
Analysis of high-throughput microscopy-based screens with imageHTS

Gregoire Pau, Xian Zhang, Michael Boutros, Wolfgang Huber
gregoire.pau@embl.de

October 13, 2015

Contents

1 Introduction 1

2 Analysis of a microscopy-based screen 1
2.1 Initialization . 1
2.2 Cell segmentation . 2
2.3 Quantification of cell features . 4
2.4 Prediction of cell classes . 5
2.5 Phenotype summarization . 6
2.6 Configuration files and complete script . 7

3 Getting access to remote screen data 9
3.1 Initialization . 9
3.2 Inspecting data . 9

4 Session info 12

1 Introduction

imageHTS is an R package dedicated to the analysis of high-throughput microscopy-based screens. The package
provides a modular and extensible framework to segment cells, extract quantitative cell features, predict cell types
and browse screen data through web interfaces. Designed to operate in distributed environments, imageHTS provides
a standardized access to remote screen data, facilitating the dissemination of high-throughput microscopy-based
screens.

In the following, we first show how to use imageHTS to analyse a microscopy-based RNA interference (RNAi) screen
by automated cell segmentation and extraction of morphological cell features. In a second example, we demonstrate
how to access and analyse data from a remote screen repository.

2 Analysis of a microscopy-based screen

The kimorph screen is an RNAi screen where HeLa cells were fixed 48 h after siRNA transfection and stained for DNA,
tubulin and actin. The screen assays 800 siRNAs and is described in [1]. In this section, we are analyzing a 12-well
subset of this screen, of reduced image quality (due to package size considerations), located in the inst/submorph

directory of the imageHTS package.

2.1 Initialization

In imageHTS, screen data files can be accessed in two locations: in a local repository, indicated by localPath,
or in an optional remote server designated by serverURL. If a file is not present in the local repository, e.g. for

1

mailto:gregoire.pau@embl.de

Analysis of high-throughput microscopy-based screens with imageHTS 2

storage capacity reasons, imageHTS automatically retrieves the corresponding file from the remote server to the local
repository. This dual repository feature is useful when screen data is stored in a different location from where it is
analysed.

After loading the package imageHTS, we initialize an imageHTS object with parseImageConf. The function takes
3 arguments: an imageHTS configuration file and the variables localPath and serverURL. The imageHTS config-
uration file, in DCF format, describes the general screen configuration: where the microscopy images are located and
how the plates and wells are named. We are using the imageHTS configuration file shown in section 2.6. A detailed
description of the imageHTS configuration file can be found in the manual pages of parseImageConf. We set the
variable localPath to a temporary directory, for storing intermediate analysis files. The variable serverURL can
point either to a directory or an external URL. In the following example, serverURL points to the submorph screen
data directory of the imageHTS package, which contains the source images acquired from the microscope.

> library('imageHTS')

> localPath = tempdir()

> serverURL = system.file('submorph', package='imageHTS')

> x = parseImageConf('conf/imageconf.txt', localPath=localPath, serverURL=serverURL)

File "conf/imageconf.txt" read.

Number of plates= 1

Number of replicates= 2

Number of wells= 384

Number of channels= 3

Number of spots= 1

The imageHTS object x is now instantiated. The function configure configures the screen by providing the screen
description, the plate configuration layout (how sample, control and empty wells are located in the plates) and
the screen log. The function annotate sets up the mapping between reagents and gene targets. Both functions
originate from the package cellHTS2, dedicated to the analysis of low-content RNAi screens [2]. The imageHTS class
extends the cellHTS class and both functions are fully compatible with their cellHTS2 counterparts. See cellHTS2
documentation for details.

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt', 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

In imageHTS, each well is uniquely referred by an unique ID. Well unique IDs are generated by the function getUnames,
which can filter wells according to their plate, replicate, row, column or content type (as described in the plate
configuration file). The following example enumerates the wells that are not empty.

