flowUtils: Gating-ML Support in Flow Cytometry

Josef Spidlen

October 13, 2015

Abstract

Gating in flow cytometry is a highly important process for selecting populations of interests
by defining the characteristics of particles for further data acquisition or analysis. Gating-
ML represents a specification on how to form unambiguous XML-based gate definitions.
Such a description of gates facilitates the interchange and validation of data and analysis
among different software packages with the potential for significant increase of hardware
and software interoperability.

The flowUtils package supports reading of Gating-ML version 1.5, and both, reading and
writing of Gating-ML 2.0. Gating-ML 2.0 is the latest version of Gating-ML as of October
2014.

Keywords: Flow cytometry, gating, XML, data standard

1 Introduction

1.1 Background

Gating in flow cytometry is a highly important process for selecting populations of interests
by defining the characteristics of particles for further data acquisition or analysis. A gate is a
filter (set of boundaries) that serve to isolate a specific group of cytometric events (e.g., cells)
from a larger set. A standard formal way of exchanging unambiguous descriptions of gates is
crucial for interoperability among analytical hardware and software applications.

Gating-ML represents a specification on how to form unambiguous XML-based gate defini-
tions. Such a description of gates facilitates the interchange and validation of data and analysis
between different software packages with the potential for significant increase of hardware and
software interoperability.

1.2 Gating-ML 1.5

Gating-ML has undergone several revisions since the first public release in February 2006. In
January 2008, Gating-ML version 1.5 (Spidlen et al., [2008) became an International Society
for Advancement of Cytometry (ISAC) Candidate Recommendation. Gating-ML 1.5 supports
rectangular gates in n dimensions (i.e., from one—dimensional range gates up to n-dimensional
hyper-rectangular regions), polygon gates in two (and more) dimensions, ellipsoid gates in n

dimensions, decision tree structures, and Boolean collections of any of the types of gates. Gates
are uniquely identified and may be ordered into a hierarchical structure to describe a gating
strategy. Gates may be applied on parameters (i.e., dimensions) as in list mode data files (e.g.,
FCS files) or on transformed parameters as described by a data transformation. Supported
transformations include logarithmic, polynomial of degree one (i.e., linear combination with
translation), square root, asinh (inverse hyperbolic sin), split-scale, Hyperlog, and ratio of two
parameters, as well as inverse transformations wherever these exist, i.e., exponential, quadratic
transformation, hyperbolic sin, inverse split scale, and EH transformations, and compensation.
Arbitrary compound transformations may be created. Gates are applicable on raw “channel”
values of the list mode data files unless transformations are explicitly specified.

1.3 Gating-ML 2.0

Based on feedback gathered from the implementors and development in the field, Gating-ML
version 2.0 (Spidlen et al., [2013) has been developed and adopted as a candidate for an ISAC
Recommendation in January 2013. Gating-ML 2.0 significantly simplifies several aspects of
Gating-ML by focusing on gates, data transformations and pipelines that are useful in flow
cytometry, rather than asking implementors to support a very generic approach. Gating-ML
2.0 supports rectangular gates in n dimensions (i.e., from one-dimensional range gates up
to n-dimensional hyper-rectangular regions), quadrant gates in n dimensions, polygon gates,
ellipsoid gates in n dimensions, and Boolean collections of any of the types of gates. Sup-
ported gate types have been selected based on feedback on the Gating-ML 1.5 specification
in order to keep it simple while accommodating for future innovations in automated multi-
dimensional gating and clustering in a generic way. Gates are uniquely identified and may
be ordered into a hierarchical structure to describe a gating strategy. Gates may be applied
on list mode data files (e.g., FCS files), which may be transformed as explicitly described.
Gating-ML 2.0 specification supports open transformations (i.e., published and free to use)
which have been shown useful for display or analysis of cytometry data, such as Logicle and
Hyperlog. In addition, transformations such as linear, logarithmic, and inverse hyperbolic sine
are supported and have been extended to allow for additional parameterization and tweak-
ing specifically for the display of flow cytometry data. In Gating-ML 2.0, these extensions are
called “FLin”, “FLog” and “FASinH”, respectively. A parametrized ratio of two FCS dimensions
(i.e., “FRatio”) and fluorescence compensation complete the list of supported transformations.
Compared to Gating-ML 1.5, the list of Gating-ML 2.0 supported transformations has been
shortened by omitting transformations that have not been found particularly useful or are no
longer necessary due to additional design changes. In addition, values from FCS files are ref-
erenced as “scale values” (used to be channel values in Gating-ML 1.5), which eliminates the
necessity to encode the “channel to scale” transformation in Gating-ML (this transformation
is unambiguously captured by keywords in the FCS data file standard). Finally, Gating-ML
2.0 no longer supports compound transformations in general. Instead, each gate dimension
can be defined by referencing up to one “scale” transformation plus an optional fluorescence
compensation description applied on a dimension, which may be a parameter from a list mode
data file, or the result of an additional transformation, such as the ratio of two FCS param-
eters. In October 2014, bounded transformations have been added to Gating-ML 2.0. This
means that a boundary may be added to any Gating-ML 2.0 scaling transformation, or to a

ratio transformation. A boundary restricts a value x (i.e. the result of a transformation that
the boundary is applied to) to the [boundMin, boundMax] interval. Using a boundary allows
for unambiguous encoding of gating performed by software tools that pile off-scale events on
the graph axes. In these cases, if the selected visualization (scaling transformation) is not
quite appropriate, certain events could fall of the graph. However, instead of loosing these
events, some software tools prefer to shift them to a predefined minimum or maximum, which
may effect gate membership of these events. A Gating-ML boundary may be used in order
to mimic such behavior in Gating-ML and encode these gates in a reproducible manner. All
these changes have been made based on received community feedback in order to simplify the
Gating-ML specification, especially for Gating-ML consumers (readers).

1.4 Gating-ML support in flowUtils

The flowUtils package supports reading of Gating-ML version 1.5 (implemented by N. Gopalakr-
ishnan in 2008), and both reading and writing of Gating-ML 2.0 (implemented by J. Spidlen in
2013-2014). Gating-ML 2.0 is currently (as of October 2014) the latest version of Gating-ML.

2 Reading Gating-ML files

2.1 The read.gatingML function

Any Gating-ML 1.5 or Gating-ML 2.0 compliant XML file can be read by the read.gatingML
function. This function requires an input file name and an environment to save objects parsed
from the Gating-ML file.

gateFile <- system.file("extdata", "GatingML2.0_Examplel.xml",
package = "flowUtils")
flowEnv <- new.env()
read.gatinglML (gateFile, flowEnv)
for (x in 1ls(flowEnv))
if (is(flowEnv[[x]], "filter"))
cat (paste("Gate", x, "of class", class(flowEnv[[x]]), "\n"))

+ + VvV VvV + V

Gate Andl of class intersectFilter
Gate Ellipsel of class ellipsoidGate
Gate Ellipsoid3D of class ellipsoidGate
Gate FL2N-FL4N of class rectangleGate
Gate FL2N-FL4P of class rectangleGate
Gate FL2P-FL4N of class rectangleGate
Gate FL2P-FL4P of class rectangleGate
Gate Notl of class complementFilter
Gate Orl of class unionFilter

Gate ParAnd of class subsetFilter
Gate Polygonl of class polygonGate
Gate Rangel of class rectangleGate

Gate RatRangel of class rectangleGate
Gate Rectanglel of class rectangleGate

2.2 Additional examples

Additional Gating-ML file examples are included with the Gating-ML specifications as well
as in the gatingMLData package under extdata/Gating-MLFiles (for Gating-ML 1.5) and
under extdata/Gml2/Gating-MLFiles (for Gating-ML 2.0). You can read these files using
the following code:

flowEnvl.5 <- new.env()

gl.5Example <- system.file("extdata/Gating-MLFiles", "OlRectangular.xml",
package="gatingMLData")

read.gatingML(gl.5Example, flowEnv1.5)

1s(flowEnv1.5)

flowEnv2.0 <- new.env()

g2.0Example <- system.file("extdata/Gml2/Gating-MLFiles",
"gates3.xml", package = "gatingMLData")

read.gatingML(g2.0Example, flowEnv2.0)

1s(flowEnv2.0)

V V + VvV V VYV + VYV

2.3 Exploring objects read into the environment

We are not showing the output the 1s commands above since these contain over a 100 of
different objects saved in the environments, including various gates (data filters) and trans-
formations (scale transformations, compensation, etc.). Users are encouraged to explore these
objects further. For example, if we type

> flowEnv2.0[['myRectangleGate4LogicleArcSinHFCSCompensated']]

Rectangular gate 'myRectangleGate4LogicleArcSinHFCSCompensated' with dimensions:
myLogicle.FCS.PE-A: (0.2,0.8)
Tr_Arcsinh.FCS.APC-Cy7-A: (6.2,9.9)

then we can see that myRectangleGated4LogicleArcSinHFCSCompensated is a rectangular
gate. Let us use the str command to explore the details of this gate.

