
Resolve the inconsistency of Illumina identifiers

through nuID

Pan Du‡∗, Warren A. Kibbe‡†, Gang Feng‡‡, Jared Flatow‡§, Simon Lin‡¶

January 12, 2016

‡Robert H. Lurie Comprehensive Cancer Center
Northwestern University, Chicago, IL, 60611, USA

Contents

1 Illumina Identifiers and BeadStudio output files 1

2 nuID (nucleotide universal IDentifier) 2
2.1 Examples of nuID . 3

3 Illumina ID mapping packages 3
3.1 Mapping between Illumina IDs and nuIDs 4
3.2 Mapping from nuIDs to RefSeq and Entrez gene IDs based on

Illumina manifest files . 6

4 Illumina microarray annotation packages 7

5 References 10

1 Illumina Identifiers and BeadStudio output files

Illumina uses two types of identifiers: Illumina gene identifiers and Illumina
probe identifiers. As their names suggest, Illumina gene identifiers are designed
for genes while Illumina probe identifiers are designed for probes. The problem
of the gene identifier is that it can correspond to several different probes, which
are supposed to match the same gene. In this case, it basically averages the
measurements of these probes. This will cause big problem when these probes
for the same gene have different measurement values. This happens often in real
situations. Because of the binding affinity difference or alternative splicing, the
probes corresponding the the sample gene identifier may have quite different
expression levels and patterns. If we use the gene identifier to identify the

∗dupan@northwestern.edu
†wakibbe@northwestern.edu
‡g-feng@northwestern.edu
§jflatow@northwestern.edu
¶s-lin2@northwestern.edu

1

measurements, then we cannot differentiate the difference between these probes.
Another problem of using gene identifiers is that the mapping between gene
identifiers and probes could be changed with our better understanding of the
gene. Therefore, we recommend to use probe identifiers.

Before further discussion, let’s describe more details of Illumina BeadStudio
output files. BeadStudio usually will export a list of files, which include ”Con-
trol Gene Profile.txt”, ”Group Probe Profile.txt”, ”Samples Table.txt”, ”Control
Probe Profile.txt”, ”Sample Gene Profile.txt”, ”Group Gene Profile.txt”, ”Sample
Probe Profile.txt”. Among these files, the files with their name including ”Probe”
use Illumina probe identifiers, which are supposed to be unique for each probe.
The files with their names including ”Gene” use Illumina gene identifiers. As the
probe identifiers were designed for each probe, we recommend to use ”Sample
Probe Profile.txt” or ”Group Probe Profile.txt” for the data analysis.

One problem of Illumina identifiers (both Illumina gene identifiers and Illu-
mina probe identifiers) is that they are not stable and consistent between chip
versions and releases. For example, the early version of BeadStudio output files
use a numeric number as probe identifier, later on it uses the new version of
probe identifiers named as "ILMN_0000" (”0000” represents a numeric number).
Also, the early version of BeadStudio output files use TargetID as gene identi-
fier, later on gene symbols are directly used as the gene identifiers. The Illumina
probe identifiers also change over time. Moreover, the identifiers are not unique.
For instance, the same 50mer sequence has two different TargetIDs (early version
of gene identifiers) used by Illumina: "GI_21070949-S" in the Mouse_Ref-8_V1

chip and "scl022190.1_154-S" in the Mouse-6_V1 chip. This causes difficulties
when combining clinical microarray data collected over time using different ver-
sions of the chips. To solve these problems, we designed a nucleotide universal
identifier (nuID), which encodes the 50mer oligonucleotide sequence and con-
tains error checking and self-identification code. By using nuID, all the problems
mentioned above can be easily solved. For details, please read [1].

> library(lumi)

> library(annotate)

> # library(lumiHumanAll.db)

2 nuID (nucleotide universal IDentifier)

Oligonucleotide probes that are sequence identical may have different identifiers
between manufacturers and even between different versions of the same com-
pany’s microarray; and sometimes the same identifier is reused and represents
a completely different oligonucleotide, resulting in ambiguity and potentially
mis-identification of the genes hybridizing to that probe. This also makes data
interpretation and integration of different batches of data difficult.