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> unames

[1] "001-01-A03" "001-01-A05" "001-01-B03" "001-01-B05" "001-01-C03" "001-01-D03"

[7] "001-02-A03" "001-02-A05" "001-02-B03" "001-02-B05" "001-02-C03" "001-02-D03"

12 wells are non-empty in this screen. Metadata (plate, replicate, content, gene target, annotation) about the wells
is retrieved using the function getWellFeatures.

> getWellFeatures(x, unames[1:3])

plate well controlStatus PlateName Content siRNAID GeneID LocusID Accession

001-01-A03 1 A03 ubc P1 control <NA> UBC <NA> <NA>

001-01-A05 1 A05 sample P1 sample M-005300-00 AAK1 22848 NM_014911

001-01-B03 1 B03 ubc P1 control <NA> UBC <NA> <NA>

2.2 Cell segmentation

Cells present in wells can be segmented using the function segmentWells. segmentWells is a high-level function
that takes a vector of unique well IDs and a DCF segmentation parameter file. segmentWells uses the low-level
segmentation function indicated by the field seg.method of the segmentation parameter file to segment individual
well images. For each well, segmentWells writes in the local directory: calibrated image data ’cal’, segmentation

Analysis of high-throughput microscopy-based screens with imageHTS 3

data ’seg’ and several JPEG images. Files can be accessed later on with the functions fileHTS and readHTS, as
shown in the sequel.

If an unique well is given, segmentWells returns a list of three images: a calibrated image, a nucleus mask and
a cell mask. The images can be manipulated with the package EBImage [3] and visualized using the command
display. The function highlightSegmentation merges the calibrated image, the nucleus and cell masks to
produce a composite image that highlights the segmentation information.

In the following, we segment the third negative control well rluc using the segmentation parameter file shown in
section 2.6. The field seg.method of the file indicates the function segmentATH to segment the well. This function is
specifically designed to segment cells stained for DNA and cytoskeletal proteins but any other segmentation function
can be used, e.g. for segmenting yeast cells in bright field images or segmenting organelles stained with specific
markers.

> uname = getUnames(x, content='rluc')[3]

> print(uname)

[1] "001-02-C03"

> y = segmentWells(x, uname=uname, segmentationPar='conf/segmentationpar.txt')

001-02-C03: rccussfs nbcells=88 OK

> display(y$cal)

> hseg = highlightSegmentation(0.6*ycal, ynseg, y$cseg, thick=TRUE)

> display(hseg)

Figure 1: Calibrated image ’y$cal’ from well ’001-02-C03’.

Segmentation of the full screen is done with the following commands and takes about 4 minutes with a single
processor. Since wells can be segmented independently from each other, segmentation of the full screen can be easily
parallelized using many processors. The following example is not run in this vignette, due to time constraints.

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, unames, 'conf/segmentationpar.txt')

In imageHTS, all screen data files can be accessed through the function fileHTS, including configuration files, source
images, segmentation data, cell features and JPEG images. fileHTS creates paths pointing to screen data files, using
a standardized naming scheme. The following example shows, for the well indicated by uname, how to get access to
first channel of the source image, calibrated image data, and the JPEG image of the well.

> fileHTS(x, type='source', uname=uname, channel=1)

[1] "/tmp/Rtmpr8gAvF/source/PK-11B-pl1/Well-C003/Tritc.jpeg"

Analysis of high-throughput microscopy-based screens with imageHTS 4

Figure 2: Segmented image ’hseg’ from well ’001-02-C03’. Cell nucleus is highlighted in yellow and cell membrane is
indicated in magenta.

> fileHTS(x, type='seg', uname=uname)

[1] "/tmp/Rtmpr8gAvF/data/001-02/001-02-C03_seg.rda"

> fileHTS(x, type='viewfull', uname=uname)

[1] "/tmp/Rtmpr8gAvF/view/001-02/001-02-C03_full.jpeg"

2.3 Quantification of cell features

Quantification of cell features is done by the high-level function extractFeatures on a set of wells, using a feature
parameter file. Similar to the function segmentWells, extractFeatures uses the function indicated by the field
extractfeatures.method of the feature parameter file to extract cell features. For each well, extractFeatures
writes features in the local directory, in tab-separated format. In the following example, we extract cell features from
the well indicated by uname, using the feature parameter file shown in section 2.6.