> str(flowEnv2.0[['myRectangleGate4LogicleArcSinHFCSCompensated']])

Formal class 'rectangleGate' [package "flowCore"] with 4 slots

..Q@ min : num [1:2] 0.2 6.2

. .0 max : num [1:2] 0.8 9.9

..Q@ parameters:Formal class 'parameters' [package "flowCore"] with 1 slot

..Q@ .Data:List of 2
..$:Formal class 'transformReference' [package "flowCore"] with 3 slots

..@ .Data :function ()
..Q@ searchEnv :<environment: 0x60c5£88>

..Q@ transformationId: chr "myLogicle.FCS.PE-A"
..$:Formal class 'transformReference' [package "flowCore"] with 3 slots
..@ .Data :function ()
..Q@ searchEnv :<environment: 0x60c5£88>
e e e ..Q@ transformationld: chr "Tr_Arcsinh.FCS.APC-Cy7-A"
..Q@ filterId : chr "myRectangleGate4LogicleArcSinHFCSCompensated"

We can see that the parameters slot references two transformations. We can explore these
further by entering

> str(flowEnv2.0[['myLogicle.FCS.PE-A']1])

Formal class 'logicletGml2' [package "flowCore"] with 7 slots

..@ .Data :function ()
T : num 262144
..0 M : num 5
..Q W : num 1
@ A : num 0.5
Q@ parameters :Formal class 'compensatedParameter' [package "flowCore"]
with 5 slots
..@ .Data :function (O
..Q@ parameters : chr "PE-A"
..Q@ spillRefId : chr "SpillFromFCS"
..Q@ searchEnv :<environment: Ox66ac3e0>

..0 transformationld: chr "PE-A_compensated_according_to_FCS"
..Q@ transformationId: chr "myLogicle.FCS.PE-A"

> str(flowEnv2.0[['Tr_Arcsinh.FCS.APC-Cy7-A']])

Formal class 'asinhtGml2' [package "flowCore"] with 6 slots

..@ .Data :function ()
..QT : num 1.18
..@ M : num 0.434
..Q A : num O
..Q@ parameters :Formal class 'compensatedParameter' [package "flowCore"]
with 5 slots
..@ .Data :function ()
..Q@ parameters : chr "APC-Cy7-A"
..Q@ spillRefId : chr "SpillFromFCS"
..Q@ searchEnv :<environment: Ox66ac3e0>

..0 transformationld: chr "APC-Cy7-A_compensated_according_to_FCS"
..Q@ transformationId: chr "Tr_Arcsinh.FCS.APC-Cy7-A"

This reveals that myLogicle.FCS.PE-A is a Logicle transformation applied to the “PE-A” pa-
rameter, which has been compensated according to the description in the data file (e.g., the
$SPILLOVER, SPILL or other keywords). Analogically, we can see that Tr_Arcsinh.FCS.APC-Cy7-A

is an inverse hyperbolic sine (ArcSinH) transformation applied to the “APC-Cy7-A” parameter,
which has also been compensated according to the description in the data file.

2.4 Scaling transformations shared in Gating-ML 2.0, not in R

In the previous example, we can also see how scaling transformations are mapped between
R and Gating-ML. In Gating-ML 1.5 and in R, each scaling transformation is bound to its
argument (i.e., to the FCS parameter) that it is supposed to be applied to. From the snippet
of Gating-ML 1.5 code below, we can see that transformations “T'1” and “T2” are “the same”
except one of them is applied to the “FL1-H” parameter while the other one to the “FL2-H”
parameter. In Gating-ML 1.5 and in R, these transformations have to be defined separately,
each of them having a unique identifier assigned.

<!-- Snippet of Gating-ML 1.5 code -->
<transforms:transformation transforms:id="T1">
<transforms:1ln transforms:a="1" transforms:b="111.1793874">
<data-type:parameter data-type:name="FL1-H" />
</transforms:1n>
</transforms:transformation>
<transforms:transformation transforms:id="T2">
<transforms:1n transforms:a="1" transforms:b="111.1793874">
<data-type:parameter data-type:name="FL2-H" />
</transforms:1ln>
</transforms:transformation>
<gating:RectangleGate gating:id="R1">
<gating:dimension gating:min="1" gating:max="3">
<transforms:transformationReference transforms:ref="T1" />
</gating:dimension>
<gating:dimension gating:min="2" gating:max="4">
<transforms:transformationReference transforms:ref="T2" />
</gating:dimension>
</gating:RectangleGate>

This design has been primarily driven by the fact that Gating-ML 1.5 and R allow for an arbi-
trary combination of data transformations, although most of these compound transformations
are not very meaningful for the analysis of flow cytometry data. Gating-ML 2.0 supports only
pipelines that are considered meaningful for static gate based analysis of flow cytometry data
(see section . Consequently, only a single scaling transformation may be included when an
FCS parameter is being transformed. Therefore, the Gating-ML 2.0 description is simpler and
allows for the same transformation to be applicable to multiple FCS parameters. We can see
the design difference in the snippet of Gating-ML 2.0 code below.

<!-- Snippet of Gating-ML 2.0 code -->
<transforms:transformation transforms:id="T1">
<transforms:flog transforms:T="1024" transforms:M="4" />

</transforms:transformation>
<gating:RectangleGate gating:id="R1">
<gating:dimension gating:min="1" gating:max="3"
gating:transformation-ref="T1" gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL1-H" />
</gating:dimension>
<gating:dimension gating:min="2" gating:max="4"
gating:transformation-ref="T1" gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL2-H" />
</gating:dimension>
</gating:RectangleGate>

Consequently, when scaling transformations are read from a Gating-ML 2.0 file, multiple in-
stances may be created in R if the same transformation is being applied to different FCS
parameters (in one or more gates). New identifiers for these transformations will be created
based on what the scaling transformation is applicable to. Based on the above example, we
may see two transformations saved in the environment once this Gating-ML 2.0 snippet is
read. Omne of them will be identified as “T'l.uncompensated.FL1-H” and the other one as
“T1l.uncompensated. FL2-H”.

2.5 Representation of spillover and spectrum matrices

Compensation objects are also parsed from the Gating-ML files and saved in the environment.
For example, the “myPolygonGateWithCustomSpillover” polygon gate is drawn in the “PE-A”
and “PerCP-Cy5-5-A” parameters, which are compensated according to the “MySpill” spillover
matrix. This matrix has been extracted from the Gating-ML 2.0 file.

> str(flowEnv2.0[['myPolygonGateWithCustomSpillover']])

Formal class 'polygonGate' [package "flowCore"] with 3 slots
..0@ boundaries: num [1:3, 1:2] 5 500 500 5 5 500
..Q@ parameters:Formal class 'parameters' [package "flowCore"] with 1 slot
..Q@ .Data:List of 2
..$:Formal class 'compensatedParameter' [package "flowCore"] with 5 slots

..@ .Data :function ()

. .Q@ parameters : chr "PE-A"

..@ spillReflId : chr "MySpill"

..0 searchEnv :<environment: 0x60c5£88>

..0 transformationId: chr "Comp-PE"
..$:Formal class 'compensatedParameter' [package "flowCore"] with 5 slots

..Q@ .Data :function ()

. .0 parameters : chr "PerCP-Cy5-5-A"

..Q@ spillRefId : chr "MySpill"

..@ searchEnv :<environment: 0x60c5£88>

.« «+« +«. «.0 transformationld: chr "Comp-PerCP-Cy5-5"
..Q@ filterId : chr "myPolygonGateWithCustomSpillover"

> flowEnv2.0[['MySpill']]

Compensation object 'MySpill':
PE-A PerCP-Cy5-5-A APC-A

Comp-PE 1.00 0.02 0.06
Comp-PerCP-Cy5-5 0.11 1.00 0.07
Comp-APC 0.09 0.01 1.00

Non-square spectrum matrices are extracted and saved the same way. These matrices are sup-
ported in Gating-ML 2.0 only. For example, you may want to review the “myPolygonGateWith-
CustomNonSquareSpectrumMatrix” and “MyNonSquareSpectrum” objects in the “fowkEnv2.0”
environment.

2.6 Applying Gating-ML files

Once the elements from a Gating-ML file have been saved in an environment, the “filters”
(a.k.a. the gates) can be used to gate an FCS data file (i.e., a flowFrame), or a set of FCS files
(i.e., a flowSet). Please pay attention to the transformation argument when reading the
FCS files. Gating-ML 1.5 specifies that data shall be used as channel values by default, and
any additional transformation shall be explicitly specified in the Gating-ML 1.5 file. Therefore,
you will need to prevent R from applying the default “channel-to-scale” transformation when
reading your data with the intention of applying a Gating-ML 1.5 file to it. This can be done
by specifying transformation=FALSE in the read.FCS and read.flowSet functions.

