
flowWorkspace: A Package to store and

maninpulate gated flow data.

Greg Finak <gfinak@fhcrc.org>

April 18, 2016

1 Purpose

The purpose of this package is to provide functionality to import relatively
simple flowJo workspaces into R. By this we mean, accessing the sam-
ples, groups, transformations, compensation matrices, gates, and population
statistics in the flowJo workspace, and replicating these using (primarily)
flowCore functionality.

2 Why Another flowJo Workspace Import Pack-
age?

There was a need to import flowJo workspaces into R for comparative gating.
The flowFlowJo package did not meet our needs. Many groups have legacy
data with associated flowJo XML workspace files in version 2.0 format that
they would like to access using BioConductor’s tools. Hopefully this package
will fill that need.

3 Support

This package supports importing of Version 2.0 XML workspaces only.
We cannot import .jo files directly. You will have to save them in XML
workspace format, and ensure that that format is workspace version 2.0.
The package has been tested and works with files generated using flowJo
version 9.1 on Mac OS X. XML generated by older versions of flowJo on
windows should work as well. We do not yet support flowJo’s Chimera
XML schema, though that support will be provided in the future.

1

The package supports import of only a subset of the features present in a
flowJo workspace. The package allows importing of sample and group names,
gating hierarchy, compensation matrices, data transformation functions, a
subset of gates, and population counts.

BooleanGates are now supported by flowWorkspace.

4 Data Structures

The following section walks through opening and importing a flowJo workspace.

4.1 Loading the library

Simply call:

> library(flowWorkspace)

The library depends on numerous other packages, including graph, XML,
Rgraphviz, flowCore, flowViz, RBGL.

4.2 Opening a Workspace

We represent flowJo workspaces using flowJoWorkspace objects. We only
need to know the path to, and filename of the flowJo workspace.

> d<-system.file("extdata",package="flowWorkspaceData");

> wsfile<-list.files(d,pattern="A2004Analysis.xml",full=T)

In order to open this workspace we call:

> ws<-openWorkspace(wsfile)

> ws

FlowJo Workspace Version 2.0

File location: /home/biocbuild/bbs-3.2-bioc/R/library/flowWorkspaceData/extdata

File name: A2004Analysis.xml

Workspace is open.

Groups in Workspace

Name Num.Samples

1 All Samples 2

2

We see that this a version 2.0 workspace file. It’s location and filename
are printed. Additionally, you are notified that the workspace file is open.
This refers to the fact that the XML document is internally represented
using ’C’ data structures from the XML package. After importing the file,
the workspace must be explicitly closed using closeWorkspace() in order
to free up that memory.

4.3 Parsing the Workspace

With the workspace file open, we have not yet imported the XML document.
The next step parses the XML workspace and creates R data structures to
represent some of the information therein. Specifically, by calling parse-

Workspace() the user will be presented with a list of groups in the workspace
file and need to choose one group to import. Why only one? Because of the
way flowJo handles data transformation and compensation. Each group of
samples is associated with a compensation matrix and specific data trans-
formation. These are applied to all samples in the group. When a particular
group of samples is imported, the package generates a GatingHierarchy for
each sample, describing the set of gates applied to the data (note: polygons,
rectangles, quadrants, and ovals and boolean gates are supported). The set
of GatingHierarchies for the group of samples is stored in a GatingSet ob-
ject. Calling parseWorkspace() is quite verbose, informing the user as each
gate is created. The parsing can also be done non–interactively by speci-
fying which group to import directly in the function call (either an index
or a group name). An additional optional argument execute=T/F specifies
whether you want to load, compensate, transform the data and compute
statistics immediately after parsing the XML tree.

> G <- parseWorkspace(ws,name=1,path=ws@path); #import the first group

> #Lots of output here suppressed for the vignette.

> G

A GatingSet with 2 samples

We have generated a GatingSet with 2 samples, each of which has 19
associated gates. Subsets of gating hierarchies can be accessed using the
standard R subset syntax.

At this point we have parsed the workspace file and generate the gating
hierarchy associated with each sample imported from the file. The data have
been loaded, compensated, and transformed in the workspace, and gating

3

has been executed. The resulting GatingSet contains a replicated analysis
of the original flowJo workspace.