> extractFeatures(x, uname, 'conf/featurepar.txt')

001-02-C03: gmbhc OK

Cell features can be accessed using the function fileHTS, as described above. However, for convenience purposes,
the function readHTS combines fileHTS and reads the corresponding file, according to the specified format (here,
tab-separated). The following example reads the cell feature matrix of well ’001-02-C03’.

> y = readHTS(x, type='ftrs', uname=uname, format='tab')

> dim(y)

[1] 88 293

> y[1:10, 1:7]

spot id c.s.area c.s.perimeter c.s.radius.mean c.s.radius.sd c.s.radius.min

1 1 1 3214 317 33.82418 8.647554 13.78002

2 1 2 2205 183 26.59331 5.793902 11.99122

3 1 3 1693 171 24.15556 5.847740 12.15843

4 1 4 4560 323 39.69377 7.712418 26.55506

5 1 5 3363 296 33.96740 8.939805 19.10263

6 1 6 3513 246 35.24268 8.472181 19.57477

7 1 7 5111 310 40.48104 7.407180 26.45049

8 1 8 4199 312 37.14185 5.575376 27.07191

Analysis of high-throughput microscopy-based screens with imageHTS 5

9 1 9 3931 330 38.06178 12.982466 18.37205

10 1 10 5815 365 43.39953 5.527656 31.82344

88 cells are present in the well and each cell is described with 293 features. Cell features include geometrical features,
moment-based features, Haralick moments and Zernicke features. Cell features are described in the manual pages of
the function getFeatures of the package EBImage. Some features have a direct interpretation, such as c.s.area,
which measures the cell area or c.t.b.mean, which quantifies the cell tubulin mean intensity. In the following
example, we display the distribution of the latter within the cells of the well, and identify the cells that have a tubulin
intensity higher than 1600.

> ctub <- y$c.t.b.mean*y$c.s.area

> hist(ctub, 20, xlab='Cell tubulin intensity (a.u.)', main='')

> abline(v=1600, col=2)

> cellid = which(ctub>1600)

> print(cellid)

[1] 2 8 10 15 72

Cell tubulin intensity (a.u.)

F
re

qu
en

cy

500 1000 1500 2000 2500

0
2

4
6

8
10

12

Figure 3: Distribution of cell tubulin intensity in cells of well ’001-02-C03’.

Five cells have a tubulin content higher than 1600. Since rows of cell feature matrix are synchronised with cell indexes
in segmentation masks, cells can be easily traced back by loading the segmentation information, as shown in the
following example.

> cal = readHTS(x, type='cal', uname=uname, format='rda')

> seg = readHTS(x, type='seg', uname=uname, format='rda')

> cseg = rmObjects(seg$cseg, setdiff(1:nrow(y), cellid))

> hightub = highlightSegmentation(0.6*cal, cseg=cseg, thick=TRUE)

> display(hightub)

2.4 Prediction of cell classes

Cell features can be used as covariates to classify cells, using supervised learning and a set of manually annotated
cells. The function readLearnTS takes as arguments a training set file and the feature parameter file, previously
used in extractFeatures. The training set is a list of labelled cells and the feature parameter file contains the field
remove.classification.features, indicating the features that should not be used during training/classification
(e.g. cell position). Construction of the training set is done using the annotation web module cellPicker as described
in the section 3.2.

Analysis of high-throughput microscopy-based screens with imageHTS 6

Figure 4: Cells of well ’001-02-C03’ having a tubulin intensity higher than 1600.

The function readLearnTS uses a Support Vector Machine with a radial kernel to predict cell labels. Training is
done by parameter grid-search and 5-fold cross-validation, to minimize classification error. The function creates the
file data/classifier.rda, which contains the trained classifier. The following example trains a cell classifier, but
is not run in the vignette due to time constraints.