We have devised a unique, non-degenerate encoding scheme that can be used
as a universal representation to identify an oligonucleotide across manufacturers.
We have named the encoded representation ’nuID’ , for nucleotide universal
identifier. Inspired by the fact that the raw sequence of the oligonucleotide is the
true definition of identity for a probe, the encoding algorithm uniquely and non-
degenerately transforms the sequence itself into a compact identifier (a lossless
compression). In addition, we added a redundancy check (checksum) to validate

2

the integrity of the identifier. These two steps, encoding plus checksum, result
in an nuID, which is a unique, non-degenerate, permanent, robust and efficient
representation of the probe sequence. For commercial applications that require
the sequence identity to be confidential, we have an encryption schema for nuID.
We demonstrate the utility of nuIDs for the annotation of Illumina microarrays,
and we believe it has universal applicability as a source-independent naming
convention for oligomers.

The nuID schema has three significant advantages over using the oligo se-
quence directly as an identifier: first it is more compact due to the base-64
encoding; second, it has a built-in error detection and self-identification; and
third, it can be encrypted in cases where the sequences are preferred not to be
disclosed.

2.1 Examples of nuID

> ## provide an arbitrary nucleotide sequence as an example

> seq <- 'ACGTAAATTTCAGTTTAAAACCCCCCG'

> ## create a nuID for it

> id <- seq2id(seq)

> print(id)

[1] "YGwP0vwBVW"

The original nucleotide sequence can be easily recovered by id2seq

> id2seq(id)

[1] "ACGTAAATTTCAGTTTAAAACCCCCCG"

The nuID is self-identifiable. is.nuID can check the sequence is nuID or not.
A real nuID

> is.nuID(id)

[1] TRUE

An random sequence

> is.nuID('adfqeqe')

[1] FALSE

3 Illumina ID mapping packages

Figure 1 shows the overview of Illumina ID mapping and annotation packages.
We will explain each step and provide examples in next sub-sections.

3

Figure 1: Overview of Illumina ID mapping and annotation packages

3.1 Mapping between Illumina IDs and nuIDs

Because of the unique advantages of nuIDs, converting Illumina IDs as nuIDs
will make both probe annotation and maintenance easier. In the old versions
of Illumina annotation packages, like lumiHumanV1 , lumiHumanV2 , lumiMou-
seV1 and lumiRatV1 , we included separate tables for TargetIDs and ProbeIDs
mapping to nuIDs. This becomes difficult when we pool different version of
nuIDs together because Illumina IDs may not be consistent across different ver-
sions and releases. To partially solve this problem, the lumiR function can
automatically produce nuID based on the probe sequence included in the Bead-
Studio output file. If users have the Illumina manifest file of the chip, they can
also use it for nuID conversion. The manifest file (.bgx) basically is a zipped
file by gzip. The first step is to unzip the manifest file. The unzipped mani-
fest file is a Tab-separated file, you can open it in Excel. Suppose 'MouseWG-

6_V1_1_R2_11234304_A' is the manifest file and x.lumi is a LumiBatch object
indexed by Illumina Probe IDs, the user can use the following code for nuID
conversion:

x.lumi = addNuID2lumi(x.lumi, annotationFile='MouseWG-6_V1_1_R2_11234304_A')

However, in many cases, the BeadStudio output file does not include the
probe sequence information and the users do not have the manifest file, either.
This makes it necessary to create a separately Illumina ID mapping package,
which includes all ID mapping information all versions of Illumina chips. We
created three ID mapping packages: lumiHumanIDMapping , lumiMouseIDMap-
ping.db and lumiRatIDMapping.db for human, mouse and rat, respectively.

The purpose of these packages is to provide ID mappings between different
types of Illumina identifiers of expression chips and nuIDs, and also mappings
from nuIDs to the the most recent RefSeq release. Each library includes the
data tables corresponding to all released Illumian expression chips of a par-
ticular species before the package releasing date. In each manifest file table, it
includes nuIDs and different types of Illumina IDs: ”Search key”(”Search Key”),
”Target” (”ILMN Gene”), ”Accession”, ”ProbeId” (”Probe Id”). It also includes
a nuID MappingInfo table, which keeps the mapping information of nuID to
RefSeq ID and its related mapping quality information. We will describe this
part in more details in next sub-section. By using these ID mapping packages,
users can also check the original chip information by providing a list of IDs.
There is a function getChipInfo in lumi package designed for this purpose.