Gating-ML 2.0 specifies that event “scale values” shall be used by default. This means that
the “channel-to-scale” transformation (as defined by the keywords within the FCS data file)
shell be applied prior applying any additional transformations described in the Gating-ML
2.0 file. Therefore, you should specify transformation=linearize-with-PnG-scaling in the
read.FCS or read.flowSet functions if you will be working with Gating-ML 2.0 files. An
example of applying a Gating-ML 2.0 file to an FCS data file is shown bellow:

> fcsFile <- system.file("extdata/Gml12/FCSFiles", '"datal.fcs",

+ package = "gatingMLData")

> myFrame <- read.FCS(fcsFile, transformation="linearize-with-PnG-scaling")
> for (x in 1ls(flowEnv)) if (is(flowEnv[[x]], "filter")) {

+ result <- filter(myFrame, flowEnv[[x]])

+ print (summary (result))

+

}

And1+: 132 of 13367 events (0.99%)
Ellipsel+: 3083 of 13367 events (23.06%)
Ellipsoid3D+: 4191 of 13367 events (31.35%)
FL2N-FL4N+: 5148 of 13367 events (38.51%)
FL2N-FL4P+: 238 of 13367 events (1.78%)
FL2P-FL4N+: 7361 of 13367 events (55.07%)
FL2P-FL4P+: 620 of 13367 events (4.64%)

Notl+: 10284 of 13367 events (76.94%)
Ori+: 4507 of 13367 events (33.72%)
ParAnd+: 9 of 13367 events (0.07%)
Polygonl+: 1582 of 13367 events (11.84%)
Rangel+: 440 of 13367 events (3.29%)
RatRangel+: 7679 of 13367 events (57.45%)
Rectanglel+: 252 of 13367 events (1.89%)

3 Writing Gating-ML files

3.1 The write.gatingML function

Gating-ML 2.0 compatible objects stored in an environment may be written to a Gating-ML
2.0 file using the write.gatingML function. Please see table [I] for details about Gating-ML
compatible objects. These objects may have been created by the read.gatingML function, or
in any other way. Below, we demonstrate how to programmatically create a simple rectangular
gate and save the result in a Gating-ML 2.0 file. Please note that for readability reasons, pieces
that are not significant for the understanding of examples have been omitted from XML listings
in this vignette. These include lengthy XML namespace declarations and custom information
produced by the write.gatingML function, such as details about the origin of the produced
Gating-ML file. The skipped output is noted by “...” in the XML listings. Readers are
encouraged to run the examples themselves to review the full output.

flowEnv <- new.env()

flowEnv[['myGate']] <- rectangleGate(filterId="myGate",
list ("FSC-H"=c (150, 300), "SSC-H"=c(200, 600)))

outputFile <- tempfile(fileext=".gating-m12.xml")

write.gatingML (flowEnv, outputFile)

vV V. + Vv Vv

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ... >

<gating:RectangleGate gating:id="myGate">
<gating:dimension gating:min="150" gating:max="300"
gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FSC-H"/>
</gating:dimension>
<gating:dimension gating:min="200" gating:max="600"
gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="SSC-H"/>
</gating:dimension>
</gating:RectangleGate>
</gating:Gating-ML>

The second argument of the write.gatingML function (i.e., the file name) is optional. The
output is written to the “standard output” (e.g., the console) if no filename is provided.

Table 1: Summary of Gating-ML concepts and related R classes

Gating-ML concept | R Class Gating-ML version
RectangleGate rectangleGate 1.5, 2.0
Quadrant rectangleGate (read), quadGate (write)* | 2.0
PolygonGate polygonGate 1.5, 2.0
EllipsoidGate ellipsoidGate 1.5, 2.0
Boolean “or” gate unionFilter 1.5, 2.0
Boolean “and” gate intersectFilter 1.5, 2.0
Boolean “not” gate complementFilter 1.5, 2.0
Gate with a parent subsetFilter 1.5, 2.0
PolytopeGate polytopeGate 1.5
DecisionTreeGate expressionFilter 1.5
Referenced gate filterReference 1.5, 2.0
flin lintGml2 2.0
flog logtGml2 2.0
fasinh asinhtGml2 2.0
logicle logicletGml2 2.0
hyperlog hyperlog (v 1.5), hyperlogtGml2 (v 2.0) | 1.5, 2.0
fratio ratiotGml2 2.0
dglpolynomial dglpolynomial 1.5
ratio ratio 1.5 (2.07)
quadratic quadratic 1.5

sqrt squareroot 1.5

In logarithm 1.5
exponential exponential 1.5
asinh asinht 1.5 (2.0%)
sinh sinht 1.5

EH EHtrans 1.5
split-scale splitscale 1.5
inverse-split-scale invsplitscale 1.5
spilloverMatrix compensation, compensatedParameter 1.5
spectrumMatrix compensation, compensatedParameter 2.0

* The Quadrant gate in Gating-ML 2.0 allows for arbitrary splits of n-dimensional space,
including more than one “cut” per dimension, and with the option of merging several

of these “cuts” into a resulting “quadrant”.

The quadGate filter in R is a less flexible

structure implementing the traditional two-dimensional quadrant gate concept (i.e., with
each dimension split exactly once, and always resulting in 4 quadrants). Therefore, a
quadGate filter is saved as a Quadrant gate in Gating-ML; however, if a Quadrant gate is
read from Gating-ML, then a set of appropriate rectangleGate filters is created.

** For Gating-ML 2.0 output, the “ratio” and “asinht” transformations from Gating-ML
1.5 will be converted to “fratio” and “fasinh”, respectively.

10

3.2 Gating-ML compatible objects

Tablesummarizes what R classes are used to capture various Gating-ML concepts (i.e., gates,
transformations, and compensations). Corresponding flowCore filters and transformations are
created when Gating-ML 1.5 or 2.0 is read, and the same types of filters and transforma-
tions can be saved in Gating-ML 2.0 as long as they are Gating-ML 2.0 compatible and the
analysis “pipeline” is expressible in Gating-ML 2.0 (see section . Data driven filters (e.g.,
norm2Filter, kmeansFilter, curviFilter, curv2Filter, boundaryFilter, etc.) are not supported
by Gating-ML.

3.3 Gating-ML 2.0 compatible pipelines

R is a powerful language allowing you to create and combine various data transformations
and use these as dimensions (parameters) for your FCS data filters. However, Gating-ML 2.0
supports only the pipelines that are considered meaningful for static gate based analysis of
flow cytometry data. This design decision has been made in order to make Gating-ML 2.0
implementation feasible for common flow cytometry data analysis tools. In practice, Gating-
ML 2.0 compatible pipelines (a.k.a. “workflows”) consist of the following steps:

1. Read an FCS data file and apply the “channel to scale” transformations to FCS param-
eters as specified by the $PnE and $PnG keywords. (These transformations are not
explicitly described in Gating-ML.)

2. Optionally: apply compensation based on either a compensation description in the FCS
data file (e.g., the $SPILLOVER, SPILL or other keywords), or based on a “spectrum”
matrix described in the Gating-ML 2.0 file. A spectrum matrix covers both, the tradi-
tional compensation based on square spillover matrices, as well as spectral unmixing, see
(Spidlen et al.l 2013).

3. For further steps, use either FCS parameters, or a “fratio” of two FCS parameters. A
“fratio” in Gating-ML 2.0 is an extended ratio of two FCS parameters defined as A;:B ,
where x and y are FCS parameters, and A € R, B € R, and C € R are constants.

4. Optionally: apply one of the Gating-ML 2.0 compatible scale transformation, i.e., param-
eterized linear, logarithmical, inverse hyperbolic sine, Logicle or Hyperlog transformation.
A transformation boundary may be used; see the boundMin and boundMax parameters
of the Gating-ML 2.0 transformation functions.

5. Apply Gating-ML 2.0 compatible gates in the data space created by previous steps.
Gating-ML 2.0 supported gate types include polygon gates, ellipsoid gates, range gates,
rectangular and hyper-rectangular gates, quadrant gates and Boolean collections (i.e.,
union, intersect or complement) of any of the gate types.

3.4 Examples with compensation

Example below demonstrates the inclusion of a compensation description in the Gating-ML
output. Same as before, objects will be created programmatically and exported in a Gating-ML
2.0 output.

11

> flowEnv <- new.env()

> covM <- matrix(c(62.5, 37.5, 37.5, 62.5), nrow = 2, byrow=TRUE)

> colnames(covM) <- c("FL1-H", "FL2-H")

> compPars <- list(

+ compensatedParameter (parameters="FL1-H", spillRefId="SpillFromFCS",

+ transformationId=paste("FL1-H", "_compensated_according to_FCS", sep=""),
+ searchEnv=flowEnv) ,

+ compensatedParameter (parameters="FL2-H", spillRefId="SpillFromFCS",

+ transformationId=paste ("FL2-H", "_compensated_according_to_FCS", sep=""),
+ searchEnv=f1lowEnv)

+)

> myEl <- ellipsoidGate(mean=c (12, 16), distance=1, .gate=covM, filterId="myEl")
> myEl@parameters <- new('"parameters", compPars)

> flowEnv[['myE1']] <- myEl

> write.gatingML (flowEnv)

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ... ">

<gating:EllipsoidGate gating:id="myEl">
<gating:dimension gating:compensation-ref="FCS">
<data-type:fcs-dimension data-type:name="FL1-H"/>
</gating:dimension>
<gating:dimension gating:compensation-ref="FCS">
<data-type:fcs-dimension data-type:name="FL2-H"/>
</gating:dimension>
<gating:mean>
<gating:coordinate data-type:value="12"/>
<gating:coordinate data-type:value="16"/>
</gating:mean>
<gating:covarianceMatrix>
<gating:row>
<gating:entry data-type:value.FL1-H="62.5"/>
<gating:entry data-type:value.FL2-H="37.5"/>
</gating:row>
<gating:row>
<gating:entry data-type:value.FL1-H="37.5"/>
<gating:entry data-type:value.FL2-H="62.5"/>
</gating:row>
</gating:covarianceMatrix>
<gating:distanceSquare data-type:value="1"/>
</gating:EllipsoidGate>
</gating:Gating-ML>