> set.seed(1)

> readLearnTS(x, 'conf/featurepar.txt', 'conf/trainingset.txt')

After training, prediction of cell labels is done by the function predictCellLabels. The function writes for each
well a vector of predicted cell labels. The following example predicts the cell labels of the well ’01-02-C03’, using a
classifier previously trained on a set of 66 cells labelled with 3 cell classes: I (interphase), M (mitotic) and D (debris).

> predictCellLabels(x, uname)

001-02-C03: D=18 I=67 M=3 OK

67 interphase, 3 mitotic and 18 debris cells were predicted in the image. The following example retrieves and displays
the predicted cell labels.

> clab = readHTS(x, type='clabels', uname=uname, format='tab')

> labid = split(1:nrow(clab), clab$label)

> inter = seg$cseg%in%labid$I

> mito = seg$cseg%in%labid$M

> debris = seg$cseg%in%labid$D

> dc = Image(c(inter+mito, inter, debris+inter), colormode='Color', dim=c(dim(seg$cseg)[1:2], 3))

> dc = highlightSegmentation(0.5*dc+0.2*drop(cal), cseg=seg$cseg, thick=TRUE)

> display(dc)

Overall prediction is very good, except for few cells. Classification performance can be easily improved by enlarging
the training set and re-run the training and predicting steps. The cellPicker web module, described in section 3.2,
has an interactive cell annotation interface which is very useful to refine the training set.

2.5 Phenotype summarization

Cell population features are summarized by summarizeWells. The function computes for each well a phenotypic
profile, which summarizes cell population features. Currently, a phenotypic profile consist of: cell number n, median
cell feature med.* (for each feature) and cell class ratios. summarizeWells creates the file data/profiles.tab

which contains the phenotypic profiles. The following example computes the phenotypic profiles of all the wells, but
is not run in the vignette due to time constraints.

Analysis of high-throughput microscopy-based screens with imageHTS 7

Figure 5: Predicted cell labels (grey: interphase, red: mitotic, blue: debris) in well ’001-02-C03’.

> summarizeWells(x, unames, 'conf/featurepar.txt')

In the following example, the phenotypic profiles (previously computed and stored in the imageHTS package) are
loaded with readHTS and averaged by well type. Only the following features are considered: n (cell number),
med.c.s.area (median cell size), med.c.t.b.mean (median cell tubulin density), M (mitotic cell fraction) and D (debris
cell fraction).

> profiles = readHTS(x, type='file', filename='data/profiles.tab', format='tab')

> wfcontent = factor(as.character(getWellFeatures(x, unames)$controlStatus))

> table(wfcontent)

wfcontent

rluc sample ubc

4 4 4

> zwf = split(1:nrow(profiles), wfcontent)

> ft = c('n', 'med.c.s.area', 'med.c.t.b.mean', 'M', 'D')

> avef = do.call(rbind, lapply(zwf, function(z) colMeans(profiles[z, ft])))

> print(avef)

n med.c.s.area med.c.t.b.mean M D

rluc 99.00 2446.750 0.2496445 0.010388399 0.1573825

sample 86.75 2793.375 0.2324918 0.031074095 0.1455122

ubc 26.75 1576.250 0.4220933 0.005813953 0.7868731

There are 4 rluc negative controls, 4 ubc positive controls and 4 sample wells in this screen. The average number
of cells in ubc wells is 26.75, lower than in rluc wells, 99.00. Moreover, the average fraction of debris cells in ubc

wells, 0.79, is higher than in rluc wells, 0.16. A larger number of replicates and proper statistical testing would be
needed to determine whether the observed changes are statistically significant.

2.6 Configuration files and complete script

Configurations files used in this vignette are reproduced in this section. Since the files are part of the screen data, they
can be read using fileHTS. In the following example, we display the imageHTS configuration file, the segmentation
parameter file and the feature parameter file.

