
joda Package Vignette

Ewa Szczurek

October 13, 2015

Contents

1 Introduction 1

2 Input to the JODA algorithm. 2

3 Processing steps 5
3.1 Step 1: computing signed differential expression probabilities 5
3.2 Step 2: computing regulation scores 9
3.3 Step 3: computing deregulation scores 10

1 Introduction

This document gives a short introduction to gene deregulation analysis using
the R package joda. The package implements an algorithm called JODA,
which is designed to quantify how strongly regulation of genes changes be-
tween two different cell populations. JODA analyzes a given set of regula-
tors, which are interconnected in a common signaling pathway. The algo-
rithm utilizes two types of input: (1) regulator knockdown data, as well as
(2) knowledge about pathways that interconnect the regulators and about
genes that are expected to be regulated by those pathways in both cells.
For each regulator the analysis yields gene deregulation scores. The scores
reflect how strongly the effect of the regulator’s knockdown on the genes
changed between the cells.

The input to the algorithm and processing steps and are illustrated in
Figure 1.

1

Figure 1: The input and steps of the JODA algorithm

2 Input to the JODA algorithm.

inputdata
We present the application of the joda package to deregulation analysis

on an example dataset of Elkon et al., 2005. The JODA algorithm computes
deregulation scores for a given set of regulators (in the example dataset
ATM, RelA and p53). The input data has to contain gene expression mea-
surements upon knockdown of each regulator in each cell population. The
example input is stored in the damage dataset.

> library(joda)

> data(damage)

The example dataset contains transcriptional effects of silencing the reg-
ulators ATM, RelA and p53, performed on two cell populations, referred to
as the healthy and the damaged cells (together six knockdown experiments).
The data for each knockdown experiment are preprocessed log expression ra-
tios of a regulator knockdown versus control in a given cell population. The
damaged cells (denoted d) are a population of cells that were treated with

2

a DNA-damage inducing drug neocarzinostatin (NCS). NCS triggers a cel-
lular pathway, where the central kinase ATM signals down to transcription
factors RelA and p53. This pathway is inactive in the healthy cells (denoted
h).

The knockdown data are (in two data frames) data.healthy and data.damage.

> head(data.healthy)

ATM RelA p53

1007_s_at -0.65999832 -0.70467161 -0.44830942

1053_at 0.15601284 0.06511664 0.08027362

117_at 0.01485424 -0.11931042 -0.11213425

121_at -0.22150756 -0.25566903 -0.23788410

1255_g_at -0.06630502 -0.04021388 -0.06735836

1294_at -0.05957592 -0.13969689 -0.17432387

> head(data.damage)

ATM RelA p53

1007_s_at -0.40918959 -0.573389287 -0.28255737

1053_at 0.04582026 0.005923906 -0.02656703

117_at -0.06416793 -0.136964585 -0.04523239

121_at -0.02032572 0.027913098 0.01190413

1255_g_at 0.03004704 0.001573532 0.09873156

1294_at -0.02158214 -0.072783759 -0.03449833

inputknowledge
Additional to the knockdown data, the input to the JODA algorithm

consists of two kinds of knowledge. First, topologies of the pathways that
connect the given set of regulators and are active in the two cell populations.
This knowledge is formalized in two binary matrix models, one per each
cell population. For each regulator, the model defines a set of knockdown
experiments which affect this regulator’s activity. Example model matrices
for the ATM pathway in the healthy and in the damaged cells are shown in
Figure 1 and stored in objects model.healthy and model.damage.

> print(model.healthy)

ATM RelA p53

ATM 1 0 0

RelA 0 1 0

p53 0 0 1

3

> print(model.damage)

ATM RelA p53

ATM 1 1 1

RelA 0 1 0

p53 0 0 1

Here, the first row of model.damage tells that in the damaged cells the
knockdown of ATM affects not only ATM, but also RelA and p53, which
are downstream of ATM.

The second kind of knowledge are regulator-gene relations, given for some
regulators, which are also transcription factors (shortly, TFs), and for some
remaining genes. This knowledge is cell-population specific. The known TF
targets are expected (but rarely sure) to show an effect to the knockdown
experiments, and serve as examples of genes that are differentially expressed
upon their TF knockdown. This type of knowledge is uncertain and is given
as probabilities. The example input stores certainties (beliefs) about known
targets of RelA or p53 being differentially expressed upon their regulator
knockdown in the two cell populations.