The spillRefId="SpillFromFCS" indicates that compensation according to the description in
the FCS data file shall used. In the Gating-ML output, this is described as <gating:dimension

12

gating:compensation-ref="FCS"> for the appropriate dimensions. If we wanted to use a
compensation based on a custom spillover (or spectrum) matrix instead, we could modify the
code as follows:

> spillM <- matrix(c(1, 0.03, 0.07, 1), nrow = 2, byrow=TRUE)

> colnames(spillM) <- c("FL1-H", "FL2-H")

> rownames (spillM) <- c("Comp-FL1-H", "Comp-FL2-H")

> pars <- new("parameters", list("FL1-H", "FL2-H"))

> myComp <- compensation(spillover=spillM, compensationId='myComp', pars)
> flowEnv[['myComp']] <- myComp

> compPars <- list(

+ compensatedParameter (parameters="FL1-H", spillRefId="myComp",
+ transformationId="Comp-FL1-H", searchEnv=flowEnv),

+ compensatedParameter (parameters="FL2-H", spillRefId="myComp",
+ transformationId="Comp-FL2-H", searchEnv=flowEnv)

+)

> myEl@parameters <- new('"parameters", compPars)

> flowEnv[['myE1l']] <- myEl

> write.gatingML (flowEnv)

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ... >

<transforms:spectrumMatrix transforms:id="myComp">
<transforms:fluorochromes>
<data-type:fcs-dimension data-type:name="Comp-FL1-H"/>
<data-type:fcs-dimension data-type:name="Comp-FL2-H"/>
</transforms:fluorochromes>
<transforms:detectors>
<data-type:fcs-dimension data-type:name="FL1-H"/>
<data-type:fcs-dimension data-type:name="FL2-H"/>
</transforms:detectors>
<transforms:spectrum>
<transforms:coefficient transforms:value="1"/>
<transforms:coefficient transforms:value="0.03"/>
</transforms:spectrum>
<transforms:spectrum>
<transforms:coefficient transforms:value="0.07"/>
<transforms:coefficient transforms:value="1"/>
</transforms:spectrum>
</transforms:spectrumMatrix>
<gating:EllipsoidGate gating:id="myEl">
<gating:dimension gating:compensation-ref="myComp">
<data-type:fcs-dimension data-type:name="Comp-FL1-H"/>
</gating:dimension>
<gating:dimension gating:compensation-ref="myComp">

13

<data-type:fcs-dimension data-type:name="Comp-FL2-H"/>
</gating:dimension>

</gating:EllipsoidGate>
</gating:Gating-ML>

Note that new names have been assigned to parameters compensated according to a custom
spillover matrix (i.e., Comp-FL1-H and Comp-FL2-H). This is necessary due to the generic
Gating-ML 2.0 design, which also supports non-square spectrum matrices (where there is
no direct one-to-one correspondence between the measured and “compensated” values). The
following piece of code demonstrates how a non-square spectrum matrix can be generated and
saved in Gating-ML.

> flowEnv <- new.env()

> specM <- matrix(c(0.78, 0.13, 0.22, 0.05, 0.57, 0.89), nrow = 2, byrow=TRUE)
> colnames (specM) <- c("FL1-H", "FL2-H", "FL3-H")

> rownames (specM) <- c("Deconvoluted-P1", "Deconvoluted-P2")

> pars <- new("parameters", list("FL1-H", "FL2-H", "FL3-H"))

> mySpecM <- compensation(spillover=specM, compensationld='specM', pars)
> flowEnv[['mySpecM']] <- mySpecM

> compPars <- list(

+ compensatedParameter (parameters="FL1-H", spillRefId="mySpecM",

+ transformationId="Deconvoluted-P1", searchEnv=flowEnv),

+ compensatedParameter (parameters="FL2-H", spillRefId="mySpecM",

+ transformationId="Deconvoluted-P2", searchEnv=flowEnv)

+)

> myEl@parameters <- new('"parameters", compPars)

> flowEnv[['myE1']] <- myEl

> write.gatingML (flowEnv)

<?7xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ... >

<transforms:spectrumMatrix transforms:id="specM">
<transforms:fluorochromes>
<data-type:fcs-dimension data-type:name="Deconvoluted-P1"/>
<data-type:fcs-dimension data-type:name="Deconvoluted-P2"/>
</transforms:fluorochromes>
<transforms:detectors>
<data-type:fcs-dimension data-type:name="FL1-H"/>
<data-type:fcs-dimension data-type:name="FL2-H"/>
<data-type:fcs-dimension data-type:name="FL3-H"/>
</transforms:detectors>
<transforms:spectrum>
<transforms:coefficient transforms:value="0.78"/>
<transforms:coefficient transforms:value="0.13"/>

14

<transforms:coefficient transforms:value="0.22"/>
</transforms:spectrum>
<transforms:spectrum>
<transforms:coefficient transforms:value="0.05"/>
<transforms:coefficient transforms:value="0.57"/>
<transforms:coefficient transforms:value="0.89"/>
</transforms:spectrum>
</transforms:spectrumMatrix>

</gating:Gating-ML>

3.5 Example with scaling transformations

In the following example, we will use a quadGate to demonstrate how scaling transformations
can be included in the Gating-ML output.

VVV + + +VVYV + YV +V VYV

flowEnv <- new.env()

myTrQuad <- quadGate(filterId = "myTrQuad", "APC-A" = 0.5, "APC-Cy7-A" = 0.6)

trArcSinH1 <- asinhtGml2(parameters = "APC-A", T = 1000, M = 4.5, A = 0,
transformationId="trArcSinH1")

trLogiclel <- logicletGml2(parameters = "APC-Cy7-A", T = 1000, W = 0.5,
M = 4.5, A =0, transformationId="trLogiclel")

flowEnv[['trArcSinH1']] <- trArcSinH1

flowEnv[['trLogiclel']] <- trLogiclel

trPars <- list(
transformReference ("trArcSinH1", flowEnv),
transformReference ("trLogiclel"”, flowEnv)

)

myTrQuad@parameters <- new('"parameters', trPars)

flowEnv/[['myTrQuad']] <- myTrQ@uad

write.gatingML (flowEnv)

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ... >

<transforms:transformation transforms:id="trArcSinH1">
<transforms:fasinh transforms:T="1000" transforms:M="4.5" transforms:A="0"/>
</transforms:transformation>
<transforms:transformation transforms:id="trLogiclel">
<transforms:logicle transforms:T="1000" transforms:M="4.5" transforms:W="0.5"
transforms:A="0"/>
</transforms:transformation>
<gating:QuadrantGate gating:id="myTrQuad">
<gating:divider gating:transformation-ref="trArcSinH1"
gating:compensation-ref="uncompensated" gating:id="myTrQuad.D1">
<data-type:fcs-dimension data-type:name="APC-A"/>
<gating:value>0.5</gating:value>

15

</gating:divider>
<gating:divider gating:transformation-ref="trLogiclel"
gating:compensation-ref="uncompensated" gating:id="myTrQuad.D2">

<data-type:fcs-dimension data-type:name="APC-Cy7-A"/>
<gating:value>0.6</gating:value>

</gating:divider>

<gating:Quadrant gating:id="myTrQuad.PP">
<gating:position gating:divider_ref="myTrQuad.D1" gating:location="1.5"/>
<gating:position gating:divider_ref="myTrQuad.D2" gating:location="1.6"/>

</gating:Quadrant>

<gating:Quadrant gating:id="myTrQuad.PN">
<gating:position gating:divider_ref="myTrQuad.D1" gating:location="1.5"/>
<gating:position gating:divider_ref="myTrQuad.D2" gating:location="-0.4"/>

</gating:Quadrant>

<gating:Quadrant gating:id="myTrQuad.NP">
<gating:position gating:divider_ref="myTrQuad.D1" gating:location="-0.5"/>
<gating:position gating:divider_ref="myTrQuad.D2" gating:location="1.6"/>

</gating:Quadrant>

<gating:Quadrant gating:id="myTrQuad.NN">
<gating:position gating:divider_ref="myTrQuad.D1" gating:location="-0.5"/>
<gating:position gating:divider_ref="myTrQuad.D2" gating:location="-0.4"/>

</gating:Quadrant>

</gating:QuadrantGate>
</gating:Gating-ML>

If we wanted to add a boundary to the transformation, we could do so by adding the boundMin
and/or boundMax attributes to the transformation definition as follows:

trArcSinH1 <- asinhtGml2(parameters = "APC-A", T = 1000, M = 4.5, A = 0,
transformationId="trArcSinH1", boundMin = 0.02, boundMax 0.96)

trLogiclel <- logicletGml2(parameters = "APC-Cy7-A", T = 1000, W = 0.5,
M = 4.5, A = 0, transformationId="trLogiclel", boundMin = -0.04)

>
+
>
+

3.6 Example with scaling transformations and compensation

Previous code (section can be easily modified so that compensated parameters are used
as arguments of the Logicle and ArcSinH transformations. In addition, we will use these
transformations directly rather than creating a transformation reference. Consequently, the
write.gatingML function will create the “trArcSinH1” and “trLogiclel” transformations even
without us having to save these in the environment.