> f = fileHTS(x, 'file', filename='conf/imageconf.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

Analysis of high-throughput microscopy-based screens with imageHTS 8

AssayName: submorph

SourceFilenamePattern: source/PK-{replicate}B-pl{plate}/Well-{row}0{col}/{channel}.jpeg

PlateNames: 1

ReplicateNames: 10, 11

RowNames: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P

ColNames: 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

ChannelNames: Tritc, FITC, Hoechst

> f = fileHTS(x, 'file', filename='conf/segmentationpar.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

seg.method: segmentATH

nuc.athresh.filter: makeBrush(35, shape='box')/(35*35)

nuc.athresh.t: 0.00424

nuc.morpho.kernel: makeBrush(3, shape='diamond')

nuc.watershed.tolerance: 3

nuc.watershed.neighbourood: 2

nuc.min.density: 0.1

nuc.min.size: 125.0625

nuc.max.size: 2070.25

adj.a: 2.82*a - 0.17

adj.t: 5.03*t - 0.35

adj.h: 2.99*h - 0.15

cell.thresh.filter: matrix(c(0,1,0,1,2,1,0,1,0)/6,nc=3,nr=3)

cell.thresh.t: 0.12

cell.morpho.kernel: makeBrush(3, shape='diamond')

cell.propagate.lambda: 0.0001

cell.propagate.mix.power: 0.2

cell.min.density: 0.1

cell.max.edgepratio: 0.3

cell.min.size: 150.0625

cell.max.size: 14491.75

cell.max.perimeter: 769.3

thumbnail.crop: 100, 600, 200, 400

thumbnail.resize.width: 200

> f = fileHTS(x, 'file', filename='conf/featurepar.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

extractfeatures.method: getCellFtrsATH

cell.classes: D, I, M

remove.classification.features: c.a.m.cx, c.a.m.cy, c.t.m.cx, c.t.m.cy, c.h.m.cx, c.h.m.cy, c.m.m.cx, c.m.m.cy, n.a.m.cx, n.a.m.cy, n.t.m.cx, n.t.m.cy, n.h.m.cx, n.h.m.cy

cellHTS.features: n, med.c.s.area, med.c.m.m.eccentricity, med.n.ah.cor, M

cellHTS.features.name: Number of cells, Median cell size, Median cell ecc., Median A/H nuc. corr., Metaphase fraction

The following example is the complete script used to automatically segment cells, quantify cell features, predict
cell labels and summarize phenotypes of the whole screen. The example is not run in this vignette, due to time
constraints.

> library('imageHTS')

> localPath = tempdir()

> serverURL = system.file('submorph', package='imageHTS')

> x = parseImageConf('conf/imageconf.txt', localPath=localPath, serverURL=serverURL)

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt', 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, unames, 'conf/segmentationpar.txt')

Analysis of high-throughput microscopy-based screens with imageHTS 9

> extractFeatures(x, unames, 'conf/featurepar.txt')

> readLearnTS(x, 'conf/featurepar.txt', 'conf/trainingset.txt')

> predictCellLabels(x, unames)

> summarizeWells(x, unames, 'conf/featurepar.txt')

3 Getting access to remote screen data

The dual repository architecture of imageHTS allows an easy access to remote screen data. In the following, we
are analysing the full kimorph RNAi screen, targeting about 800 protein coding genes in HeLa cells. Screen details
are available in [1]. The screen has been previously analysed by imageHTS and screen data is located at http:
//www.ebi.ac.uk/huber-srv/cellmorph/kimorph/. The interactive webQuery browsing interface is available at http:
//www.ebi.ac.uk/huber-srv/cellmorph/kimorph/webquery/.

3.1 Initialization

We first initialize an imageHTS object by setting the variable serverURL to the screen data URL and the local
repository localPath to an empty local directory. We next configure and annotate the imageHTS objects using
the screen configuration files. The files, absent in the local screen directory, are automatically downloaded from the
remote server.

> localPath = file.path(tempdir(), 'kimorph')

> serverURL = 'http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/'

> x = parseImageConf('conf/imageconf.txt', localPath=localPath, serverURL=serverURL)

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt', 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

3.2 Inspecting data

We enumerate the non-empty wells with getUnames and retrieve metadata about them using getWellFeatures.
The controlStatus field contains the well type. We then load the well phenotypic profiles using readHTS in the
variable xd.

