
Preprocessing and Genotyping Illumina Arrays for Copy Number

Analysis

Rob Scharpf

September 18, 2012

Abstract

This vignette illustrates the steps required prior to copy number analysis for Infinium platforms.
Specifically, we require construction of a container to store processed forms of the raw data, preprocessing
to normalize the arrays, and genotyping using the CRLMM algorithm. After completing these steps, users
can refer to the copynumber vignette.

1 Set up

The following codechunk declares a directory for saving ff files that will contain the normalized intensities
and the genotype calls.

> library(ff)

> options(ffcaching="ffeachflush")

> outdir <- paste("/local_data/r00/crlmm/", getRversion(), "/illumina_vignette", sep="")

> ldPath(outdir)

> dir.create(outdir, recursive=TRUE, showWarnings=FALSE)

We will also store cached computations in the directory outdir.
We declare that crlmm should process 150,000 markers at a time and/or 500 samples at a time (when

possible) to reduce the memory footprint. As our example dataset in this vignette contains fewer than 500
samples, all samples will be processed simultaneously.

> ocProbesets(150e3)

> ocSamples(500)

We begin by specifying the path containing the raw IDAT files for a set of samples from the Infinium
370k platform.

> datadir <- "/thumper/ctsa/snpmicroarray/illumina/IDATS/370k"

For Infinium platforms, an Illumina sample sheet containing information for reading the raw IDAT files
is required. Please refer to the BeadStudio Genotyping guide, Appendix A, for additional information. The
following code reads in the samplesheet for the IDAT files on our local server.

> samplesheet = read.csv(file.path(datadir, "HumanHap370Duo_Sample_Map.csv"), header=TRUE, as.is=TRUE)

For the purposes of this vignette, we indicate that we only wish to process a subset of the arrays. For
our dataset, the file extensions are ‘Grn.dat’ and ‘Red.idat’. We store the complete path to the filename
without the file extension in the arrayNames and check that all of the green and red IDAT files exists.

> samplesheet <- samplesheet[-c(28:46,61:75,78:79),]

> arrayNames <- file.path(datadir, unique(samplesheet[, "SentrixPosition"]))

> all(file.exists(paste(arrayNames, "_Grn.idat", sep="")))

1

[1] TRUE

> all(file.exists(paste(arrayNames, "_Red.idat", sep="")))

[1] TRUE

> arrayInfo <- list(barcode=NULL, position="SentrixPosition")

All supported platforms have a corresponding annotation package. The appropriate annotation package
is specified by the platform identifier without the Crlmm postfix.

> cdfName <- "human370v1c"

Next, we construct a character vector that specifies the batch for each of the 43 arrays. Here, we have a
small dataset and process the samples in a single batch. Processing the samples as a single batch is generally
reasonable if the samples were processed at similar times (e.g., within a few weeks).

> batch <- rep("1", nrow(samplesheet))

2 Preprocessing and genotyping

The raw intensities from the Infinium IDAT files are read and normalized using the function preprocessInf.
The function preprocessInf returns a ff object containing the parameters for the mixture model used by
the CRLMM genotyping algorithm. Following preprocessing, the genotypeInf genotypes the samples. The
function genotype.Illumina is a wrapper to the above functions and returns an object of class CNSet .

> cnSet <- genotype.Illumina(sampleSheet=samplesheet,

arrayNames=arrayNames,

arrayInfoColNames=arrayInfo,

cdfName="human370v1c",

batch=batch)

Note, to fully remove the data associated with the cnSet2 object, one should use the delete function in
the ff package followed by the rm function. The following code is not evaluated is it would change the results
of the cached computations in the previous code chunk.

> lapply(assayData(cnSet), delete)

> lapply(batchStatistics(cnSet), delete)

> delete(cnSet$gender)

> delete(cnSet$SNR)

> delete(cnSet$SKW)

> rm(cnSet)

Copy number routines in the crlmm package are available for Affymetrix 5.0 and 6.0 platforms, as well
as several Illumina platforms. This vignette assumes that the arrays have already been successfully prepro-
cessed and genotyped as per the instructions in the AffymetrixPreprocessCN and IlluminaPreprocessCN
vignettes for the Affymetrix and Illumina platforms, respectively. While this vignette uses Affymetrix
6.0 arrays for illustration, the steps at this point are identical for both platforms. See [1] for details re-
garding the methodology implemented in crlmm for copy number analysis. In addition, a compendium
describing copy number analysis using the crlmm package is available from the author’s website: http:
//www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html.

Limitations: While a minimum number of samples is not required for preprocessing and genotyping,
copy number estimation in the crlmm package currently requires at least 10 samples per batch. The parameter
estimates for copy number and the corresponding estimates of raw copy number will tend to be more noisy
for batches with small sample sizes (e.g., < 50). Chemistry plate or scan date are often useful surrogates for
batch. Samples that were processed at similar times (e.g., in the same month) can be grouped together in
the same batch.

