
Analysis of co-knockdown data

Elin Axelsson

1 Introduction

This is the vignette to the R package coRNAi. coRNAi consists of functions
for analysing combinatorial RNAi knockdown screens. The package builds
on the R package cellHTS2 and takes a cellHTS object as input. In the
section Creating cellHTS object for coRNAi, we will discuss the extra an-
notations needed for the downstream analysis of combinatorial knockdown
data and we will provide an example of a valid annotation file for cellHTS2.
In the section Analysis of co-RNAi screens we will illustrate the workflow
by going through the analysis of two different datasets step by step. The
section Moderated t-test provides justifications for the usage of a moderated
t-test, in the section Choice of fitness phenotype we will briefly describe two
possible fitness measurements. In the last section Analysis of large datasets
we will show how it is possible to speed up the analysis when working with
large and interaction sparse datasets.

2 Creating cellHTS object for coRNAi

The vignette to the Rpackage cellHTS2 illustrates how to create a cellHTS

object and we recommend all users to follow the instructions. However, when
creating your cellHTS object, keep in mind that co-knockdown experiments
require more meta data than the straight forward single knockdown screens.
This extra information should be provided in the annotation file read by
the cellHTS2 function annotate. In addition to the mandatory columns of
the annotation file: Plate, Well and GeneID, the following should also be
provided: ID1, ID2 and Type.

ID1 and ID2 are the names (or identifiers) of the two RNAi supplied to
the well. In many experimental setups, the two RNAis are added in slightly
different ways, e.g. in sequential order. In those cases it makes sense to keep
track of this by e.g. calling the first RNAi ID1 and the second ID2. The
cellHTS2df function will use the in information in ID1 and ID2 to create a

1

column called Pair and a column called Direction. The Pair column does
not take into account which if a RNAi treatment comes from ID1 or ID2.
That is, combination x + y and combination y + x will have the same Pair
ID (y x). The Direction however, will be different, 1 for treatment y+x
and 2 for treatment x+y. This setup allows us to choice if we later want to
consider y+x and x+y as replicates or not.

Type indicates the type of the well and should be one of the follow-
ing:double, comb, controlP1, controlP2, controlN1, controlN2, controlP1N1
or other.

� double: ID1 and ID2 are the same, that is one gene is knockdown
with the double amount of RNAi.

� comb: ID1 and ID2 are different but both are targeting sample genes
(not controls)

� controlP1: a positive control is knocked-down in combination with a
sample knockdown.

� controlP2: both RNAi target a positive control

� controlN1: a negative control is knocked-down in combination with
a sample knockdown.

� controlN2: both RNAi target a negative control

� controlP1N1: a negative control and a positive control are knocked
down.

� other: any other type of combination, e.g. involving a intermediate
control

The first lines of an example annotation file are shown below.

Plate Well Type GeneID Pair ID2 ID1
1 A01 double P1 P1 P1 P1 P1 P1
1 A02 comb P1 P2 P2 P1 P2 P1
1 A03 comb P1 P3 P3 P1 P3 P1
1 A04 comb P1 P4 P4 P1 P4 P1
1 A05 comb P1 P5 P5 P1 P5 P1

...

Once this upgraded annotation file has been generated, the data can be
read in by cellHTS2 as described in the cellHTS2 vignette.

2

3 Analysis of co-RNAi screens

3.1 Getting started

First the package needs to be loaded into the R session:

> library("coRNAi")

The datasets we will use here are available as data objects in the coRNAi
package and we can access them by using the data function. For your own
saved datasets, the load function can be used.

> data(screen1_raw)

> data(screen2_raw)

> #data(num2name)

Once we have loaded the data into our session, we need to convert the
cellHTS object into the data frame format that is used in the coRNAi pack-
age. The function cellHTS2df takes care of this. In addition to the cellHTS

object we also need to provide information on which (if any) RNAi is to
be considered as neutral in the experiment. In the datasets used in this vi-
gnette, dsRNA targeting Fluc was used as a negative control and therefore
we set the neutral argument to Fluc. In the next step we log 2-transform
the data.

