
iClusterPlus: integrative clustering of multiple

genomic data sets

Qianxing Mo1 and Ronglai Shen2

December 26, 2013

1Division of Biostatistics
Dan L. Duncan Cancer Center

Baylor College of Medicine
qmo@bcm.edu

2Deparment of Epidemiology and Biostatistics
Memorial Sloan-Kettering Cancer Center

shenr@mskcc.org

Contents

1 Introduction 1

2 Data and Pre-processing 2

3 Integrative clustering analysis 5

4 Model tuning using tune.iClusterPlus 5

5 Model selection 7

6 Generate heatmap 7

7 Feature selection 9

1 Introduction

iClusterPlus is developed for integrative clustering analysis of multi-type genomic data and
is an enhanced version of iCluster proposed and developed by Shen, Olshen and Ladanyi
(2009). Multi-type genomic data arise from the experiments where biological samples (e.g.,
tumor samples) are analyzed by multiple techniques, for instance, array comparative ge-
nomic hybridization (aCGH), gene expression microarray, RNA-seq and DNA-seq, and so
on. Examples of these data can be obtained from the Cancer Genome Atlas (TCGA)

1

(http://cancergenome.nih.gov/).

Originally, Shen, Olshen and Ladanyi (2009) proposed a latent variable regression with a
lasso constraint (Tibshirani, 1996) for joint modeling of multiple omics data types to iden-
tify common latent variables that can be used to cluster patient samples into biologically
and clinically relevant disease sub-types. In a followup work, Shen, Wang and Mo (2012)
further incorporated elasticnet (Zou and Hastie, 2005) and fused lasso (Tibshirani, 2005)
into the integration framework. This document discuss the most recent development (iClus-
terPlus) that extends the framework to allow integration of binary, categorical, count, and
continuous data types (Mo et al. 2012). In iClusterPlus model, binary observations such
as somatic mutation are modeled as Binomial processes; categorical observations such as
copy number states (gain, normal, loss) are realizations of Multinomial random variables;
counts are modeled as Poisson random processes; and continuous measures are modeled
by Gaussian distributions. We simultaneously regress the observations (somatic mutation,
DNA copy number, DNA methylation, mRNA expression) under their proper distribu-
tional assumptions to a common set of latent variables that represent a set of underlying
oncogenic processes. To identify the genomic features (e.g., ERBB2 amplification and over-
expression) that make important contributions to the latent onco- genic process, we use a
penalized regression approach by applying the lasso (L1-norm) penalty (Tibshirani, 1996)
in generalized linear models. This is achieved by directly incorporating the Fortran source
code written by Friedman, Hastie and Tibshirani (2009) that is available in the glmnet
package (http://cran.r-project.org/web/packages/glmnet/index.html).

In this document, we use the TCGA glioblastoma data set as an example to demonstrate
how to use iClusterPlus to perform an integrative clustering analysis of somatic mutation,
DNA copy number and gene expression data.

2 Data and Pre-processing

A description of the TCGA glioblastoma data set can be found in TCGA (2008). The
GBM datasets were downloaded from the Cancer Genome Atlas public data portal, and
from the cBio Cancer Genomics Portal (http://cbioportal.org/) at the Memorial Sloan-
Kettering Cancer Center. Somatic mutation data are available in a total of 91 matched
tumor?normal pairs and in 601 selected genes. DNA copy number alterations (CNAs)
were measured on three microarray platforms (Agilent 244K, SNP6, Illumina 550K) and
analyzed with multiple analytical algorithms. Level 3 normalized and segmented data were
used. In our data pre-processing step, we reduce multi-sample array CGH data to 1K-
5K non-redundant regions for subsequent clustering analysis. For mRNA expression data,
unified gene expression data across three microarray platforms (Affymetrix Human Exon
1.0 ST GeneChips, Affymetrix HT-HG-U133A GeneChips, and custom designed Agilent
244K array) as described in (Verhaak et al. 2010) were used. A set of 1,740 most variable
genes were used for the analysis. The ”triplet” data set (mutation, copy number, expression)
were available on 84 samples for integrative analysis.
The somatic mutation data should be stored in binary matrix (1: mutation, 0: no mutation)
with the rows and columns corresponding to the samples and genes, respectively. We

2

http://cancergenome.nih.gov/
http://cran.r-project.org/web/packages/glmnet/index.html
http://cbioportal.org/

recommend filtering out genes with too few mutations for clustering (e.g., less than 5%).