2

3 Quality control

The signal to noise ratio (SNR) estimated by the CRLMM genotyping algorithm is an overall measure of
the separation of the diallelic genotype clusters at polymorphic loci and can be a useful measure of array
quality. Small SNR values can indicate possible problems with the DNA. Depending on the size of the dataset
and the number of samples with low SNR, users may wish to rerun the preprocessing and genotyping steps
after excluding samples with low SNR. The SNR is stored in the phenoData slot of the CNSet object and is
available after preprocessing and genotyping. SNR values below 5 for Affymetrix or below 25 for Illumina
may indicate poor sample quality. The following code chunk makes a histogram of the SNR values for the
HapMap samples.

> library(lattice)

> invisible(open(cnSet$SNR))

> snr <- cnSet$SNR[]

> close(cnSet$SNR)

[1] TRUE

> print(histogram(~snr,

panel=function(...){

panel.histogram(...)},

breaks=25, xlim=range(snr), xlab="SNR"))

4 Copy number estimation

As described in [1], the CRLMM-CopyNumber algorithm fits a linear model to the normalized intensities
stratified by the diallic genotype call. The intercept and slope from the linear model are both SNP- and
batch-specific. The implementation in the crlmm package is encapsulated by the function crlmmCopynumber
that, using the default settings, can be called by passing a single object of class CNSet . See the appropriate
preprocessing/genotyping vignette for the construction of an object of class CNSet .

> (cnSet.updated <- crlmmCopynumber(cnSet))

[1] TRUE

The following steps were performed by the crlmmCopynumber function:

� sufficient statistics for the genotype clusters for each batch

� unobserved genotype centers imputed

� posterior summaries of sufficient statistics

� intercept and slope for linear model

Depending on the value of ocProbesets(), these summaries are computed for subsets of the markers to
reduce the required RAM. Note that the value returned by the crlmmCopynumber function in the above
example is TRUE. The reason the function returns TRUE in the above example is that the elements of the
batchStatistics slot have the class ff matrix . Rather than keep the statistical summaries in memory,
the summaries are written to files on disk using protocols described in the ff package. Hence, while the
cnSet object itself is unchanged as a result of the crlmmCopynumber function, the data on disk is updated
accordingly. Users that are interested in accessing these low-level summaries can refer to the Infrastructure
vignette. Note that the data structure depends on whether the elements of the batchStatistics slot are ff
objects or ordinary matrices. In this example, the elements of batchStatistics have the class ff matrix .

> nms <- ls(batchStatistics(cnSet))

> cls <- rep(NA, length(nms))

> for(i in seq_along(nms)) cls[i] <- class(batchStatistics(cnSet)[[nms[i]]])[1]

> all(cls == "ff_matrix")

3

[1] TRUE

The batch-specific statistical summaries computed by crlmmCopynumber are written to files on disk using
protocols described in the R package ff. The value returned by crlmmCopynumber is TRUE, indicating that the
files on disk have been successfully updated. Note that while the cnSet object is unchanged, the values on
disk are different. On the other hand, subsetting the cnSet with the ‘[’ method coerces all of the elements to
class matrix . The batch-specific summaries are now ordinary matrices stored in RAM. The object returned
by crlmmCopynumber is an object of class CNSet with the matrices in the batchStatistics slot updated.

> chr1.index <- which(chromosome(cnSet) == 1)

> open(cnSet)

[1] TRUE

> cnSet2 <- cnSet[chr1.index,]

> close(cnSet)

> for(i in seq_along(nms)) cls[i] <- class(batchStatistics(cnSet2)[[nms[i]]])[1]

> all(cls == "matrix")

[1] TRUE

> cnSet3 <- crlmmCopynumber(cnSet2)

> class(cnSet3)

[1] "CNSet"
attr(,"package")
[1] "oligoClasses"

4.1 Marker-specific estimates

Raw total copy number. Several functions are available that will compute relatively quickly the allele-
specific, raw copy number estimates. At allele k, marker i, sample j, and batch p, the estimate of allele-
specific copy number is computed by subtracting the estimated background from the normalized intensity
and scaling by the slope coefficient. More formally,

ĉk,ijp = max

{
1

φ̂k,ip

(Ik,ijp − ν̂k,ip) , 0

}
for k ∈ {A,B}. (1)

See [1] for details.
The function totalCopynumber translates the normalized intensities to an estimate of raw copy number

by adding the allele-specific summaries in Equation (1). For large datasets, the calculation will not be
instantaneous as the I/O can be substantial. Users should specify either a subset of the markers or a subset
of the samples to avoid using all of the available RAM. For example, in the following code chunk we compute
the total copy number at all markers for the first 2 samples, and the total copy number for chromosome 20
for the first 50 samples.