> dfR1 = cellHTS2df(screen1_raw,neutral=c("Fluc"))

> dfR2 = cellHTS2df(screen2_raw,neutral=c("Fluc"))

> dfR1$value = log2(dfR1$value)

> dfR2$value = log2(dfR2$value)

If we look at the first rows of the resulting data frame we will see that
we now have the two additional columns “Pair” and “Direction”, generated
by the cellHTS2df based on the ID1 and ID2 annotations.

> dfR2[1:2,]

plate well controlStatus Content Combination Type GeneID Pair Direction

1.1 1 A01 sample sample 1+1 double P1 P1 P1 P1 1

1.2 1 A02 sample sample 1+2 comb P1 P2 P2 P1 2

PPcontent ID2 ID1 value replicate

1.1 2 P1 P1 18.23659 1

1.2 2 P2 P1 18.21338 1

3

> mypars = list(cex.lab = 1,cex.main=1)

> par(mfrow=c(1,2))

> BoxPlotShorth(value~replicate,dfR1[dfR1$controlStatus=="sample",],

+ las=2,main="",xlab="plates",boxfill="lightblue",

+ outline=FALSE, ylab=expression(log[2](intensity)),pars=mypars)

> BoxPlotShorth(value~plate,dfR2[dfR2$controlStatus=="sample" &

+ dfR2$replicate==1,], las=2,

+ main="",xlab="plates",

+ boxfill="lightblue",outline=FALSE,

+ ylab=expression(log[2](intensity)),pars=mypars)

1 2 3 4 5 6 7 8 9 10

26.0

26.5

27.0

27.5

28.0

28.5

29.0

plates

lo
g 2

(in
te

ns
ity

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

16.0

16.5

17.0

17.5

18.0

18.5

plates

lo
g 2

(in
te

ns
ity

)

Figure 1: Boxplot for plates before normalization.

3.2 Normalisation

Screen 1 was done on one single plate but a simple boxplot (Figure 1) shows
that the value distribution is different over the 10 replicates. Screen 2 in-
cludes 24 plates, again we can see that distributions varies over the plates.
The function BoxPlotShorth plots the normal boxplots, but with horizontal
bars at the midpoint of the shorth rather than at the medians.

There are many possible reasons for this variation between plates, but
to allow for comparisons between individual plates one needs to normalise
the plates. The function normalizePlates from the package cellHTS2 takes
care of the normalisation and can also be used to transform the data to the
log scale. The following lines of code normalizes the screens and converts
the normalized data into a data frame.

> dfScl1 = cellHTS2df(normalizePlates(screen1_raw,method="shorth",

+ scale="multiplicative",log=TRUE),neutral="Fluc")

4

> par(mfrow=c(1,2))

> BoxPlotShorth(value~replicate,dfScl1[dfScl1$controlStatus=="sample",],

+ las=2, main="",xlab="plates",boxfill="lightpink",

+ outline=FALSE,ylab=expression(log[2](intensity)))

> BoxPlotShorth(value~plate,dfScl2[dfScl2$controlStatus=="sample"&

+ dfScl2$replicate==1,],

+ boxfill="lightpink",las=2,main= "",

+ xlab="plates",outline=FALSE,ylab=expression(log[2](intensity)))

1 2 3 4 5 6 7 8 9 10

−1

0

1

2

plates

lo
g 2

(in
te

ns
ity

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

−1.5

−1.0

−0.5

0.0

plates

lo
g 2

(in
te

ns
ity

)

Figure 2: Boxplot for plates after normalization.

> dfScl2 = cellHTS2df(normalizePlates(screen2_raw,method="shorth",

+ scale="multiplicative",log=TRUE),neutral="Fluc")

After the normalisation the boxplots (Figure 2) look better:

3.3 Quality Assessment plots

3.3.1 Screen control plots

A screen plot is a false colour representation of all plates in an experiment.
Normally, one does not wish to see any spatial trends in the screen plot,
but due to the experimental setup used in the experiments analysed here,
the stripped patterns across the plates are expected. Unexpected spatial
trends should be removed if possible and the experimental cause should be
investigated and improved upon.