> us = setdiff(getUnames(x), getUnames(x, content='empty'))

> wfcontent = getWellFeatures(x, us)$controlStatus

> table(wfcontent)

wfcontent

sample empty ubc rluc casp1 trappc3 clspn kif11 kif23 plk1

1558 0 24 24 24 24 24 24 24 24

> xd = readHTS(x, 'file', filename='data/profiles.tab', format='tab')

> xd = xd[match(us, xd$uname),]

There are 1750 non-empty wells in this screen, including 1558 sample experiments and 8 controls, each replicated
24 times. In the following example, we show how the median cell size med.c.g.ss and median cell eccentricity
med.c.g.ec vary within well types.

> colors = c('#ffffff', NA, '#aaffff', '#ffaaff', '#ff44aa', '#aaaaff', '#aaffaa',

+ '#ff7777', '#aaaaaa', '#ffff77')

> par(mfrow=c(1,2))

> boxplot(xd$med.c.g.ss~wfcontent, las=2, col=colors, main='Median cell size (a.u.)')

> boxplot(xd$med.c.g.ec~wfcontent, las=2, col=colors, main='Median cell eccentricity (a.u.)')

The boxplots show that the ubc control phenotype is characterized by small and round cells, the clspn control
phenotype is characterized by large cells and the trappc3 control phenotype is characterized by elongated cells.

To have a screen-wide overview of the well phenotypes, we draw in the following example a map of the phenotypic
profiles using linear discriminant analysis (LDA), computed on the on the controls rluc, ubc and trappc3.

http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/
http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/
http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/webquery/
http://www.ebi.ac.uk/huber-srv/cellmorph/kimorph/webquery/

Analysis of high-throughput microscopy-based screens with imageHTS 10

●

●●●

●

●

●
●
●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

sa
m

pl
e

em
pt

y

ub
c

rlu
c

ca
sp

1

tr
ap

pc
3

cl
sp

n

ki
f1

1

ki
f2

3

pl
k1

1000

2000

3000

4000

5000

Median cell size (a.u.)

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

sa
m

pl
e

em
pt

y

ub
c

rlu
c

ca
sp

1

tr
ap

pc
3

cl
sp

n

ki
f1

1

ki
f2

3

pl
k1

0.5

0.6

0.7

0.8

Median cell eccentricity (a.u.)

Figure 6: Distribution of median cell size and median cell eccentricity among well types.

> library("MASS")

> z = wfcontent %in% c('rluc', 'ubc', 'trappc3')

> ft = 14:50

> ld = lda(xd[z, ft], as.character(wfcontent[z]))

> py = predict(ld, xd[, ft])

> plot(py$x[,1:2])

Two wells stand far away from the other ones. Are they novel phenotypes ? We identify and display them in the
following example.

> unames = us[which(py$x[,1]>500)]

> print(unames)

[1] "001-01-A13" "002-01-I13"

> f = fileHTS(x, type='viewunmonted', spot=3, uname=unames[1])

> img1 = readImage(f)[1791:2238,1:448,]

> display(img1)

> f = fileHTS(x, type='viewunmonted', spot=1, uname=unames[2])

> img2 = readImage(f)[1:448,1:448,]

> display(img2)

Wells ’001-01-A13’ and ’002-01-I13’ have serious staining problems. This is an example how a phenotypic map can be
used for quality control. The wells cannot be used in the analysis and can be flagged in the screen log configuration
file. The LDA plot is now redrawn by adjusting plot limits.

> plot(py$x[,1:2], xlim=c(-35,25), ylim=c(-20,20), cex=0.3)

> z = wfcontent!='sample'

> points(py$x[z,1:2], col=1, bg=colors[wfcontent[z]], pch=21)

> col = rep(1, length(levels(wfcontent)))

> col[2] = NA

> legend('topleft', legend=levels(wfcontent), col=col, pt.bg=colors[1:length(wfcontent)],

+ pch=21, ncol=2, cex=0.8)

Control wells ubc, clspn, rluc and trappc3 are well separated from each other. Control wells plk1 seem to display
similar phenotypes than the negative control rluc: further inspection will reveal than the siRNA reagent against
plk1 did not work in this experiment.