> library(iClusterPlus)

> library(GenomicRanges)

> library(gplots)

> library(lattice)

> data(gbm)

> dim(gbm.mut)

[1] 84 306

> mut.rate=apply(gbm.mut,2,mean)

> gbm.mut2 = gbm.mut[,which(mut.rate>0.02)]

> gbm.mut2[1:10,1:8]

A2M ABCC4 ADAMTSL3 ASXL1 BAI3 BCAR1 BCL11A BCL11B

TCGA.02.0001 0 0 0 0 0 0 0 0

TCGA.02.0003 0 0 0 0 0 0 0 0

TCGA.02.0006 0 0 0 0 0 0 0 0

TCGA.02.0007 0 0 0 0 0 0 0 0

TCGA.02.0009 0 0 0 0 0 0 0 0

TCGA.02.0010 0 0 1 1 1 0 0 1

TCGA.02.0011 0 0 0 0 0 0 0 0

TCGA.02.0014 0 0 0 0 0 0 1 0

TCGA.02.0021 0 0 0 0 0 0 0 0

TCGA.02.0024 1 0 0 0 0 0 0 0

For gene expression data, we recommend using the top variable genes for integrative clus-
tering analysis, which can be obtained by variance filtering. For example, we use the top
1740 genes for our iCluster analysis.

> dim(gbm.exp)

[1] 84 1740

> # the rows and columns corresponding to the samples and genes respectively

> gbm.exp[1:3,1:8]

FSTL1 MMP2 BBOX1 GCSH EDN1 CXCR4 SALL1

TCGA.02.0001 -0.66392 -0.27716 0.79896 0.09005 0.46557 0.30278 0.76869

TCGA.02.0003 -0.28438 1.00445 0.19157 0.92115 1.08181 -0.03790 0.00452

TCGA.02.0006 0.98890 0.19374 0.93830 0.49317 -0.22644 1.43145 -0.38401

MMP7

TCGA.02.0001 0.55745

TCGA.02.0003 -0.04971

TCGA.02.0006 1.58288

3

It is a challenge to incorporate raw or normalized copy number data for iCluster analysis con-
sidering the high dimensionality and spatial correlation of the data. Based on our experience,
we think it is more feasible to use the segmentation results produced by the DNAcopy pack-
age (http://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html).

> dim(gbm.seg)

[1] 16295 6

> gbm.seg[1:3,] #gbm.cn is the segmentation results produced by DNAcopy

sample chromosome start end num.mark seg.mean

1 TCGA.02.0001 1 150823073 150848509 5 -2.1537

2 TCGA.02.0001 1 150852858 167483267 1814 0.1907

3 TCGA.02.0001 1 167493768 167507882 2 -3.4343

We reduce the GBM copy number regions to 5K by removing the redundant regions using
function CNregions.

> data(variation.hg18.v10.nov.2010)

> gbm.cn=CNregions(seg=gbm.seg,epsilon=0,adaptive=FALSE,rmCNV=TRUE,

+ cnv=variation.hg18.v10.nov.2010[,3:5],

+ frac.overlap=0.5, rmSmallseg=TRUE,nProbes=5)

Removing CNV...