Get information of the ID mapping library:

4

> if (require(lumiHumanIDMapping))

+ lumiHumanIDMapping()

Database includes ID mapping information of following manifest files:

HUMANREF8_V3_0_R1_11282963_A_WGDASL

HumanHT12_V3_0_R3_11283641_A

HumanHT12_V4_0_R1_15002873_B

HumanHT12_V4_0_R2_15002873_B

HumanHT12_V4_0_R2_15002873_B_WGDASL

HumanRef8_V1

HumanRef8_V2_0_R2_11223162_A

HumanRef8_V2_0_R4_11223162_A

HumanRef8_V3_0_R0_11282963_A

HumanRef8_V3_0_R3_11282963_A

HumanWG6_V1

HumanWG6_V2_0_R2_11223189_A

HumanWG6_V2_0_R4_11223189_A

HumanWG6_V2_11223189_B

HumanWG6_V3_0_R3_11282955_A

It also includes their nuID mapping information.

For more details, please type lumiHumanIDMapping_nuID().

Get chip information of the example data in the lumi package.

> ## Load Illumina example data in lumi package

> data(example.lumi)

> ## Match the chip information of this example data

> if (require(lumiHumanIDMapping))

+ getChipInfo(example.lumi, species='Human')

$chipVersion

[1] "HumanRef8_V1"

$species

[1] "Human"

$IDType

[1] "nuID"

$chipProbeNumber

[1] 24357

$inputProbeNumber

[1] 8000

$matchedProbeNumber

[1] 8000

5

3.2 Mapping from nuIDs to RefSeq and Entrez gene IDs
based on Illumina manifest files

Illumina manifest files are probe annotation files for each Illumina chip. In previ-
ous lumi annotation packages (< 2.0.0), we performed the mapping from nuIDs
(probe sequences) to RefSeq sequences by ourselves because the Illumina did not
regularly maintain and update their manifest files at that time. Recently, we
found Illumina made lots of improvements of the manifest file maintenance and
set up a website (http://www.illumina.com/support/downloads.ilmn#manifests
) specially for the manifest files. Therefore, we decide directly using the map-
ping provided by Illumina. We assume the more recent releases of manifest files
have more accurate annotation information, and higher versions of chips have
better probe design. Therefore when we pool all probe annotations (indexed by
nuIDs) together, for the duplicated annotations of the same probe Id (nuID),
the most recent release of highest chip version will replace old ones. In this way,
even the probes in the old chips can get the most recent annotation information.

The nuID mapping information is kept in the nuID MappingInfo table in
the ID Mapping library. All these information was based on Illumina manifest
files. The nuID mapping table includes following fields (columns):

1. nuID: nuID for the probe sequence
2. Access: The refseq and other IDs, based on which Illumina designed the

probes.
3. EntrezID: The Entrez gene IDs correspond to the Access IDs.
4. Symbol: The gene symbols correspond to the Entrez gene IDs.
Function nuID2RefSeqID and nuID2EntrezID were designed for mapping

nuIDs to RefSeq IDs and EntrezIDs, respectively. If users want to get all
the mapping information, they can use function getNuIDMappingInfo. Need
to note, the EntrezID and gene symbol in the nuID MappingInfo table were
based on Illumina manifest files. They might have slight differences from the
lumiXXXAll.db annotation library produced by using AnnotationDbi because
their annotations were based on snapshots of the Entrez database at different
time points (the NCBI Entez database keeps updating).

Get nuID mapping information in the ID mapping package:

> if (require(lumiHumanIDMapping))

+ lumiHumanIDMapping_nuID()

nuID_MappingInfo table includes 105521 unique Homo sapiens Illumina probes mapping information.

The table includes following fields (see help(lumiHumanIDMapping_nuID) for detailed definition.):

nuID

Accession

EntrezID

Symbol

Map nuID to RefSeq ID:

> nuIDs <- featureNames(example.lumi)

> ## return all mapping information

> if (require(lumiHumanIDMapping))

+ nuID2RefSeqID(nuIDs[1:10], lib.mapping='lumiHumanIDMapping')

6

The provided names of filterTh does not match the field names of nuID_MappingInfo table.

No filtering will be performed.

oZsQEQXp9ccVIlwoQo 9qedFRd_5Cul.ueZeQ N5YrunuK0q.yIkukis H2UJFJzK0SUTR0SeNE

"NM_001014811" "NM_021020" "NM_000683" "NM_018146"

oJ1Bzu0pH3qq_Ks_40 B45RF4v0iPUfRHgIjk 6ewSAlc_5fF7uf_6kU ceOREl0EuSVLhF3gJU

"XM_374767" "NM_033208" "NM_014319" "NM_012222"

NJQtGpKWS69_bpev88 Z.VhoQSTotddJdne6k

"NM_032326" "XM_379089"

Map nuID to Entrez Gene ID:

> if (require(lumiHumanIDMapping))

+ nuID2EntrezID(nuIDs[1:10], lib.mapping='lumiHumanIDMapping')

The provided names of filterTh does not match the field names of nuID_MappingInfo table!

