifs, and do not include known YY1 motif with consensus
CCAT. We can check the GC content of the foreground and background sequences:

> summary(letterFrequency(YY1.peak.seq, "CG", as.prob=T))

ClG
Min. :0.3905
1st Qu.:0.5741
Median :0.6285
Mean :0.6279



Table 2: YY1 motifs

Consensus scores | ratio | fg.frac | bg.frac | logo
- —-CCCCC_ _
NNDNSCCGCCNN | 16 4.5 | 0.75 0.36
C _CcCC
NNGCDGCCNN 16 2.7 1091 0.60
=GCTCC
NNGGCTCCNN 15 2.8 10.79 0.48
__CccccC.C
NNCGGCSCNN 15 4.1 0.67 0.31
CG._.GGC
NNCGBGGCNN 15 3.6 ]0.65 0.29

3rd Qu.:0.6841
Max. :0.8304

> summary (letterFrequency(YY1.control.seq,

ClG
Min. :0.2197
1st Qu.:0.4378
Median :0.4949
Mean :0.50563
3rd Qu.:0.5624
Max. :0.8351

"CG", as.prob=T))




It is clear that foreground sequences have significant GC bias.
We also examine width of the foreground sequences:

> summary(width(YY1.peak.seq))

Min. 1st Qu. Median Mean 3rd Qu. Max.
158.0 434.0 623.0 718.5 927.8 2771.0

Considering that YY1 has a very degenerate motif, it is likely to occur by chance in such
wide peaks.

Assuming that YY1 peak summits occur within the center of the peaks, we can
narrow the peaks to increase signal to noise ratio. We can also fit GC content as
covariants for the regression model to balance this bias. In addition, in many ChIP-
Seq datasets, the stronger peaks are more likely to be direct targets than the weaker
peaks, and more likely to contain the transcription factor motif. But it is hard to make
the cutoff without knowing the motif in priori. One can weight the foreround sequences
based on peak intensity, and use the weights in motif prediction:

To narrow the peak:

YY1.narrow.seq <- subseq(YY1.peak.seq,
pmax (round ((width(YY1.peak.seq) - 200)/2), 1),
width=pmin (200, width(YY1.peak.seq)))
YY1.control.narrow.seq <- subseq(YY1l.control.seq,
pmax (round ((width(YY1.control.seq) - 200)/2),1),
width=pmin (200, width(YY1.control.seq)))
category=c(rep(1, length(YY1l.narrow.seq)), rep(0, length(YY1.control.narrow.seq)))
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To compute GC bias:

all.seq <- append(YY1.narrow.seq, YY1.control.narrow.seq)
gc <- as.integer(cut(letterFrequency(all.seq, "CG", as.prob=T),
+ c(-1, 0.4, 0.45, 0.5, 0.55, 0.6, 2)))
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To weight sequences:
> all.weights = c(YY1.peak$weight, rep(1l, length(YY1l.control.seq)))
Use all of above for motif prediction:

> YY1.motif.2 <- findMotif(all.seq,category, other.data=gc,
+ max.motif=5,enriched=T, weights=all.weights)

> motifLatexTable (main="Refined YY1 motifs", YY1.motif.2,prefix="YY1-2")



Table 3: Refined YY1 motifs

Consensus scores | ratio | fg.frac | bg.frac | logo

NNSGCCGCNN | 8.7 6.8 |0.62 0.127

NNRATGGCNN | 6.7 1.5 | 0.25 0.182

NNCGGAAVNN | 6.7 3.1 0.27 0.094

NNCGGRGCNN | 5.1 4.6 | 0.56 0.151

CC--CCC

NNCCKCGCNN | 4.6 3.8 10.32 0.092

The predicted ATGGC motif for YY1 matches the reverse complement of the known
motif. The results also incude ETS motif CGGAA, and other GC rich motifs. It is
difficult to completely balance the effects of GC content, because it is unclear what
should be the proper transformation so it is very easy to over-correct or under-correct
the bais, and GC bias usually reflects other biases, such as enrichment of promoters,
CpG islands, etc. The best approach to adjust for such a bias is to select a control
dataset with matching distribution of GC content, promoters etc, if one has the freedom
to choose arbitrary control.



4 Refine PWM model

Motifs found by findMotif tend to be relatively short, as longer and more specific motif
models do not necessarily provide better discrimination of foreground background vs
background if they are already well separated. However, one can refine and extend a
PWM model given the motif matches by findMotif as seed for more specific model. The
method below exploits a MEME-like EM algorithm to refine the basic motif pattern to
more informative PWM model.

> data(ctcf.motifs)

> ctcf.seq <- readDNAStringSet (system.file("extdata", "ctcf.fa",package="motifRG"))
> pwm.match <- refinePWMMotif (ctcf.motifs$motifs[[1]]C@match$pattern, ctcf.seq)

> library(seqLogo)

> seqLogo (pwm.match$model$prob)
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Figure 1: PWM logo of CTCF PWM matches

We use refienPWMDMotifExtend function to automatically extend the PWM motif if
the flanking region is also informative.

> pwm.match.extend <-
+ refinePWMMotifExtend (ctcf.motifs$motifs[[1]]@match$pattern, ctcf.seq)



> seqLogo (pwm.match.extend$model$prob)
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Figure 2: PWM logo of CTCF PWM matches

> plotMotif (pwm.match.extend$match$pattern)
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