Several sample wells seem to have strong phenotypes, distant from negative controls. Further data inspection is fa-
cilitated by the webQuery and cellPicker web modules, which allow interactive browsing and cell selection/annotation

Analysis of high-throughput microscopy-based screens with imageHTS 11

Figure 7: Well ’001-01-A13’ and ’002-01-I13’ showing staining problems.

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−30 −20 −10 0 10 20

−
20

−
10

0
10

20

LD1

LD
2

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

sample
empty
ubc
rluc
casp1

trappc3
clspn
kif11
kif23
plk1

Figure 8: LDA projection of the phenotypic profiles, computed on the control rluc, ubc and trappc3 wells.

Analysis of high-throughput microscopy-based screens with imageHTS 12

using a web browser. In the following example, the functions popWebQuery and popCellPicker open the corre-
sponding modules. See Fig. 9 for an overview of the webQuery and cellPicker web modules.

> popWebQuery(x)

> uname = getUnames(x, content='trappc3')[1]

> popCellPicker(x, uname)

4 Session info

This document was produced using:

> toLatex(sessionInfo())

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils
� Other packages: Biobase 2.30.0, BiocGenerics 0.16.0, EBImage 4.12.0, MASS 7.3-44, RColorBrewer 1.1-2,

cellHTS2 2.34.0, genefilter 1.52.0, hwriter 1.3.2, imageHTS 1.20.0, locfit 1.5-9.1, splots 1.36.0, vsn 3.38.0
� Loaded via a namespace (and not attached): AnnotationDbi 1.32.0, BiocInstaller 1.20.0, BiocStyle 1.8.0,

Category 2.36.0, DBI 0.3.1, DEoptimR 1.0-3, GSEABase 1.32.0, IRanges 2.4.0, Matrix 1.2-2, RBGL 1.46.0,
RSQLite 1.0.0, Rcpp 0.12.1, S4Vectors 0.8.0, XML 3.98-1.3, abind 1.4-3, affy 1.48.0, affyio 1.40.0,
annotate 1.48.0, class 7.3-14, cluster 2.0.3, colorspace 1.2-6, digest 0.6.8, e1071 1.6-7, fftwtools 0.9-7,
ggplot2 1.0.1, graph 1.48.0, gtable 0.1.2, jpeg 0.1-8, lattice 0.20-33, limma 3.26.0, magrittr 1.5,
munsell 0.4.2, mvtnorm 1.0-3, pcaPP 1.9-60, plyr 1.8.3, png 0.1-7, prada 1.46.0, preprocessCore 1.32.0,
proto 0.3-10, reshape2 1.4.1, robustbase 0.92-5, rrcov 1.3-8, scales 0.3.0, splines 3.2.2, stats4 3.2.2,
stringi 0.5-5, stringr 1.0.0, survival 2.38-3, tiff 0.1-5, tools 3.2.2, xtable 1.7-4, zlibbioc 1.16.0

References

[1] F. Fuchs, G. Pau, D. Kranz, O. Sklyar, C. Budjan, S. Steinbrink, T. Horn, A. Pedal, W. Huber, and M. Boutros.
Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol., 6:370,
Jun 2010.

[2] M. Boutros, L. P. Bras, and W. Huber. Analysis of cell-based RNAi screens. Genome Biol., 7:R66, 2006.

[3] G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber. EBImage–an R package for image processing with
applications to cellular phenotypes. Bioinformatics, 26:979–981, Apr 2010.

Analysis of high-throughput microscopy-based screens with imageHTS 13

Figure 9: The webQuery (top) and cellPicker (bottom) web modules.

	1 Introduction
	2 Analysis of a microscopy-based screen
	2.1 Initialization
	2.2 Cell segmentation
	2.3 Quantification of cell features
	2.4 Prediction of cell classes
	2.5 Phenotype summarization
	2.6 Configuration files and complete script

	3 Getting access to remote screen data
	3.1 Initialization
	3.2 Inspecting data

	4 Session info