> dim(gbm.cn)

[1] 84 5512

> gbm.cn[1:3,1:5]

chr1.554268-554287 chr1.554287-736483 chr1.736483-746956

TCGA.02.0001 0.2077 0.2077 0.2077

TCGA.02.0003 -0.0096 -0.0096 -0.0096

TCGA.02.0006 0.0027 0.0027 0.0027

chr1.746956-757922 chr1.757922-769590

TCGA.02.0001 0.2077 0.2077

TCGA.02.0003 -0.0096 -0.0096

TCGA.02.0006 0.0027 0.0027

Here seg is the DNAcopy segmentation output. In the first step, we define a set of non-
redundant regions with parameter epsilon that denotes the maximum distance (Euclidean)
between adjacent probes tolerated for defining a non-redundant region. epsilon=0 is equiv-
alent as taking the union of all unique break points across the n samples. Default ep-
silon=0.005. We then take the medoid signature as the representative copy number profile
for that region, an approach similar to van Wieringen and van de Wiel (2002). The degree
of dimension reduction is proportional to the number of samples included. We recommend

4

http://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html

setting an epsilon such that the reduced dimension is less than 10K. When sample size is
large, an adaptive dimension reduction is more effective. Instead of setting absolute thresh-
old epsilon, setting adaptive=T will reduce dimension proportional to upper quantile of the
distances. default is False. rmCNV=T remove germline CNV. When set to True, one must
supply a list of germline CNVs as cnv=cnv. The additional argument rmSmallseg removes
small segments likely to be noise. Default is False. When set of True, nProbes, the segment
length threshold below which rmSmallseg will exclude should be specified.

Sort gbm.cn to make sure all the samples are in the same order.

> gbm.cn=gbm.cn[order(rownames(gbm.cn)),]

> # check if all the samples are in the same order for the three data sets

> all(rownames(gbm.cn)==rownames(gbm.exp))

[1] TRUE

> all(rownames(gbm.cn)==rownames(gbm.mut2))

[1] TRUE

3 Integrative clustering analysis

Given multiple genomic data types (e.g., mutation, copy number, gene expression, etc)
measured in the same set of samples, and specified sparsity parameter values, iClusterPlus
fits a regularized latent variable model based clustering that generates an integrated cluster
assignment based on joint inference across data types. Below is a one-liner to run iClus-
terPlus given the desired number of eigen-features k (number of clusters is k+1) and the
values of parameter set lambda (which determines how many genomic features will have
nonzero weights on the fused eigen-feature). Normally, we have to optimize k and lambda
through model tuning which we discuss in the next section.

> fit.single=iClusterPlus(dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,

+ type=c("binomial","gaussian","gaussian"),

+ lambda=c(0.04,0.61,0.90),K=2,maxiter=10)

4 Model tuning using tune.iClusterPlus

Using parallel computing, tune.iClusterPlus samples a series of lambda values from the
parameter space based on the Uniform design (Fang and Wang, 1995) to search for the best
model. The number of points to sample (n.lambda) depends on the number of data types
and can take the following values: If we know the number of clusters in the samples, we may
just choose the corresponding k (the number of latent variables) for the cluster analysis. We
use the rule that the number of clusters equals k+1. If we don’t know the cluster number,
we can test the k from 1 to N (a reasonable number of clusters). In this example, we let
the k from 1 to 5.

5

Number of data types n.lambda

1 any
2 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
3 35, 101, 135, 185, 266, 418, 579, 828, 1010
4 307, 526, 701, 1019, 2129, 3001, 4001, 5003, 6007

> set.seed(123)

> date()

[1] "Thu Dec 26 00:02:39 2013"

> for(k in 1:5){

+ cv.fit = tune.iClusterPlus(cpus=12,dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,

+ type=c("binomial","gaussian","gaussian"),K=k,n.lambda=185,

+ scale.lambda=c(1,1,1),maxiter=20)

+ save(cv.fit, file=paste("cv.fit.k",k,".Rdata",sep=""))

+ }

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

> date()

[1] "Thu Dec 26 11:47:17 2013"

Here for demonstration purpose, we specify n.lambda=185 sampling points (a modest value
for this setting) which may result in some variability. As a result, either k=2 can be chosen as
the best k based on % explained variation (percentEV). Use set.seed() to make sure you can
reproduce your results from independent runs. For general practice, set n.lambda=NULL
to use the default value.