> str(beliefs.healthy)

List of 2

$ RelA: num [1:60, 1:2] 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:60] "200762_at" "201329_s_at" "201642_at" "201719_s_at" ...

.. ..$: chr [1:2] "differential" "unchanged"

$ p53 : num [1:85, 1:2] 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:85] "200632_s_at" "200766_at" "201041_s_at" "201069_at" ...

.. ..$: chr [1:2] "differential" "unchanged"

> str(beliefs.damage)

List of 1

$ p53: num [1:33, 1:2] 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:33] "200736_s_at" "200802_at" "200921_s_at" "201202_at" ...

.. ..$: chr [1:2] "differential" "unchanged"

> head(beliefs.healthy[["p53"]])

4

differential unchanged

200632_s_at 0.95 0.05

200766_at 0.95 0.05

201041_s_at 0.95 0.05

201069_at 0.95 0.05

201099_at 0.95 0.05

201426_s_at 0.95 0.05

steps

3 Processing steps

The algorithm proceeds in three steps. In each step, we compute the follow-
ing scores for each regulator:

1. For each gene, in each cell population: signed probabilities of differen-
tial expression upon the regulator’s knockdown,

2. For each gene, in each cell population: regulation scores,

3. For each gene: deregulation scores.

step1

3.1 Step 1: computing signed differential expression proba-
bilities

In the first step, the input data from each regulator’s knockdown is processed
to estimate the effect of the knockdown on the genes. To this end, JODA uti-
lizes our belief-based differential expression analysis method, implemented
in an R package bgmm. The method assigns each gene a probability that
it was differentially expressed in the experiment. In this step, the knowl-
edge about the known TF targets is used. To improve the estimation, the
known targets of the perturbed regulator are given a high prior of differen-
tial expression in the experiment. Each returned probability is signed, i.e.,
multiplied by 1 or -1 to indicate whether the effect of the knockdown was
up- or down-regulation.

To compute the signed differential gene expression probabilities for each
knockdown experiment, the differential.probs function is used. When
the argument verbose is set to TRUE the function prints the parameters of
the fitted two-component models (one component for the differential and

5

one for the unchanged genes). Setting the argument plot.it to TRUE yields
a plot of the models’ components. For the knockdown data and knowledge
in the healthy cells the function call reads (the generated plot is presented
in Figure 2):

> probs.healthy=differential.probs(data=data.healthy, beliefs=beliefs.healthy, verbose=TRUE, plot.it=TRUE)

joda: Input correctly defined

Inferring probabilities of differential expression under the knockdown of ATM ...

Applying unsupervised mixture modeling

The parameters of the model for ATM:

differential unchanged

Mixing proportions: 0.35659549 0.64340451

Means: 0.07343712 -0.03710794

Variances: 0.14761127 0.02181143

Inferring probabilities of differential expression under the knockdown of RelA ...

Applying belief-based mixture modeling

The parameters of the model for RelA:

differential unchanged

Mixing proportions: 0.52374510 0.476254896

Means: 0.07521450 -0.074466149

Variances: 0.09389958 0.008102053

Inferring probabilities of differential expression under the knockdown of p53 ...

Applying belief-based mixture modeling

The parameters of the model for p53:

differential unchanged

Mixing proportions: 0.50634787 0.493652126

Means: 0.05503342 -0.072353721

Variances: 0.04807592 0.007986199

For the knockdown data and knowledge in the damaged cells the function
call reads (the generated plot is presented in Figure 3):

> probs.damage=differential.probs(data=data.damage, beliefs=beliefs.damage, verbose=TRUE, plot.it=TRUE)

joda: Input correctly defined

Inferring probabilities of differential expression under the knockdown of ATM ...

6

−1.5 −0.5 0.5 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

densx

de
ns

ity

ATM

differential
unchanged

−1.0 0.0 1.0

0
1

2
3

4

densx

de
ns

ity

RelA

differential
unchanged

−1.0 0.0 0.5

0
1

2
3

4

densx

de
ns

ity

p53

differential
unchanged

Figure 2: Output of the differential.probs function applied to the data and
knowledge for the healthy cells.

Applying unsupervised mixture modeling

The parameters of the model for ATM:

differential unchanged

Mixing proportions: 0.35358709 0.646412907

Means: 0.02230456 -0.002159813

Variances: 0.16242875 0.015909231

Inferring probabilities of differential expression under the knockdown of RelA ...