We can plot the gating hierarchy for a given sample:

> gh<-G[[1]]

> plot(gh)

root Live

APC

B Cell

mDC

IFNa+

IL−6+

IL−12+

TNFa+

pDC

IFNa+

IL−6+

IL−12+

TNFa+

CD14−MHC2−

Monocytes

IFNa+

IL−6+

IL−12+

TNFa+

We can list the nodes (populations) in the gating hierarchy:

> nodelist<-getNodes(gh, path = 1)

> nodelist

[1] "root" "Live" "APC" "B Cell" "mDC"

[6] "IFNa+" "IL-6+" "IL-12+" "TNFa+" "pDC"

[11] "IFNa+" "IL-6+" "IL-12+" "TNFa+" "CD14-MHC2-"

[16] "Monocytes" "IFNa+" "IL-6+" "IL-12+" "TNFa+"

Note that the number preceding the period in the node names is just an
identifier to help uniquely label populations in the gating hierarchy. It does
not represent any information about population statistics. When the node

4

name itself is already unique,such as ”Live”,”B Cell” ,the prefix is ommitted
by default. We can force the prefix to be added to each node by setting
prefix to ”all”.

> getNodes(gh, prefix="all", path = 1)

[1] "root" "Live" "APC" "B Cell" "mDC"

[6] "IFNa+" "IL-6+" "IL-12+" "TNFa+" "pDC"

[11] "IFNa+" "IL-6+" "IL-12+" "TNFa+" "CD14-MHC2-"

[16] "Monocytes" "IFNa+" "IL-6+" "IL-12+" "TNFa+"

Alternativly, the the full path of the node can be displayed by setting path

to ”full”.

> getNodes(gh, path = "full")

[1] "root" "/Live" "/Live/APC"

[4] "/Live/APC/B Cell" "/Live/APC/mDC" "/Live/APC/mDC/IFNa+"

[7] "/Live/APC/mDC/IL-6+" "/Live/APC/mDC/IL-12+" "/Live/APC/mDC/TNFa+"

[10] "/Live/APC/pDC" "/Live/APC/pDC/IFNa+" "/Live/APC/pDC/IL-6+"

[13] "/Live/APC/pDC/IL-12+" "/Live/APC/pDC/TNFa+" "/Live/CD14-MHC2-"

[16] "/Live/Monocytes" "/Live/Monocytes/IFNa+" "/Live/Monocytes/IL-6+"

[19] "/Live/Monocytes/IL-12+" "/Live/Monocytes/TNFa+"

We can get a specific gate definition:

> node<-nodelist[3]

> g<-getGate(gh,node)

> g

Polygonal gate 'APC' with 14 vertices in dimensions <PerCP-CY5-5-A> and <PE-CY7-A>

We can get the population proportion (relative to its parent) for a single
population:

> getProp(gh,node)

[1] 0.08402716

Or we can retrieve the population statistics for all populations in the
sample:

> getPopStats(gh)

5

flowCore.freq flowJo.freq flowJo.count flowCore.count node

1: 1.000000000 1.000000000 61832 61832 root

2: 0.800297581 0.801235606 49542 49484 Live

3: 0.084027160 0.083585645 4141 4158 APC

4: 0.592352092 0.548418256 2271 2463 B Cell

5: 0.123376623 0.121226757 502 513 mDC

6: 0.005847953 0.003984064 2 3 mDC/IFNa+

7: 0.042884990 0.043824701 22 22 mDC/IL-6+

8: 0.005847953 0.003984064 2 3 mDC/IL-12+

9: 0.140350877 0.141434263 71 72 mDC/TNFa+

10: 0.107984608 0.107703453 446 449 pDC

11: 0.002227171 0.002242152 1 1 pDC/IFNa+

12: 0.000000000 0.000000000 0 0 pDC/IL-6+

13: 0.561247216 0.560538117 250 252 pDC/IL-12+

14: 0.000000000 0.000000000 0 0 pDC/TNFa+

15: 0.544074852 0.540854225 26795 26923 CD14-MHC2-

16: 0.058928138 0.059161923 2931 2916 Monocytes

17: 0.003772291 0.004435346 13 11 Monocytes/IFNa+

18: 0.237654321 0.236779256 694 693 Monocytes/IL-6+

19: 0.047325103 0.049812351 146 138 Monocytes/IL-12+

20: 0.250685871 0.257250085 754 731 Monocytes/TNFa+

We can plot the coefficients of variation between the counts derived using
flowJo and flowCore for each population:

> print(plotPopCV(gh))

6

Coefficient of Variation

root

Live

APC

B Cell

mDC

mDC/IFNa+

mDC/IL−6+

mDC/IL−12+

mDC/TNFa+

pDC

pDC/IFNa+

pDC/IL−6+

pDC/IL−12+

pDC/TNFa+

CD14−MHC2−

Monocytes

Monocytes/IFNa+

Monocytes/IL−6+

Monocytes/IL−12+

Monocytes/TNFa+

0.00 0.05 0.10 0.15 0.20

We can plot individual gates: note the scale of the transformed axes.
Second argument can be either a numeric index

> plotGate(gh, 10)

or unique node name,

> plotGate(gh, "pDC")

or a full/parital gating path,

> plotGate(gh, "APC/pDC")

7

<Am Cyan−A> CD123

<
A

P
C

−
A

>
 C

D
11

c

0

102

103

104

105

0 102 103 104 105

11%

APC

a2004_O1T2pb05i_A1_A01.fcs_61832

hexbin can be enabled to speed up plotting.

> plotGate(gh, "pDC", xbin =32)

8

<Am Cyan−A> CD123

<
A

P
C

−
A

>
 C

D
11

c

0

102

103

104

105

0 102 103 104 105

11%

APC

a2004_O1T2pb05i_A1_A01.fcs_61832

overlay can be used to plot another cell population on top of the existing
gates specified by y.

> plotGate(gh,y = "pDC/IL-12+", xbin =32, overlay = "mDC/IL-12+")

9

<Pacific Blue−A> IL−12

S
S

C
−

A

0

50000

100000

150000

200000

250000

0 102 103 104 105

56%

pDC

mDC/IL−12+ ●

a2004_O1T2pb05i_A1_A01.fcs_61832

overlay can be either a numeric or character scalar indicating the
index or gating path of a gate/population within the GatingHierarchy or
a logical vector that indicates the cell event indices representing a sub-cell
population.

If we have metadata associated with the experiment, it can be attached
to the GatingSet.

> d<-data.frame(sample=factor(c("sample 1", "sample 2")),treatment=factor(c("sample","control")))

> pd<-pData(G)

> pd<-cbind(pd,d)

> pData(G)<-pd

> pData(G);

name sample treatment

a2004_O1T2pb05i_A1_A01.fcs_61832 a2004_O1T2pb05i_A1_A01.fcs sample 1 sample

a2004_O1T2pb05i_A2_A02.fcs_45363 a2004_O1T2pb05i_A2_A02.fcs sample 2 control

We can retrieve the subset of data associated with a node:

> getData(gh,node)

10

flowFrame object '1be493f5-51dd-4359-b2ed-524cd104eb5f'

with 4158 cells and 23 observables:

name desc range minRange maxRange

$P1 FSC-A <NA> 262254.000 -111.00000 262143.000

$P2 FSC-H <NA> 262143.000 0.00000 262143.000

$P3 FSC-W <NA> 262143.000 0.00000 262143.000

$P4 SSC-A <NA> 262254.000 -111.00000 262143.000

$P5 SSC-H <NA> 262143.000 0.00000 262143.000

$P6 SSC-W <NA> 262143.000 0.00000 262143.000

$P7 <Am Cyan-A> CD123 3661.959 435.34379 4097.303

$P8 Am Cyan-H CD123 3641.837 455.00000 4096.837

$P9 <Pacific Blue-A> IL-12 3927.974 169.60860 4097.582

$P10 Pacific Blue-H IL-12 3641.837 455.00000 4096.837

$P11 <APC-A> CD11c 4405.818 -308.01302 4097.805

$P12 APC-H CD11c 3641.837 455.00000 4096.837

$P13 <APC-CY7-A> IL-6 3714.446 382.93207 4097.378

$P14 APC-CY7-H IL-6 3641.837 455.00000 4096.837

$P15 <Alexa 700-A> TNFa 3712.753 384.62271 4097.376

$P16 Alexa 700-H TNFa 3641.837 455.00000 4096.837

$P17 <FITC-A> IFNa 4180.519 -82.81306 4097.706

$P18 FITC-H IFNa 3641.837 455.00000 4096.837

$P19 <PerCP-CY5-5-A> MHCII 4942.398 -844.59317 4097.805

$P20 PerCP-CY5-5-H MHCII 3641.837 455.00000 4096.837

$P21 <PE-CY7-A> CD14 4942.398 -844.59317 4097.805

$P22 PE-CY7-H CD14 3641.837 455.00000 4096.837

$P23 Time <NA> 9918.400 89.00000 10007.400

322 keywords are stored in the 'description' slot

When applied to the GatingSet,a flowSet or ncdfFlowSet is returned.

> getData(G,node);

An ncdfFlowSet with 2 samples.

NCDF file : /tmp/RtmpEY4Y5U/ncfs603e306a6227.nc

An object of class 'AnnotatedDataFrame'

rowNames: a2004_O1T2pb05i_A1_A01.fcs_61832

a2004_O1T2pb05i_A2_A02.fcs_45363

varLabels: name sample treatment

varMetadata: labelDescription

11

column names:

FSC-A, FSC-H, FSC-W, SSC-A, SSC-H, SSC-W, <Am Cyan-A>, Am Cyan-H, <Pacific Blue-A>, Pacific Blue-H, <APC-A>, APC-H, <APC-CY7-A>, APC-CY7-H, <Alexa 700-A>, Alexa 700-H, <FITC-A>, FITC-H, <PerCP-CY5-5-A>, PerCP-CY5-5-H, <PE-CY7-A>, PE-CY7-H, Time

Or we can retrieve the indices specifying if an event is included inside or
outside a gate using:

> table(getIndices(gh,node))

FALSE TRUE

57674 4158

The indices returned are relative to the parent population (member of parent
AND member of current gate), so they reflect the true hierarchical gating
structure.

If we wish to do compensation or transformation manually, we can re-
trieve all the compensation matrices from the workspace:

> C<-getCompensationMatrices(gh);

> C

Compensation object 'defaultCompensation':

Am Cyan-A Pacific Blue-A APC-A APC-CY7-A Alexa 700-A

Am Cyan-A 1.00000 0.04800 0.000000 0.0000 0.00000

Pacific Blue-A 0.38600 1.00000 0.000529 0.0000 0.00000

APC-A 0.00642 0.00235 1.000000 0.0611 0.19800

APC-CY7-A 0.03270 0.02460 0.084000 1.0000 0.02870

Alexa 700-A 0.07030 0.05800 0.016200 0.3990 1.00000

FITC-A 0.74500 0.02090 0.001870 0.0000 0.00000

PerCP-CY5-5-A 0.00368 0.00178 0.015300 0.0269 0.07690

PE-CY7-A 0.01330 0.00948 0.000951 0.1380 0.00182

FITC-A PerCP-CY5-5-A PE-CY7-A

Am Cyan-A 0.028500 0.00104 0.00000

Pacific Blue-A 0.000546 0.00000 0.00000

APC-A -0.000611 0.00776 0.00076

APC-CY7-A 0.002690 0.00304 0.01010

Alexa 700-A 0.001530 0.10800 0.00679

FITC-A 1.000000 0.04180 0.00281

PerCP-CY5-5-A 0.000000 1.00000 0.07030

PE-CY7-A 0.002340 0.03360 1.00000

Or we can retrieve transformations:

12

> T<-getTransformations(gh)

> names(T)

[1] "A2004-A2005_06i <Alexa 700-A>" " <Alexa 700-H>"

[3] "A2004-A2005_06i <Am Cyan-A>" " <Am Cyan-H>"

[5] "A2004-A2005_06i <APC-A>" "A2004-A2005_06i <APC-CY7-A>"

[7] " <APC-CY7-H>" " <APC-H>"

[9] "A2004-A2005_06i <FITC-A>" " <FITC-H>"

[11] "A2004-A2005_06i <Pacific Blue-A>" " <Pacific Blue-H>"

[13] "A2004-A2005_06i <PE-CY7-A>" " <PE-CY7-H>"

[15] "A2004-A2005_06i <PerCP-CY5-5-A>" " <PerCP-CY5-5-H>"