No filtering will be performed!

oZsQEQXp9ccVIlwoQo 9qedFRd_5Cul.ueZeQ N5YrunuK0q.yIkukis H2UJFJzK0SUTR0SeNE

"10873" "11178" "" "55178"

oJ1Bzu0pH3qq_Ks_40 B45RF4v0iPUfRHgIjk 6ewSAlc_5fF7uf_6kU ceOREl0EuSVLhF3gJU

"" "" "23592" ""

NJQtGpKWS69_bpev88 Z.VhoQSTotddJdne6k

"84286" ""

Return all mapping information related with nuID

> if (require(lumiHumanIDMapping)) {

+ mappingInfo <- nuID2RefSeqID(nuIDs[1:10], lib.mapping='lumiHumanIDMapping', returnAllInfo =TRUE)

+ head(mappingInfo)

+ }

The provided names of filterTh does not match the field names of nuID_MappingInfo table.

No filtering will be performed.

Accession EntrezID Symbol

oZsQEQXp9ccVIlwoQo "NM_001014811" "10873" "ME3"

9qedFRd_5Cul.ueZeQ "NM_021020" "11178" "LZTS1"

N5YrunuK0q.yIkukis "NM_000683" "" "ADRA2C"

H2UJFJzK0SUTR0SeNE "NM_018146" "55178" "RNMTL1"

oJ1Bzu0pH3qq_Ks_40 "XM_374767" "" "LOC399716"

B45RF4v0iPUfRHgIjk "NM_033208" "" "TIGD7"

4 Illumina microarray annotation packages

As the identifier inconsistency between different versions or even different re-
leases of Illumina chips, it makes create annotation packages in the traditional
way difficult. In traditional way, we have to create individual annotation pack-
ages for different identifiers and different versions and releases of chips. That
will result in lots of annotation packages, and make the maintenance difficult.
Users will be hard to decide which package to use. By using the nuID universal
identifier, we are able to build one annotation database for different versions
and releases of the human (or other species) chips. Moreover, the nuID can
be directly converted to the probe sequence, and used to get the most updated

7

refSeq matches and annotations. The recent transition of Bioconductor anno-
tation packages to use SQLite databases made the package size is no longer a
concern.

The latest version of Illumina annotation packages indexed by nuID are based
on SQLite databases. They were built by using functions in AnnotationDbi
package. There are three Bioconductor annotation packages: lumiHumanAll.db,
lumiMouseAll.db and lumiRatAll.db for three species Human, Mouse and Rat
respectively. These packages include all the previously released Illumina expres-
sion chips. The previous versions of packages: lumiHumanV1 , lumiHumanV2 ,
lumiMouseV1 and lumiRatV1 will be discontinued.

Basically, we converted the probe sequence as nuIDs and pooled them to-
gether. Then we can map nuIDs to different mRNA transcript libraries, which
include RefSeq and Unigene. From version 1.8.0, the mappings were based on
on the Illumina manifest files of the corresponding chips. If there are duplicated
nuIDs, then the latest release and higher version of mapping was used. These
mapping information has been organized in the nuID MappingInfo table in the
ID Mapping library (e.g., lumiHumanIDMapping for human Illumina chips).
We then used makeHUMANCHIP_DB function in AnnotaionDbi package to map
RefSeq and Unigene IDs to Entrez genes and created the annotation libraries.
Users can also build their own annotation package by providing the mappings
from nuID to RefSeq or Unigene IDs. The usage of these annotation libraries is
exactly the same as other Bioconductor annotation packages, like Affymetrix.