rm(list=1s(flowEnv), envir=flowEnv)
trArcSinH1@parameters <- compensatedParameter (parameters="APC-A",
spillRefId="SpillFromFCS", searchEnv=flowEnv,
transformationId= "APC-A_compensated_according to_FCS")
trLogiclel@parameters <- compensatedParameter (parameters="APC-Cy7-A",

vV + + Vv Vv

16

spillRefId="SpillFromFCS", searchEnv=flowEnv,
transformationId="APC-Cy7-A_compensated_according_to_FCS")
trPars <- list(trArcSinH1,trLogiclel)
myTrQuad@parameters <- new("parameters", trPars)
flowEnv[['myTrQuad']] <- myTrQuad
write.gatingML (f1owEnv)

vV V.V Vv + +

<?7xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ... >

<transforms:transformation transforms:id="trArcSinH1">
<transforms:fasinh transforms:T="1000" transforms:M="4.5" transforms:A="0"/>
</transforms:transformation>
<transforms:transformation transforms:id="trLogiclel">
<transforms:logicle transforms:T="1000" transforms:M="4.5" transforms:W="0.5"
transforms:A="0"/>
</transforms:transformation>
<gating:QuadrantGate gating:id="myTrQuad">
<gating:divider gating:transformation-ref="trArcSinH1"
gating:compensation-ref="FCS" gating:id="myTrQuad.D1">
<data-type:fcs-dimension data-type:name="APC-A"/>
<gating:value>0.5</gating:value>
</gating:divider>
<gating:divider gating:transformation-ref="trLogiclel"
gating:compensation-ref="FCS" gating:id="myTrQuad.D2">
<data-type:fcs-dimension data-type:name="APC-Cy7-A"/>
<gating:value>0.6</gating:value>
</gating:divider>

</gating:QuadrantGate>
</gating:Gating-ML>

3.7 Gating-ML 1.5 objects in Gating-ML 2.0 output

In certain cases, a Gating-ML 1.5 compatible transformation can be transformed and expressed
in Gating-ML 2.0 (see table . For example, the Gating-ML 1.5 “ratio” transformation can be
expressed as Gating-ML 2.0 “fratio”. The Gating-ML 1.5 “ratio” is defined as

x
f(xa y) = -
)
The parameterized “fratio” transformation in Gating-ML 2.0 is defined as
r— B
,y, A, B,C)=A
flzy) —C

Therefore, we can express the Gating-ML 1.5 “ratio” as Gating-ML 2.0 “fratio” by setting
A=1,B=0,and C = 0. Example shown below demonstrates that this conversion is done
automatically when the write.gatingVML is called:

17

flowEnv <- new.env()

ratl <- ratio("FSC-A", "SSC-A", transformationId = "ratl")

myRectGate <- rectangleGate(filterId="myRectGate", "rat1"=c(0.8, 1.4))
myRectGate@parameters <- new("parameters", list(ratl))
flowEnv[['myRectGate']] <- myRectGate

write.gatingML (f1owEnv)

V V.V Vv VvV

<?7xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ...>

<transforms:transformation transforms:id="ratl">
<transforms:fratio transforms:A="1" transforms:B="0" transforms:C="0">
<data-type:fcs-dimension data-type:name="FSC-A"/>
<data-type:fcs-dimension data-type:name="SSC-A"/>
</transforms:fratio>
</transforms:transformation>
<gating:RectangleGate gating:id="myRectGate">
<gating:dimension gating:min="0.8" gating:max="1.4"
gating:compensation-ref="uncompensated">
<data-type:new-dimension data-type:transformation-ref="ratl"/>
</gating:dimension>
</gating:RectangleGate>
</gating:Gating-ML>

Similarly for the parameterized inverse hyperbolic sine transformation, which in Gating-ML
1.5 is defined as
f(x,a,b) = asinh(ax) * b

and in Gating-ML 2.0 as

asinh(x sinh(M In(10))/T) + Aln(10)
(M + A)In(10)

f(':U? T7 M’ A) =

Therefore, the write.gatingML function can convert the Gating-ML 1.5 parameterization to
Gating-ML 2.0 by setting A = 0, M = 1/(b*1n(10)) and T = (sinh(1/b))/a as demonstrated
below:

flowEnv <- new.env()

myASinH <- asinht("FL3-W", a = 1.5828, b = 0.0965, transformationIld = "myASinH")
gatel <- rectangleGate(filterId="gatel", "myASinH"=c(0.3, 0.7))
gatel@parameters <- new('"parameters", list(myASinH))

flowEnv[['gatel']] <- gatel

write.gatingML (f1owEnv)

V V.V Vv VvV

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ...>

18

<transforms:transformation transforms:id="myASinH">
<transforms:fasinh transforms:T="10000.1131651903"
transforms:M="4.5004609523653"
transforms:A="0"/>
</transforms:transformation>
<gating:RectangleGate gating:id="gatel">
<gating:dimension gating:min="0.3" gating:max="0.7"
gating:transformation-ref="myASinH"
gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL3-W"/>
</gating:dimension>
</gating:RectangleGate>
</gating:Gating-ML>

3.8 Example with compensation, ratio and scaling together

So far, our examples included relatively simple gates. Next, we will demonstrate the use of
a custom compensation along with a scaling transformation (log) applied to the ratio of two
FCS parameters, “FL1-A” and “FL1-W”. This will create one dimension of a polygon gate.
The second dimension will be created as a Hyperlog transformation of “FL2-A”, which will
be compensated using the same spillover matrix. This example also demonstrates a spillover
matrix with multiple measurement types of the same signal (i.e., the area and width). As noted
in (Bray et al., 2012), the recommended approach is to set up a sparse spillover matrix that
isolates the different measurement types by setting some matrix elements to zero, indicating
no spillover between two measurements. By specifying a value of zero for the spillover between
different measurement types, the different measurement types are isolated in the matrix. Thus,
the spillover for one measurement type can be properly accounted for independent of any other
type using a single matrix.

> flowEnv <- new.env()

> # Creation of a simplified spillover matrix

> spillM <- matrix(c(1, 0, 0.03, 0, 0, 1, 0, 0.07, 0.1, 0, 1, 0, 0, 0.05, 0, 1),
+ nrow = 4, byrow=TRUE)

> colnames(spillM) <- c("FL1-A", "FL1-W", "FL2-A", "FL2-W")

> rownames (spillM) <- c("cFL1-A", "cFL1-W", "cFL2-A", "cFL2-W")

> pars <- new('"parameters", list("FL1-A", "FL1-W", "FL2-A", "FL2-W"))

> myComp <- compensation(spillover=spillM, compensationIld='myComp', pars)

> flowEnv[['myComp']] <- myComp

> myComp

Compensation object 'myComp':
FL1-A FL1-W FL2-A FL2-W
cFL1-A 1.0 0.00 0.03 0.00
cFL1-W 0.0 1.00 0.00 0.07
cFL2-A 0.1 0.00 1.00 0.00
cFL2-W 0.0 0.05 0.00 1.00

19

>
>
>
+
>
+
>
>
>
+
>
>
>
>
+
>
>
>

First dimension is a log(cFL1-A / cFL1-W)

myRatio <- ratio("FL1-A", "FL1-W", transformationId = "myRatio")

myRatio@numerator <- compensatedParameter (parameters="FL1-A",
spillRefId="myComp", transformationIld="cFL1-A", searchEnv=flowEnv)

myRatio@denominator <- compensatedParameter (parameters="FL1-W",
spillRefId="myComp", transformationId="cFL1-W", searchEnv=flowEnv)

myLog <- logtGml2(myRatio, T = 1, M = 1, transformationId="myLog")

Second dimension is a Hyperlog(cFL2-4)

secPar <- compensatedParameter (parameters="FL2-A", spillRefId="myComp",
transformationId="cFL2-A", searchEnv=flowEnv)

myHLog <- hyperlogtGml2(secPar, T=262144, M=4.5, W=0.5, A=0, "myHLog")

A Polygon gate in the two defined dimensions

vertices <- matrix(c(0.9, 0.5, 1.2, 0.6, 1.1, 0.8), nrow=3, ncol=2, byrow=TRUE)

myGate <- polygonGate(filterId="myGate", .gate=vertices,
new("parameters", list(myLog, myHLog)))

flowEnv[['myGate']] <- myGate

Finally, write the Gating-ML output

write.gatingML (flowEnv)

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ...>

<transforms:transformation transforms:id="myHLog">
<transforms:hyperlog transforms:T="262144" transforms:M="4.5"
transforms:W="0.5" transforms:A="0"/>
</transforms:transformation>

<transforms:transformation transforms:id="myLog">
<transforms:flog transforms:T="1" transforms:M="1"/>
</transforms:transformation>

<transforms:transformation transforms:id="myRatio">
<transforms:fratio transforms:A="1" transforms:B="0" transforms:C="0">
<data-type:fcs-dimension data-type:name="cFL1-A"/>
<data-type:fcs-dimension data-type:name="cFL1-W"/>
</transforms:fratio>
</transforms:transformation>

<transforms:spectrumMatrix transforms:id="myComp">
<transforms:fluorochromes>
<data-type:fcs-dimension data-type:name="cFL1-A"/>
<data-type:fcs-dimension data-type:name="cFL1-W"/>
<data-type:fcs-dimension data-type:name="cFL2-A"/>
<data-type:fcs-dimension data-type:name="cFL2-W"/>
</transforms:fluorochromes>

20

<transforms:detectors>
<data-type:fcs-dimension data-type:name="FL1-A"/>
<data-type:fcs-dimension data-type:name="FL1-W"/>
<data-type:fcs-dimension data-type:name="FL2-A"/>
<data-type:fcs-dimension data-type:name="FL2-W"/>