6

5 Model selection

Now we illustrate how to analyze and interpret the output of tune.iClusterPlus. The first
step is to examine model selection criteria. For each k, we use Bayesian information cri-
teria (BIC) to select the best sparse model with the optimal combination of penalty pa-
rameters. To select the best k, we compute the deviance ratio which is the ratio of the
log-likelihood(fitted) - log-likelihood(null model) divided by the log-likelihood (full model)
- log-likelihood(null model). The deviance ratio can be interpreted as the percentEV. We
choose the k where the curve of percentEV levels off. Below, we show how to do this in R.

> output=alist()

> files=grep("cv.fit",dir())

> for(i in 1:length(files)){

+ load(dir()[files[i]])

+ output[[i]]=cv.fit

+ }

> nLambda = nrow(output[[1]]$lambda)

> nK = length(output)

> BIC = getBIC(output)

> devR = getDevR(output)

Now we get the ID for the lambda vector at which the BIC is minimum. Then we obtain
the deviance ratio of the lambda vector at which the BIC is minimum.

> minBICid = apply(BIC,2,which.min)

> devRatMinBIC = rep(NA,nK)

> for(i in 1:nK){

+ devRatMinBIC[i] = devR[minBICid[i],i]

+ }

See Figure 1 for the plot of number of clusters vs. percent of explained variation.
The optimal k (number of latent variables) is where the curve of %Explained variation
levels off. By examining Figure 1, we choose to present the three-cluster results. Get
cluster membership (note number of clusters is k+1):

> clusters=getClusters(output)

> rownames(clusters)=rownames(gbm.exp)

> colnames(clusters)=paste("K=",2:(length(output)+1),sep="")

> #write.table(clusters, file="clusterMembership.txt",sep='\t',quote=F)
> k=2

> best.cluster=clusters[,k]

> best.fit=output[[k]]$fit[[which.min(BIC[,k])]]

6 Generate heatmap

We provide a function to plot heatmaps. If necessary, the users may modify plotHeatmap
function to fit their own needs.

7

> plot(1:(nK+1),c(0,devRatMinBIC),type="b",xlab="Number of clusters (K+1)",

+ ylab="%Explained Variation")

●

●

●

●

●

●

1 2 3 4 5 6

0.
00

0.
02

0.
04

0.
06

0.
08

Number of clusters (K+1)

%
E

xp
la

in
ed

 V
ar

ia
tio

n

Figure 1: Number of clusters vs. percent of explained variation.

8

> chr=unlist(strsplit(colnames(gbm.cn),"\\."))

> chr=chr[seq(1,length(chr),by=2)]

> chr=gsub("chr","",chr)

> chr=as.numeric(chr)

> #truncate the values for a better image plot

> cn.image=gbm.cn

> cn.image[cn.image>1.5]=1.5

> cn.image[cn.image< -1.5]= -1.5

> exp.image=gbm.exp

> exp.image[exp.image>2.5]=2.5

> exp.image[exp.image< -2.5]= -2.5

See Figure 2 for the heatmap plot for the three-cluster result.

7 Feature selection

Select the top features based on lasso coefficient estimates for the 3-cluster solution.