> T[[1]]

function (x, deriv = 0)

{

deriv <- as.integer(deriv)

if (deriv < 0 || deriv > 3)

stop("'deriv' must be between 0 and 3")

if (deriv > 0) {

z0 <- double(z$n)

z[c("y", "b", "c")] <- switch(deriv, list(y = z$b, b = 2 *

z$c, c = 3 * z$d), list(y = 2 * z$c, b = 6 * z$d,

c = z0), list(y = 6 * z$d, b = z0, c = z0))

z[["d"]] <- z0

}

res <- stats:::.splinefun(x, z)

if (deriv > 0 && z$method == 2 && any(ind <- x <= z$x[1L]))

res[ind] <- ifelse(deriv == 1, z$y[1L], 0)

res

}

<environment: 0x9e2e418>

attr(,"type")

[1] "caltbl"

getTransformations returns a list of functions to be applied to different
dimensions of the data. Above, the transformation is applied to this sample,
the appropriate dimension is transformed using a channel–specific function
from the list.

The list of samples in a workspace can be accessed by:

13

> getSamples(ws);

sampleID name count compID pop.counts

1 1 a2004_O1T2pb05i_A1_A01.fcs 61832 1 19

2 2 a2004_O1T2pb05i_A2_A02.fcs 45363 1 19

And the groups can be accessed by:

> getSampleGroups(ws)

groupName groupID sampleID

1 All Samples 0 1

2 All Samples 0 2

The compID column tells you which compensation matrix to apply to a
group of files, and similarly, based on the name of the compensation matrix,
which transformations to apply.

4.4 add/remove gates

GatingSet is equivalent to the workFlow in flowCore package ,which pro-
vides methods to build a gating tree from raw FCS files and add or remove
flowCore gates(or populations) to or from it. Firstly,we start from a flowSet
that contains three ungated flow samples:

> data(GvHD)

> #select raw flow data

> fs<-GvHD[1:3]

Then we can transform the raw data:

> tf <- transformList(colnames(fs[[1]])[3:6], asinh, transformationId="asinh")

> fs_trans<-transform(fs,tf)

and create a gatingset from the transformed flowSet:

> gs <- GatingSet(fs_trans)

> gs

A GatingSet with 3 samples

> gh1<-gs[[1]]

> getNodes(gh1)

14

[1] "root"

It now only contains the root node. We can add one rectangleGate:

> rg <- rectangleGate("FSC-H"=c(200,400), "SSC-H"=c(250, 400),

+ filterId="rectangle")

> nodeID<-add(gs, rg)

> nodeID

[1] 2

> getNodes(gh1)

[1] "root" "/rectangle"

Note that the gate is added to root node by default if parent is not spec-
ified. Then we add a quadGate to the new population generated by the
rectangeGate which is named after filterId of the gate because the name is
not specified when add method is called.

> qg <- quadGate("FL1-H"=2, "FL2-H"=4)

> nodeIDs<-add(gs,qg,parent="rectangle")

> nodeIDs

[1] 3 4 5 6

> getNodes(gh1)

[1] "root" "/rectangle"

[3] "/rectangle/CD15 FITC-CD45 PE+" "/rectangle/CD15 FITC+CD45 PE+"

[5] "/rectangle/CD15 FITC+CD45 PE-" "/rectangle/CD15 FITC-CD45 PE-"

Here quadGate produces four population nodes/populations whose names
are named after dimensions of gate if not specified.

Boolean Gate can also be defined and added to GatingSet:

> bg<-booleanFilter(`CD15 FITC-CD45 PE+|CD15 FITC+CD45 PE-`)

> bg

booleanFilter filter 'CD15 FITC-CD45 PE+|CD15 FITC+CD45 PE-' evaluating the expression:

CD15 FITC-CD45 PE+|CD15 FITC+CD45 PE-

> nodeID2<-add(gs,bg,parent="rectangle")

> nodeID2

15

[1] 7

> getNodes(gh1)

[1] "root"

[2] "/rectangle"

[3] "/rectangle/CD15 FITC-CD45 PE+"

[4] "/rectangle/CD15 FITC+CD45 PE+"

[5] "/rectangle/CD15 FITC+CD45 PE-"

[6] "/rectangle/CD15 FITC-CD45 PE-"