</transforms:detectors>

<transforms:spectrum>
<transforms:coefficient transforms:value="1"/>
<transforms:coefficient transforms:value="0"/>
<transforms:coefficient transforms:value="0.03"/>
<transforms:coefficient transforms:value="0"/>

</transforms:spectrum>

<transforms:spectrum>

</transforms:spectrum>
</transforms:spectrumMatrix>

<gating:PolygonGate gating:id="myGate">
<gating:dimension gating:transformation-ref="myLog"
gating:compensation-ref="myComp">
<data-type:new-dimension data-type:transformation-ref="myRatio"/>
</gating:dimension>
<gating:dimension gating:transformation-ref="myHLog"
gating:compensation-ref="myComp">
<data-type:fcs-dimension data-type:name="cFL2-A"/>
</gating:dimension>
<gating:vertex>
<gating:coordinate data-type:value="0.9"/>
<gating:coordinate data-type:value="0.5"/>
</gating:vertex>
<gating:vertex>
<gating:coordinate data-type:value="1.2"/>
<gating:coordinate data-type:value="0.6"/>
</gating:vertex>
<gating:vertex>
<gating:coordinate data-type:value="1.1"/>
<gating:coordinate data-type:value="0.8"/>
</gating:vertex>
</gating:PolygonGate>
</gating:Gating-ML>

21

3.9 Merging transformations

As detailed in section Gating-ML 2.0 transformations can be “shared” for multiple ar-
guments (i.e., FCS parameters). This is not the case for Gating-ML 1.5 or the Gating-ML
implementation in R. Therefore, if multiple “equivalent” transformations are supposed to be
written to Gating-ML 2.0, then these will be merged into a single transformation and all
references will be updated accordingly in the Gating-ML 2.0 output. This behavior can be
demonstrated on the following example:

flowEnv <- new.env()

logiclel <- logicletGml2(parameters="FL1-H", T=10000, M=4.5, A=0, W=.5, "logiclel")
logicle2 <- logicletGml2(parameters="FL2-H", T=10000, M=4.5, A=0, W=.5, "logicle2")
linl <- lintGml2(parameters = "FL1-H", T = 10000, A = 0, "linl")

1in2 <- 1lintGml2(parameters "FL2-H", T = 10000, A 0, "1in2")

rectG <- rectangleGate(filterId="rectG", "logiclel"=c(.1, .6), "lin2"=c(.2, .6))
rectG@parameters <- new("parameters", list(logiclel, 1in2))

rangeGl <- rectangleGate(filterId="rangeG1", "logicle2"=c(0.1, 0.5))
rangeGl@parameters <- new('"parameters", list(logicle2))

rangeG2 <- rectangleGate(filterId="rangeG2", "lin1"=c(0.6, 0.9))

rangeG2@parameters <- new("parameters", list(lin1))

flowEnv[['rectG']] <- rectG

flowEnv[['rangeG1']] <- rangeGl

flowEnv[['rangeG2']] <- rangeG2

write.gatingML (f1owEnv)

VVVVVVVVVVVVVVYV

<?7xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ...>

<transforms:transformation transforms:id="1inl1">
<transforms:flin transforms:T="10000" transforms:A="0"/>
</transforms:transformation>
<transforms:transformation transforms:id="logiclel">
<transforms:logicle transforms:T="10000" transforms:M="4.5"
transforms:W="0.5" transforms:A="0"/>
</transforms:transformation>
<gating:RectangleGate gating:id="rangeG1">
<gating:dimension gating:min="0.1" gating:max="0.5"
gating:transformation-ref="logiclel" gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL2-H"/>
</gating:dimension>
</gating:RectangleGate>
<gating:RectangleGate gating:id="rangeG2">
<gating:dimension gating:min="0.6" gating:max="0.9"
gating:transformation-ref="1inl" gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL1-H"/>
</gating:dimension>

22

</gating:RectangleGate>
<gating:RectangleGate gating:id="rectG">
<gating:dimension gating:min="0.1" gating:max="0.6"
gating:transformation-ref="logiclel" gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL1-H"/>
</gating:dimension>
<gating:dimension gating:min="0.2" gating:max="0.6"
gating:transformation-ref="1inl" gating:compensation-ref="uncompensated">
<data-type:fcs-dimension data-type:name="FL2-H"/>
</gating:dimension>
</gating:RectangleGate>
</gating:Gating-ML>

If you inspect the code, you will notice that we have defined 4 transformations: “logiclel”,
“logicle2”; “lin1” and “lin2”. The “logiclel” and “logicle2” are defined the same way except
that “logiclel” is applied to “FL1-H” while “logicle2” is applied to “FL2-H”. Similarly for “lin1”
and “lin2”. Further in the code, we define a rectangular gate in the “logiclel” and “lin2”
dimensions, and two range gates in the “logicle2” and “lin1” dimensions, respectively. Due to
the transformation merging, only the “logiclel” and “lin1” transformations are defined in the
Gating-ML 2.0 output. The second dimension of “rectG” has been updated to reference the
“lin1” transformation; however, it is correctly applied to “FL2-H”. Similarly, “rangeG1” has
been updated to reference the “logiclel” transformation applied to “FL2-H”.

3.10 Example with unsupported pipelines

As explained in section not all pipelines expressible in R are expressible in Gating-ML
2.0. Below is an example of a pipeline involving compound scaling transformations — a Log-
icle transformation applied to another Logicle transformation. An error message saying that
“Unexpected parameter class logicletGml2, compound transformations are not supported in
Gating-ML 2.0.” will be displayed if we try to save this in Gating-ML 2.0.

logiclel <- logicletGml2(parameters = "FL1-H", T = 1000, M = 4.5, A = 0,
W = 0.5, transformationId="logiclel")
logicle2 <- logicletGml2(parameters = "logiclel", T = 1000, M = 4.5, A = 0,
W = 0.5, transformationId="logicle2")
logicle2@parameters <- logiclel
myRect <- rectangleGate(filterId="myRect", list("logicle2"=c(0, .6)))
myRect@parameters <- new('"parameters", list(logicle2))
flowEnv[['myRect']] <- myRect
x <- tryCatch(write.gatingML(flowEnv), error = function(e) { e })
x$message

V VVVVV + YV + YV

[1] "Unexpected parameter class logicletGml2, compound transformations are not
supported in Gating-ML 2.0."

23

3.11 Example with unsupported transformations

R is a powerful programming language that allows for many different data transformations.
However, only some data transformations are supported by the Gating-ML 2.0 specification
(see table . As shown below, an error is produced if an incompatible transformation is found
in the environment that is being written to the Gating-ML 2.0 output.

flowEnv <- new.env()

tSS <- splitscale(parameters = "FL1-H", r = 1024, maxValue = 10000,
transitionChannel = 256, transformationId = "tSS")

myRect <- rectangleGate(filterId="myRect", list("tss"=c(100, 700)))

myRect@parameters <- new("parameters", 1ist(tSS))

flowEnv[['myRect']] <- myRect

x <- tryCatch(write.gatingML(flowEnv), error = function(e) { e })

x$message

V V.V VYV + VvV

[1] "Class 'splitscale' is not supported in Gating-ML 2.0 output. Only
Gating-ML 2.0 compatible transformations are supported by Gating-ML 2.0
output. Transformation 'tSS' is not among those and cannot be included.
Therefore, any gate referencing this transformation would be referencing
a non-existent transformation in the Gating-ML output. Please correct the
gates and transformations in your environment and try again."

If this is the case, you will have to remove the transformation and any reference to it from the
environment before being able to save the environment in Gating-ML 2.0.

3.12 Example with unsupported gate type

All widely used static gates are Gating-ML 2.0 compatible. Gates that are not compatible with
Gating-ML 2.0 include n-dimensional polytope gates (the polytopeGate class) and decision tree
gates (the expressionFilter class). These types of gates are supported by Gating-ML 1.5, but
the support has been removed in Gating-ML 2.0 since these gates are almost never used for
the analysis of flow cytometry data. In addition, Gating-ML 2.0 cannot be used to export data
driven gate, such as norm2Filter, kmeansFilter, curviFilter, curv2Filter, boundaryFilter, etc.
As shown below, an error is produced if an incompatible gate is found in the environment that
is supposed to be written to a Gating-ML 2.0 output.

flowEnv <- new.env()

Gating-ML 1.5 example 5.3.4.c

a <- matrix(c(-1, 0, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1), ncol=3)

b <- ¢(100, 50, 0, 250, 300)

myPolytope = polytopeGate(filterId='myPolytope', .gate=a, b=b,
list("FSC-H", "SSC-H", "FL1-H"))

flowEnv[['myPolytope']] <- myPolytope

x <- tryCatch(write.gatingML(flowEnv), error = function(e) { e })

x$message

V V.V + V V.V VYV

24

[1] "Class 'polytopeGate' is not supported in Gating-ML 2.0 output. Only
Gating-ML 2.0 compatible gates are supported by Gating-ML 2.0 output.
Filter 'myPolytope' is not among those and cannot be included. Please
remove this filter and any references to it from the environment and try
again."