Here are some examples using the functions implemented in the annotate
package:

Get gene symbols:

> data(example.lumi)

> nuIDs <- featureNames(example.lumi)

> if (require(lumiHumanAll.db))

+ getSYMBOL(nuIDs[1:3], 'lumiHumanAll.db')

oZsQEQXp9ccVIlwoQo 9qedFRd_5Cul.ueZeQ N5YrunuK0q.yIkukis

"ME3" "LZTS1" "ADRA2C"

Get Entrez Gene ID:

> if (require(lumiHumanAll.db))

+ getEG(nuIDs[1:3], 'lumiHumanAll.db')

oZsQEQXp9ccVIlwoQo 9qedFRd_5Cul.ueZeQ N5YrunuK0q.yIkukis

"10873" "11178" "152"

Get related GO categories:

> if (require(lumiHumanAll.db)) {

+ goInfo <- getGO(nuIDs[1], 'lumiHumanAll.db')

+ goInfo[[1]][[1]]

+ }

$GOID

[1] "GO:0006090"

8

$Evidence

[1] "IDA"

$Ontology

[1] "BP"

A general look up function

> if (require(lumiHumanAll.db))

+ lookUp(nuIDs[1:3], "lumiHumanAll.db", what="SYMBOL")

$oZsQEQXp9ccVIlwoQo

[1] "ME3"

$`9qedFRd_5Cul.ueZeQ`

[1] "LZTS1"

$N5YrunuK0q.yIkukis

[1] "ADRA2C"

Check what annotation elements available in the library

> if (require(lumiHumanAll.db))

+ ls('package:lumiHumanAll.db')

[1] "lumiHumanAll" "lumiHumanAll.db"

[3] "lumiHumanAllACCNUM" "lumiHumanAllALIAS2PROBE"

[5] "lumiHumanAllCHR" "lumiHumanAllCHRLENGTHS"

[7] "lumiHumanAllCHRLOC" "lumiHumanAllCHRLOCEND"

[9] "lumiHumanAllENSEMBL" "lumiHumanAllENSEMBL2PROBE"

[11] "lumiHumanAllENTREZID" "lumiHumanAllENZYME"

[13] "lumiHumanAllENZYME2PROBE" "lumiHumanAllGENENAME"

[15] "lumiHumanAllGO" "lumiHumanAllGO2ALLPROBES"

[17] "lumiHumanAllGO2PROBE" "lumiHumanAllMAP"

[19] "lumiHumanAllMAPCOUNTS" "lumiHumanAllOMIM"

[21] "lumiHumanAllORGANISM" "lumiHumanAllORGPKG"

[23] "lumiHumanAllPATH" "lumiHumanAllPATH2PROBE"

[25] "lumiHumanAllPFAM" "lumiHumanAllPMID"

[27] "lumiHumanAllPMID2PROBE" "lumiHumanAllPROSITE"

[29] "lumiHumanAllREFSEQ" "lumiHumanAllSYMBOL"

[31] "lumiHumanAllUNIGENE" "lumiHumanAllUNIPROT"

[33] "lumiHumanAll_dbInfo" "lumiHumanAll_dbconn"

[35] "lumiHumanAll_dbfile" "lumiHumanAll_dbschema"

Need to mention, currently there are two sets of Illumina annotation packages
in Bioconductor. The Illumina annotation packages mentioned here are named
as ”lumixxxx”, e.g. lumiHumanAll.db and are maintained by us. There are
another set of packages, named as ”illuminaxxxx”. These packages are indexed
by Illumina IDs. They can also be used together with lumi package when the
microarray data are indexed by Illumina IDs.

The majority of Bioconductor annotation packages are probe-based annota-
tion package. As a result, these packages are manufacturers and array depen-
dent. These packages include all kinds of mapping from probe to a specific gene

9

annotation. For different packages of the same species, these gene annotations
basically are the same. As a result, the majority information of different pack-
ages are redundant. Bioconductor also provides Entrez gene based annotation
packages. Each species has one Entrez gene based annotation package. For
example, org.Hs.eg.db, org.Mm.eg.db and org.Rn.eg.db are designed for Human,
Mouse and Rat respectively. Combining these packages with the Illumina ID
mapping package, we can also analyze all kinds of chips of the same species.

5 References

Du, P., Kibbe, W.A. and Lin, S.M., ”nuID: A universal naming schema of
oligonucleotides for Illumina, Affymetrix, and other microarrays”, Biology Direct
2007, 2:16 (31May2007).

http://www.illumina.com/support/downloads.ilmn#manifests

10

	Illumina Identifiers and BeadStudio output files
	nuID (nucleotide universal IDentifier)
	Examples of nuID

	Illumina ID mapping packages
	Mapping between Illumina IDs and nuIDs
	Mapping from nuIDs to RefSeq and Entrez gene IDs based on Illumina manifest files

	Illumina microarray annotation packages
	References