> features = alist()

> features[[1]] = colnames(gbm.mut2)

> features[[2]] = colnames(gbm.cn)

> features[[3]] = colnames(gbm.exp)

> sigfeatures=alist()

> for(i in 1:3){

+ rowsum=apply(abs(best.fit$beta[[i]]),1, sum)

+ upper=quantile(rowsum,prob=0.75)

+ sigfeatures[[i]]=(features[[i]])[which(rowsum>upper)]

+ }

> names(sigfeatures)=c("mutation","copy number","expression")

> #print a few examples of selected features

> head(sigfeatures[[1]])

character(0)

> head(sigfeatures[[2]])

[1] "chr1.202692537-202801982" "chr4.52383858-52395837"

[3] "chr4.52395837-52522387" "chr4.52522387-52989049"

[5] "chr4.52989049-53002654" "chr4.53002654-53517879"

> head(sigfeatures[[3]])

[1] "FSTL1" "CXCR4" "MMP7" "ZEB1" "KIAA1199" "SERPINF1"

We notice that no gene is selected from the mutation data, which indicates that the selected
lambda value is too large and it is not in the same scale as those for the copy number and

9

> bw.col = colorpanel(2,low="white",high="black")

> col.scheme = alist()

> col.scheme[[1]] = bw.col

> col.scheme[[2]] = bluered(256)

> col.scheme[[3]] = bluered(256)

> plotHeatmap(fit=best.fit,datasets=list(gbm.mut2,cn.image,exp.image),

+ type=c("binomial","gaussian","gaussian"), col.scheme = col.scheme,

+ row.order=c(F,F,T),chr=chr,plot.chr=c(F,T,F),sparse=c(T,F,T),cap=c(F,T,F))

0

1

1
23
456
7
89

1011
12
13141516171819202122

−1.5
−0.5
0.5
1.5

−2
0
2

Figure 2: Heatmap of mutation (top panel), DNA copy number (middle panel), and mRNA
expression (bottom panel) for the three-cluster solution. Rows are genomic features and
columns are samples.

10

gene expression data. To solve this problem, we need to set the scale.lambda (an argument
of tune.iClusterPlus) to a value between 0 and 1. For example, after several tries, we
find that letting scale.lambda equal to 0.05 allows a more effective variable selection of the
mutation data and the three-cluster solution is still one of the best solutions. The following
is a repeat of the above analysis with a new scale.lambda for the mutation data.

> set.seed(123)

> date()

[1] "Thu Dec 26 11:47:25 2013"

> for(k in 1:5){

+ cv2.fit = tune.iClusterPlus(cpus=12,dt1=gbm.mut2,dt2=gbm.cn,dt3=gbm.exp,

+ type=c("binomial","gaussian","gaussian"),K=k,n.lambda=185,

+ scale.lambda=c(0.05,1,1),maxiter=20)

+ save(cv2.fit, file=paste("cv2.fit.k",k,".Rdata",sep=""))

+ }

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

185 points of lambdas are used to tune parameters.

Begin parallel computation

End parallel computation

> date()

[1] "Thu Dec 26 19:07:46 2013"

> output2=alist()

> files=grep("cv2.fit",dir())

> for(i in 1:length(files)){

+ load(dir()[files[i]])

+ output2[[i]]=cv2.fit

+ }

> nLambda = nrow(output2[[1]]$lambda)

> nK = length(output2)

> BIC = getBIC(output2)

> devR = getDevR(output2)

11

> minBICid = apply(BIC,2,which.min)

> devRatMinBIC = rep(NA,nK)

> for(i in 1:nK){

+ devRatMinBIC[i] = devR[minBICid[i],i]

+ }

See Figure 3 for the plot of number of clusters vs. percent of explained variation.

The optimal k (number of latent variables) is where the curve of %Explained variation
levels off. By examining Figure 3, we choose to present the three-cluster results. Get
cluster membership (note number of clusters is k+1):

> clusters=getClusters(output2)

> rownames(clusters)=rownames(gbm.exp)

> colnames(clusters)=paste("K=",2:(length(output2)+1),sep="")

> #write.table(clusters, file="clusterMembership.txt",sep='\t',quote=F)
> k=2

> best.cluster=clusters[,k]

> best.fit=output2[[k]]$fit[[which.min(BIC[,k])]]

See Figure 4 for the heatmap plot for the three-cluster result.

Select the top features based on lasso coefficient estimates for the 3-cluster solution.