If this is the case, you will have to remove the incompatible gate (filter) and any reference to
it, including references from Boolean collections (i.e., intersectFilter, unionFilter and comple-
mentFilter) and gating hierarchies (subsetFilter). A similar error will be produced if you try
to include data driven gates in the Gating-ML output as shown below:

flowEnv <- new.env()

myNorm2Filter <- norm2Filter ("FSC-H", "SSC-H", filterId="myNorm2Filter")
flowEnv[['myNorm2Filter']] <- myNorm2Filter

x <- tryCatch(write.gatingML(flowEnv), error = function(e) { e })
x$message

vV V.V Vv Vv

[1] "Class 'morm2Filter' is not supported in Gating-ML 2.0 output. Only
Gating-ML 2.0 compatible gates are supported by Gating-ML 2.0 output.
Filter 'myNorm2Filter' is not among those and cannot be included. Please
remove this filter and any references to it from the environment and try
again."

4 Testing Gating-ML compliance

4.1 Additional requirements

The flowUtils package includes RUnit-based compliance tests to verify its compliance with the
Gating-ML 1.5 and Gating-ML 2.0 specifications. You will need the gatingMLData package
(version 2.6.0 or newer) in order to run the compliance tests. If you do not have this package,
you can install it as follows:

> source("http://bioconductor.org/biocLite.R")
> biocLite("gatingMLData")

4.2 Gating-ML 1.5 compliance

Once you have the required gatingMLData package installed, the testGatingMLCompliance
function can be used to test Gating-ML compliance. This function takes two arguments: the
name of the file where the compliance HTML report shall be saved, and the version of Gating-
ML that the compliance with shall be tested with. In order to test compliance with Gating-ML
1.5, you can run the following code:

> testGatingMLCompliance ("ComplianceReport_v1.5.html", version=1.5)

This code will run 460 test functions, which are based on the 32 sets of compliance tests in-
cluded with the Gating-ML 1.5 specification. During these tests, computed event membership

25

is compared against the events expected in each of the tested gates, and any discrepancies are
reported as failures. The Gating-ML 1.5 compliance tests usually take about 1 — 2 minutes to
complete, at which point an HTML report with 0 failures and 0 errors should be produced.

4.3 Gating-ML 2.0 compliance

The following code can be executed in order to test compliance with Gating-ML 2.0:
> testGatingMLCompliance ("ComplianceReport_v2.0.html", version=2.0)

This code will execute 405 test functions and should take about 4 — 6 minutes to complete. It
contains 11 sets of tests. Sets 1 and 2 are based on the two sets of compliance tests included with
the Gating-ML 2.0 specification. During these tests, computed event membership is compared
against the events expected in each of the tested gates, and any discrepancies are reported as
failures. Sets 3, 4 and 5 implement additional compliance tests that were not included with
the Gating-ML 2.0 specification. These allow us to test a few additional concepts that are not
checked with the official tests (e.g., non-square spectrum matrices); however, we should note
that we have used R to generate the expected results for these tests. Therefore, the tests can
only ensure that flowUtils parses the provided Gating-ML 2.0 files properly and that the results
remain consistent over time. The rest of the test sets is focused on writing Gating-ML 2.0.
The first 5 “write Gating-ML” test sets are based on the mentioned “read Gating-ML” tests;
however, we always

1. Read the Gating-ML file into an empty enviroment

2. Save that enviroment into temporary Gating-ML 2.0 file

3. Empty the enviroment

4. Read the saved temporary Gating-ML file

5. Check that we retrieved all the gates with all the expected results correctly

This way, we can also make sure that the Gating-ML files have been written correctly. The
last set of “write Gating-ML” tests includes concepts that cannot be created by reading a
Gating-ML 2.0 file; however, they can be created manually and exported to a Gating-ML 2.0
file. For example, this includes tests that the Gating-ML 1.5 ratio transformation can be saved
in Gating-ML 2.0 and then retrieved as Gating-ML 2.0 “fratio” with the correct results. Ad-
ditional tests include the “asinhtGml2” transformation with a directly embedded (rather than
referenced) ratio transformation, the use of filters (rather than filter references) for Boolean
gates, the proper conversion of Gating-ML 1.5 “asinht” to Gating-ML 2.0 “asinhtGmI2”, and
also tests of various Quad gates in combination with compensation, ratio and scale transforma-
tions. An HTML report with 0 failures and 0 errors should be produced once the Gating-ML
2.0 compliance tests are completed.

5 Using Gating-ML to exchange gates with other software tools

To the best of our knowledge, R, Matlab, FlowRepository (Spidlen et al., [2012alb) and Cyto-
bank (Kotecha et al., 2010) are the first Gating-ML compatible software tools. FlowJo (and
other tools) also implemented most of Gating-ML, but are still working on adjusting some of
the data transformations to achieve Gating-ML based interoperability.

26

5.1 Implicit FCS transformations

As mentioned in section the transformation=FALSE option should be used when ap-
plying Gating-ML 1.5, and the transformation=1linearize-with-PnG-scaling option when
applying Gating-ML 2.0. This is because Gating-ML 2.0 specifies that the “channel-to-scale”
transformation shall be performed after reading the “channel” values from the FCS data file.
The “channel-to-scale” transformation includes:

e The “linearization” of FCS parameters stored on a log scale, i.e., with $PnE values
different from “0,0”.

e The “correction” for gain of FCS parameters stored with $PnG values different from “1”.

The latter one means nothing more than the division of the parameter value by the appropriate
$PnG value. According to our experience, in the majority of cases, there are no $PnG values
in the FCS data files, and if these are present and different from “1”, the data file has usually
been produced by one of the older instruments. But, as this is just a linear transformation, it
may be ignored by some analysis tools as data is scaled based on the size of the display with
little meaning of the actual absolute expression values. However, this details is significant for
being able to exchange gates using Gating-ML. Therefore, should you be working with data
files with $PnG values different from “1”, and should you observe compatibility issues with
third party software tools (gates of wrong sizes or in wrong positions), you may want to try
reading your data with the transformation=linearize option.

5.2 Notes about precision

In R, data transformations and gates are expressed and calculated using a double-precision
floating-point format, which leads to very “precise” results. Arguably, such high precision is
not needed for the analysis of flow cytometry data and therefore, several other tools choose to
implement lower precision solutions. Commonly, these tools incorporate a binning approach,
where the full scale range is binned into a fixed number of bins (e.g., 256, 1024), and gates
are calculated based on this binning. Such an approach allows for faster calculations and gate
membership determination. If this is the case, small differences are to be expected between
populations calculated by R (which is “precise”) and by other tools (which may be approx-
imate). However, these differences should not be biologically significant since they are very
small and typically, events in question will be very close to the border of a gate. This can be
demonstrated on the following example. We have taken a randomly chosen gate (Figure (1))
from FlowRepository, exported the gate from FlowRepository using FlowRepository’s Gating-
ML 2.0 export, imported this Gating-ML file in R, and applied it to the same FCS data file
that FlowRepository did. The “PE-A” channel is displayed on an ArcSinH scale.

fcsFile <- system.file("extdata/examples", "166889.fcs",
package = "gatingMLData")
gateFile <- system.file("extdata/examples", "GatingML2.0_Export_166889.xml",
package = "gatingMLData")
myFrame <- read.FCS(fcsFile, transformation="linearize-with-PnG-scaling")
flowEnv <- new.env()

vV VvV + Vv + V

27

SSC-A

'80.64%

PE-A

Figure 1: A screenshot from FlowRepository with an ellipse gate enclosing 80.64% of cells.

> read.gatinglML(gateFile, flowEnv)

> for (x in 1s(flowEnv)) if (is(flowEnv[[x]], "filter")) {
+ result <- filter(myFrame, flowEnv[[x]])

+ print (summary (result))

+

}

GateSet_1_UEUtQQ.._UINDLUE.+: 49260 of 61178 events (80.52%)
Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._UINDLUE.+: 49260 of 61178 events (80.52%)

As you can see, FlowRepository is showing 80.64% of cells in that gate, while R calculated
80.52% only. This minor difference can be explained by the fact that FlowRepository incorpo-
rates binning (with 256 bins) in the gating calculations.

Additional very minor differences can be observed due to different “channel to scale” trans-
formations implemented in different software tools. In R, we are using the Gating-ML 2.0
compatible formula that has been provided in FCS 3.1 (Spidlen et al., |2010)). Specifically, for
$DATATYPE/I/, $PnR/r/, r > 0, $PnE/ fi,f2/, fi > 0, fa > 0: n is a logarithmic parameter
with channel values going from 0 to r — 1, and scale values ranging from fa to fo % 1071, A
channel value z. can be converted to a scale value z; as z;, = 10F1%ze/7 fo. If fo = 0 then
f2 shall be considered as 1 and the same formula shall be applied. However, this formula has
only been standardized recently and historically, some software tools use a different calcula-
tion, namely s = 10/1*2</("=1) 4 f, Differences between using r — 1 vs. r in the formula may
lead to minor differences in the resulting gating; however, these should be very minor and not
significant biologically.

5.3 Notes about gate and population identifiers

As you may have noticed, two gates have been parsed from the Gating-ML file, an ellipsoidGate
and an intersectFilter gate.

> class(flowEnv[['Gate_1_UEUtQSBTUOMtQSBFMG.._UEUtQQ.._UINDLUE.']])

28

[1] "ellipsoidGate"
attr(,"package")
[1] "flowCore"

> str(flowEnv[['Gate_1_UEUtQSBTUOMtQSBFMQ. . _UEUtQQ.._U1NDLUE.']])