[7] "/rectangle/CD15 FITC-CD45 PE+|CD15 FITC+CD45 PE-"

Now the gating tree is finished but the actual gating is done by recompute

method:

> recompute(gs)

After gating is finished,gating results can be visualized by plotGate method:

> plotGate(gh1,"rectangle") #plot one Gate

FSC−H FSC−Height

S
S

C
−

H
 S

S
C

−
H

ei
gh

t

0

200

400

600

800

1000

0 200 400 600 800 1000

2.8%

root

s5a01

The second ar-
gument of plotGate is used to specify node index/name. Multiple gates can
be plotted on the same pannel:

16

> plotGate(gh1,nodeIDs)

FL1−H CD15 FITC

F
L2

−
H

 C
D

45
 P

E

0

2

4

6

8

10

0 2 4 6 8 10

0% 92%

6.2%2.1%

rectangle

s5a01

We may also want
to plot all the gates without specifying the gate index:

> plotGate(gh1)

17

FSC−H FSC−Height

S
S

C
−

H
 S

S
C

−
H

ei
gh

t

0

200

400

600

800

1000

0 200 400 600 800 1000

2.8%

root

FL1−H CD15 FITC

F
L2

−
H

 C
D

45
 P

E

0

2

4

6

8

10

0 2 4 6 8 10

0% 92%

6.2%2.1%

rectangle

s5a01

Boolean gate is
skipped by default and can be enabled by:

> plotGate(gh1,bool=TRUE)

Note that smoothing may be applied automatically if there are not enough
events after gating Sometime it is more useful to compare gates across sam-
ples using lattice plot by applying plotGate to a GatingSet:

> plotGate(gs,getNodes(gs)[nodeID])

18

FSC−H FSC−Height

S
S

C
−

H
 S

S
C

−
H

ei
gh

t

0

200

400

600

800

1000

2.8%

s5a01

0 200 400 600 800 1000

1.6%

s5a02

0 200 400 600 800 1000

0

200

400

600

800

1000

0.32%

s5a03

The gating hierarchy is plotted by:

> plot(gh1,bool=TRUE)

If we want to remove one node, simply:

> Rm('rectangle', gs)

> getNodes(gh1)

[1] "root"

As we see,removing one node causes all its descendants to be removed as
well.

4.5 archive and clone

Oftentime, we need to save a GatingSet including the gated flow data,gates
and populations to disk and reload it later on. It can be achieved by:

> save_gs(gs,file = "~/gs")

> G1 <- load_gs(file = "~/gs")

19

We also provide the clone method to make a full copy of an existing Gat-

ingSet:

> gs_cloned <- clone(gs)

Note that the GatingSet contains environment slots and external pointer
that point to the internal C data structure. So make sure to use these
methods in order to save or make a copy of existing object. The regular R
assignment (<-) or save routine doesn’t work as expected for the GatingSet
object.

4.6 Exporting to FlowJo OSX 9.2

The exportAsFlowJoXML function can be used to export a flowCore::workFlow
as an XML workspace for FlowJo 9.2 OSX. If flowWorkspace has been used
to import an existing FlowJo workspace, flowWorkspace2flowCore can be
used to obtain a workFlow for exporting. Currently this function can export
one workFlow at a time.

4.7 Deprecated Functionality

The following behaviour is no longer supported and has been replace by
more extensive netCDF support via the ncdfFlow package. If you have
particularly large data files (millions of events), then you won’t want to keep
the data around, nor the indices for gate membership. Instead, pass the
options cleanup=TRUE, keep.indices=FALSE to the execute() function,
and the data will be scrubbed after computing population statistics. With
future improvements making use of the netCDF framework, and bitvector
representations of population memberships; this will improve memory usage
in high–throughput unsupervised analysis settings.

5 Troubleshooting

If this package is throwing errors when parsing your workspace, and you are
certain your workspace is version 2.0, contact the package author. If you
can send your workspace by email, we can test, debug, and fix the package
so that it works for you. Our goal is to provide a tool that works, and that
people find useful.

20

6 Future Improvements

We are working on support for flowJo XML workspaces exported from the
Windows version of flowJo. Efforts are underway to integrate GatingSet and
GatingHierarchy objects more closely with the rest of the flow infrastructure.

21