> features = alist()

> features[[1]] = colnames(gbm.mut2)

> features[[2]] = colnames(gbm.cn)

> features[[3]] = colnames(gbm.exp)

> sigfeatures=alist()

> for(i in 1:3){

+ rowsum=apply(abs(best.fit$beta[[i]]),1, sum)

+ upper=quantile(rowsum,prob=0.75)

+ sigfeatures[[i]]=(features[[i]])[which(rowsum>upper)]

+ }

> names(sigfeatures)=c("mutation","copy number","expression")

> #print a few examples of selected features

> head(sigfeatures[[1]])

[1] "A2M" "BRCA2" "CAST" "CENTG1" "CES3" "CHAT"

> head(sigfeatures[[2]])

[1] "chr1.202692537-202801982" "chr4.52383858-52395837"

[3] "chr4.52395837-52522387" "chr4.52522387-52989049"

[5] "chr4.52989049-53002654" "chr4.53002654-53517879"

> head(sigfeatures[[3]])

12

> plot(1:(nK+1),c(0,devRatMinBIC),type="b",xlab="Number of clusters (K+1)",

+ ylab="%Explained Variation")

●

●

●

●

● ●

1 2 3 4 5 6

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Number of clusters (K+1)

%
E

xp
la

in
ed

 V
ar

ia
tio

n

Figure 3: Number of clusters vs. percent of explained variation.

13

> plotHeatmap(fit=best.fit,datasets=list(gbm.mut2,cn.image,exp.image),

+ type=c("binomial","gaussian","gaussian"), col.scheme = col.scheme,

+ row.order=c(F,F,T),chr=chr,plot.chr=c(F,T,F),sparse=c(T,F,T),cap=c(F,T,F))

0

1

1
23
456
7
89

1011
12
13141516171819202122

−1.5
−0.5
0.5
1.5

−2
0
2

Figure 4: Heatmap of mutation (top panel), DNA copy number (middle panel), and mRNA
expression (bottom panel) for the three-cluster solution. Rows are genomic features and
columns are samples.

14

[1] "FSTL1" "CXCR4" "MMP7" "ZEB1" "KIAA1199" "SERPINF1"

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] lattice_0.20-23 gplots_2.12.1 GenomicRanges_1.12.5

[4] IRanges_1.18.3 BiocGenerics_0.6.0 iClusterPlus_0.99.8.5

loaded via a namespace (and not attached):

[1] bitops_1.0-6 caTools_1.16 gdata_2.13.2 grid_3.0.2

[5] gtools_3.1.1 KernSmooth_2.23-10 stats4_3.0.2 tools_3.0.2

References

Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus Schultz,
Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. (2012). Pattern
discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl.
Acad. Sci. USA 110(11):4245-50.

Ronglai Shen, Sijian Wang, Qianxing Mo. (2013). Sparse Integrative Clustering of Multiple
Omics Data Sets. Annals of Applied Statistics 7(1) 269-294.

Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen,
Jason Huse, Marc Ladanyi, Chris Sander (2012). Integrative Subtype Discovery in
Glioblastoma Using iCluster. PLOS ONE 7(4):e35236.

Ronglai Shen, Adam B. Olshen, Marc Ladanyi (2009). Integrative clustering of multiple
genomic data types using a joint latent variable model with application to breast and
lung cancer subtype analysis. Bioinformatics 25(22):2906-12.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301-320..

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 58, 267-288..

15

J. Friedman, T. Hastie, and R. Tibshirani, Regularized paths for generalized linear models
via coordinate descent, Journal of statistical software 33(1).

TCGA Network, (2008). Comprehensive genomic characterization defines human glioblas-
toma genes and core pathways. Nature 455, 1061-1068..

K. Fang and Y. Wang, Number theoretic methods in statistics., Chapman abd Hall, London,
UK, 1994.

16

	Introduction
	Data and Pre-processing
	Integrative clustering analysis
	Model tuning using tune.iClusterPlus
	Model selection
	Generate heatmap
	Feature selection