Formal class 'ellipsoidGate' [package "flowCore"] with 5 slots

..Q@ mean : Named num [1:2] 1.31e-01 2.61e+04

.. ..— attr(x, "names")= chr [1:2] "Tr_Arcsinh.FCS.PE-A" "SSC-A"
..Q@ cov :num [1:2, 1:2] 1.09 4.01e+03 4.01e+03 6.20e+08
..0 distance : num 1

..Q@ parameters:Formal class 'parameters' [package "flowCore"] with 1 slot
..0@ .Data:List of 2
..$:Formal class 'transformReference' [package "flowCore"] with 3 slots
..@ .Data :function ()
..Q@ searchEnv :<environment: 0x749a610>
..Q@ transformationId: chr "Tr_Arcsinh.FCS.PE-A"
..$:Formal class 'compensatedParameter' [package "flowCore"] with 5 slots

..@ .Data :function ()

..Q@ parameters : chr "SSC-A"

..Q@ spillRefId : chr "SpillFromFCS"

..@ searchEnv :<environment: 0x749a610>

e <+« +«+. «.0 transformationld: chr "SSC-A_compensated_according_to_FCS"
..0 filterId : chr "Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._U1NDLUE."

> class(flowEnv[['GateSet_1_UEUtQQ.._UINDLUE.']])

[1] "intersectFilter"
attr(,"package")
[1] "flowCore"

> str(flowEnv[['GateSet_1_UEUtQQ.._UINDLUE.']])

Formal class 'intersectFilter' [package "flowCore"] with 2 slots
..0 filters :List of 2
..$:Formal class 'filterReference' [package "flowCore"] with 3 slots
..Q@ name : chr "Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._UINDLUE."
..Q env :<environment: 0x749a610>
..0 filterId: chr "Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._UINDLUE."
..$:Formal class 'filterReference' [package "flowCore"] with 3 slots
..@ name : chr "Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._UINDLUE."
..Q@ env :<environment: 0x749a610>
o ..0 filterId: chr "Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._U1NDLUE."
..Q@ filterId: chr "GateSet_1_UEUtQQ.._UINDLUE."

This relates to how FlowRepository exports Gating-ML. We can inspect the Gating-ML file
using the following command:

29

> cat(readChar(gateFile, file.info(gateFile)$size))

<?xml version="1.0" encoding="UTF-8"7>
<gating:Gating-ML ...">
<data-type:custom_info> ... </data-type:custom_info>
<transforms:transformation transforms:id="Tr_Arcsinh">
<transforms:fasinh transforms:T="176.2801790465702"
transforms:M="0.43429448190325176" transforms:A="0.0" />
</transforms:transformation>
<gating:EllipsoidGate gating:id="Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._U1NDLUE.">
<data-type:custom_info> ... </data-type:custom_info>
<gating:dimension gating:compensation-ref="FCS"
gating:transformation-ref="Tr_Arcsinh">
<data-type:fcs-dimension data-type:name="PE-A" />
</gating:dimension>
<gating:dimension gating:compensation-ref="FCS">
<data-type:fcs-dimension data-type:name="SSC-A" />
</gating:dimension>
<gating:mean>
<gating:coordinate data-type:value="0.13093575523900436" />
<gating:coordinate data-type:value="26112.900390625" />
</gating:mean>
<gating:covarianceMatrix>
<gating:row>
<gating:entry data-type:value="1.0941582172399216" />
<gating:entry data-type:value="4008.453938328732" />
</gating:row>
<gating:row>
<gating:entry data-type:value="4008.453938328732" />
<gating:entry data-type:value="6.198370677161704E8" />
</gating:row>
</gating:covarianceMatrix>
<gating:distanceSquare data-type:value="1.0" />
</gating:EllipsoidGate>
<gating:BooleanGate gating:id="GateSet_1_UEUtQQ.._U1NDLUE.">
<data-type:custom_info> ... </data-type:custom_info>
<gating:and>
<gating:gateReference gating:ref="Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._UINDLUE." />
<!-- Boolean "and" gates are used to describe FlowRepository's populations
(GateSets) . Here, we only have one gate defining the population, but
Gating-ML requires at least two arguments for the "and" gate. Therefore,
we are referencing the same gate twice. -->
<gating:gateReference gating:ref="Gate_1_UEUtQSBTUOMtQSBFMQ.._UEUtQQ.._UINDLUE." />
</gating:and>
</gating:BooleanGate>

30

</gating:Gating-ML>

There are two different concepts in FlowRepository: gates and populations (also called
“GateSets”). A population is defined as the intersection of one or more gates. In Gating-
ML, every gate defines a population, and there is the option of combining gates into more
complicated structures using the Boolean “AND”, “OR” and “NOT” operators. Consequently,
FlowRepository exports a Boolean “AND” gate for every population defined. If this population
is defined by a single gate, then this gate will be listed twice in the operands of the Boolean
“AND?” gate in order to satisfy Gating-ML’s requirement of 2 or more arguments for the Boolean
“AND” and “OR” gates. This explains why there is the GateSet_1_UEUtQQ.._UINDLUE. inter-
sectFilter filter in our environment, and why it references the ellipsoid gate twice (which has
no effect on the calculated result). Also, please note that if you export gates from R using
Gating-ML 2.0 and import these in FlowRepository, the gates will get imported but the popu-
lations will not be defined automatically. You will need to open the population manager within
FlowRepository in order to specify which combinations of gates are “meaningful” in terms of
defining a useful population.

Finally, you may have noticed that the gate identifiers are long and not human readable. In
Gating-ML, there is no standardized way of describing a “name” of a gate. There is a standard
way of describing a gate identifier; however, the syntax of this identifier has to conform to the
syntax of XML identifiers. Therefore, FlowRepository uses a modified Base64 encoding of gate
names to create XML compatible gate identifiers.

We are using a different approach to ensure that the gate identifiers are XML compatible
when exporting Gating-ML from R. This approach is based on replacing “illegal” characters
with characters that are allowed to be part of an XML identifier. We recommend using regular
ASCII characters for gate identifiers in R if you wish to keep these unchanged in your Gating-
ML 2.0 export.

31

References

C. Bray, J. Spidlen, and R.R. Brinkman. FCS 3.1 Implementation Guidance. Cytometry A,
81A(6):523-526, 2012.

N. Kotecha, P.O. Krutzik, and J.M. Irish. Web-based analysis and publication of flow cytometry
experiments. Curr Protoc Cytom, 2010. doi: 10.1002/0471142956.cy1017s53.

J. Spidlen, R.C. Leif, W. Moore, M. Roederer, International Society for the Advancement of
Cytometry Data Standards Task Force, and R.R. Brinkman. Gating-ML: XML-based Gating
Descriptions in Flow Cytometry. Cytometry A, 7T3A(12):1151-1157, 2008.

J. Spidlen, W. Moore, D. Parks, M. Goldberg, C. Bray, P. Bierre, P. Gorombey, B. Hyun,
M. Hubbard, S. Lange, R. Lefebvre, R. Leif, D. Novo, L. Ostruszka, A. Treister, J. Wood,
R.F. Murphy, M. Roederer, D. Sudar, R. Zigon, and R.R. Brinkman. Data File Standard
for Flow Cytometry, version FCS 3.1. Cytometry A, 77A(1):97-100, 2010.

J. Spidlen, K. Breuer, and R.R. Brinkmanm. Preparing a Minimum Information about a
Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International
Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org).
Curr Protoc Cytom, 2012a. doi: 10.1002/0471142956.cy1018s61.

J. Spidlen, K. Breuer, C. Rosenberg, N Kotecha, and R.R. Brinkmanm. FlowRepository — A
Resource of Annotated Flow Cytometry Datasets Associated with Peer-reviewed Publica-
tions. Cytometry A, 81A(9):727-731, 2012b.

J. Spidlen, International Society for the Advancement of Cytometry Data Standards
Task Force, and R.R. Brinkman. Gating-ML 2.0 — International Society for Advancement
of Cytometry (ISAC) standard for representing gating descriptions in flow cytometry, 2013.
URL flowcyt.sourceforge.net/gating/20130122. pdf.

32

flowcyt.sourceforge.net/gating/20130122.pdf

	Introduction
	Background
	Gating-ML 1.5
	Gating-ML 2.0
	Gating-ML support in flowUtils

	Reading Gating-ML files
	The read.gatingML function
	Additional examples
	Exploring objects read into the environment
	Scaling transformations shared in Gating-ML 2.0, not in R
	Representation of spillover and spectrum matrices
	Applying Gating-ML files

	Writing Gating-ML files
	The write.gatingML function
	Gating-ML compatible objects
	Gating-ML 2.0 compatible pipelines
	Examples with compensation
	Example with scaling transformations
	Example with scaling transformations and compensation
	Gating-ML 1.5 objects in Gating-ML 2.0 output
	Example with compensation, ratio and scaling together
	Merging transformations
	Example with unsupported pipelines
	Example with unsupported transformations
	Example with unsupported gate type

	Testing Gating-ML compliance
	Additional requirements
	Gating-ML 1.5 compliance
	Gating-ML 2.0 compliance

	Using Gating-ML to exchange gates with other software tools
	Implicit FCS transformations
	Notes about precision
	Notes about gate and population identifiers