Applying unsupervised mixture modeling

The parameters of the model for RelA:

differential unchanged

Mixing proportions: 0.268006050 0.731993950

Means: -0.006308049 0.004366356

7

Variances: 0.124140280 0.018443406

Inferring probabilities of differential expression under the knockdown of p53 ...

Applying belief-based mixture modeling

The parameters of the model for p53:

differential unchanged

Mixing proportions: 0.26116122 0.738838780

Means: -0.01600267 -0.002041848

Variances: 0.06562652 0.010953522

−1.5 −0.5 0.5 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

densx

de
ns

ity

ATM

differential
unchanged

−1.0 0.0 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

densx

de
ns

ity

RelA

differential
unchanged

−1.0 0.0 0.5 1.0

0
1

2
3

densx

de
ns

ity

p53

differential
unchanged

Figure 3: Output of the differential.probs function applied to the data
and knowledge for the damaged cells.

step2

8

3.2 Step 2: computing regulation scores

In the second step, for each regulator and for each cell population, we obtain
a vector of regulation scores that quantify the effect of the regulator on the
genes in this population. In this step, the given pathway models are used.
For a given cell population and regulator, regulation scores are computed as
an average over the probabilities of differential expression in all knockdown
experiments that affect this regulator in this cell population. The affecting
experiments are defined using the pathway model as both the knockdown
of the regulator itself, and knockdowns of its upstream activators in the
pathway. For example, the regulation scores for RelA in the damaged cells
are an average of signed probabilities for the knockdowns of RelA and of
its upstream activator ATM. In the healthy cells, only its own knockdown
affects RelA, and its regulation scores are the same as its signed probabilities.

> regulation.healthy= regulation.scores(probs.healthy, model.healthy, TRUE)

joda: the model is correctly defined

joda: getting the regulation scores...

> head(regulation.healthy)

ATM RelA p53

1007_s_at -0.9960335 -1.0000000 -0.9952370

1053_at 0.3286303 0.5179488 0.6409970

117_at 0.1830266 -0.2301634 -0.2566034

121_at -0.2570361 -0.5776955 -0.4877506

1255_g_at -0.1689833 -0.2444295 -0.2637883

1294_at -0.1687373 -0.2472470 -0.3168580

> regulation.damage= regulation.scores(probs.damage, model.damage, TRUE)

joda: the model is correctly defined

joda: getting the regulation scores...

> head(regulation.damage)

ATM RelA p53

1007_s_at -0.9462780 -0.97162376 -0.84971693

1053_at 0.1552072 0.13941011 0.01302862

117_at -0.1588039 -0.17171107 -0.14696014

121_at -0.1467651 -0.01098588 -0.01012653

1255_g_at 0.1502600 0.13696349 0.16110760

1294_at -0.1469091 -0.14349903 -0.13909837

9

step3

3.3 Step 3: computing deregulation scores

In the third step, to quantify deregulation of genes by a given regulator, we
compute a vector of deregulation scores as a difference between the regula-
tion scores for this regulator in the two cell populations.

> deregulation= deregulation.scores(reg.scores1=regulation.healthy, reg.scores2=regulation.damage, TRUE)

joda: calculating deregulation scores

subtracting reg.scores1 from reg.scores2

> head(deregulation)

ATM RelA p53

1007_s_at 0.04975548 0.02837624 0.1455201

1053_at -0.17342311 -0.37853874 -0.6279684

117_at -0.34183058 0.05845230 0.1096432

121_at 0.11027097 0.56670957 0.4776241

1255_g_at 0.31924331 0.38139295 0.4248959

1294_at 0.02182819 0.10374799 0.1777596

Genes which obtain negative deregulation scores are interpreted as more
activated by the regulator in the cells corresponding to the second argument
(here, the damaged cells). Genes more activated in the other cells (here,
healthy) obtain positive scores. For example, to see the top genes most
activated by p53 in the damaged cells, we sort the genes by their deregulation
scores:

> head(rownames(deregulation)[order(deregulation[,"p53"])])

[1] "200921_s_at" "201939_at" "208811_s_at" "202081_at"

[5] "221962_s_at" "200668_s_at"

10

	Introduction
	Input to the JODA algorithm.
	Processing steps
	Step 1: computing signed differential expression probabilities
	Step 2: computing regulation scores
	Step 3: computing deregulation scores