> tmp <- totalCopynumber(cnSet, i=seq_len(nrow(cnSet)), j=1:2)

> dim(tmp)

[1] 370024 2

> tmp2 <- totalCopynumber(cnSet, i=which(chromosome(cnSet) == 20), j=seq_len(ncol(cnSet)))

> dim(tmp2)

[1] 8659 43

Alternatively, the functions CA and CB compute the allele-specific copy number. For instance, the following
code chunk computes the allele-specific summaries at all polymorphic loci for the first 2 samples.

> snp.index <- which(isSnp(cnSet) & !is.na(chromosome(cnSet)))

> ca <- CA(cnSet, i=snp.index, j=1:2)

> cb <- CB(cnSet, i=snp.index, j=1:2)

4

4.2 Container for log R ratios and B allele frequencies

A useful container for storing the crlmm genotypes, genotype confidence scores, and the total or relative copy
number at each marker is the oligoSetList class. Coercion of a CNSet object to a oligoSnpSet object can
be acheived by using the function constructOligoSetFrom as illustrated below. Users should note that if
the assayData elements in the CNSet instance are ff objects, the assayData elements of each element in
the oligoSetList object will be ff-dervied objects (a new total_cn*.ff file will be created in the ldPath()
directory).

> library(VanillaICE)

> open(cnSet3)

[1] TRUE

> oligoSetList <- constructOligoSetListFrom(cnSet3, batch.name=batch(cnSet3)[1])

> close(cnSet3)

NULL

> show(oligoSetList)

oligoSetList of length 1

> class(oligoSetList)

[1] "oligoSetList"
attr(,"package")
[1] "oligoClasses"

> ## oligoSnpSet of first chromosome

> oligoSetList[[1]]

oligoSnpSet (storageMode: lockedEnvironment)
assayData: 27125 features, 43 samples
element names: baf, call, callProbability, copyNumber

protocolData: none
phenoData
sampleNames: 4019585367_A 4019585376_B ... 4030186434_B (43
total)

varLabels: gender SNR SKW
varMetadata: labelDescription

featureData
featureNames: rs12354060 rs2691310 ... rs11205400 (27125
total)

fvarLabels: isSnp position chromosome
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: human370v1c
genome: hg18

Note that log R ratios stored in the oligoSnpSet object can be retrieved by the copyNumber accessor. B
allele frequences are retrieved by the baf accessor.

> lrrList <- copyNumber(oligoSetList)

> class(lrrList)

[1] "list"

5

> dim(lrrList[[1]]) ## log R ratios for chromosome 1.

[1] 27125 43

> bafList <- baf(oligoSetList)

> dim(bafList[[1]]) ## B allele frequencies for chromosome 1

[1] 27125 43

5 Session information

> toLatex(sessionInfo())

� R version 2.15.1 Patched (2012-07-01 r59713), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=en_US.iso885915, LC_MESSAGES=en_US.iso885915,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.iso885915,
LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.16.0, BiocGenerics 0.2.0, BiocInstaller 1.4.7, bit 1.1-8, cacheSweave 0.6-1,
crlmm 1.15.28, ff 2.2-7, filehash 2.2-1, hapmap370k 1.0.1, human370v1cCrlmm 1.0.2, lattice 0.20-6,
oligoClasses 1.19.42, stashR 0.3-5, VanillaICE 1.19.35

� Loaded via a namespace (and not attached): affyio 1.24.0, annotate 1.34.1, AnnotationDbi 1.18.1,
Biostrings 2.24.1, codetools 0.2-8, compiler 2.15.1, DBI 0.2-5, digest 0.5.2, ellipse 0.3-7, foreach 1.4.0,
genefilter 1.38.0, GenomicRanges 1.8.7, grid 2.15.1, IRanges 1.14.4, iterators 1.0.6, msm 1.1.1,
mvtnorm 0.9-9992, preprocessCore 1.18.0, RSQLite 0.11.1, splines 2.15.1, stats4 2.15.1,
survival 2.36-14, XML 3.9-4, xtable 1.7-0, zlibbioc 1.2.0

References

[1] Robert B Scharpf, Ingo Ruczinski, Benilton Carvalho, Betty Doan, Aravinda Chakravarti, and Rafael A
Irizarry. A multilevel model to address batch effects in copy number estimation using snp arrays. Bio-
statistics, 12(1):33–50, Jan 2011.

6

SNR

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

22 24 26 28 30

Figure 1: The signal to noise ratio (SNR) for 180 HapMap samples. For Affymetrix platforms, SNR values
below 5 can indicate possible problems with sample quality. In some circumstances, it may be more helpful
to exclude samples with poor DNA quality.

7