Screen 1 was done with two biological replicates, each with 5 technical
replicates. As can be seen in Figure 3, the colours are brighter in one of

5

> plotScreen(split(dfScl1$value,dfScl1$replicate),fill =

+ c("red","white","blue"),zrange=c(-4,4),ncol=5,

+ main="screen 1",legend.label=NULL)

screen 1

−3

−2

−1

0

1

2

3

1

6

2

7

3

8

4

9

5

10

Figure 3: Screen plot for screen 1.

the two biological replicates, plates 6-10, than in the other, plates 1-5. This
means that the dynamic range is larger in plates 5-10.

For screen 2 we plot each screen replicate separately, here in Figure 4 is
the plot for replicate 1.

Next, plotting replicates against each other will provide important in-
sight to how well the experiments have worked. Systematic errors as well
as sporadic contaminations can be detected. The function WitinScreenPlot
plots the two replicates from the same screen against each other.

We can see in Figure 5 that the correlations between the two within
screen replicates in general are good. There are two obvious outliers in
screen 2, coloured red in the plot. As the screen was done with replicates,
it is possible to identify which of the values should be removed. One of the
red spots represent a “P2-P1” data point. We can see that it is Direction 1
in replicate 2 that’s the outlier.

> dfScl2[dfScl2$Pair =="P2 P1",c("Pair","Direction","replicate","value")]

Pair Direction replicate value

1.2 P2 P1 2 1 -0.041465144

1.25 P2 P1 1 1 0.008910473

2.2 P2 P1 2 2 -0.008517422

2.25 P2 P1 1 2 -3.329200908

3.2 P2 P1 2 3 -0.331242681

3.25 P2 P1 1 3 -0.108987607

> dfScl2$value[dfScl2$Pair =="P2 P1" & dfScl2$Direction==1 &

+ dfScl2$Replicate==2]=NA

6

> plotScreen(split(dfScl2$value[dfScl2$replicate==1],

+ dfScl2$plate[dfScl2$replicate==1]),fill =

+ c("red","white","blue"),zrange=c(-9,9),

+ main="screen 2",legend.label=NULL)

screen 2

−8

−6

−4

−2

0

2

4

6

8

1

7

13

19

2

8

14

20

3

9

15

21

4

10

16

22

5

11

17

23

6

12

18

24

Figure 4: Screen plot for screen 2, replicate 1

For an example of how systematic errors can be detected, we have a
look at the dataset faultyscreen. Here we have a systematic problem with
column 13, caused by a faulty multichannel pipette. Figure 6 shows how the
WithinScreenPlots look for this dataset before and after removal of the
faulty values.

Now back to our good datasets, we will now look at the correlation be-
tween the screen replicates. The function BetweenScreenPlot plot all repli-
cates of a screen against all. It also shows the spearman correlation between
all pairwise comparisons. Here we will plot the between screen plot for screen
1:

The correlations between the screens are high and we do not see any
outliers or systematic trends. However, an interesting observation is that
replicates 1 to 5 and 6 to 10 have higher similarities to each other than
to replicates in the other group. As mentioned before, replicates 1 to 5
are technical replicates of one biological replicate and replicates 6 to 10 are
technical replicates of the other biological replicate. For simplicity we will
refer to replicates 1-5 as batch 1 and replicates 6-10 as batch 2. The following
lines add this information.

7

> par(mfrow=c(1,2))

> WithinScreenPlot(dfScl1,what="value",main="",smooth=T,pch=".")

> WithinScreenPlot(dfScl2,what="value",main="",smooth=T,pch=".")

> points(dfScl2$value[dfScl2$Pair=="P2 P1" & dfScl2$replicate==2 &

+ dfScl2$Direction==1],dfScl2$value[dfScl2$Pair=="P2 P1" &

+ dfScl2$replicate==2 & dfScl2$Direction==2],

+ col="red",pch=19)

> points(dfScl2$value[dfScl2$Pair=="P57 P1" & dfScl2$replicate==2 &

+ dfScl2$Direction==1],dfScl2$value[dfScl2$Pair=="P57 P1" &

+ dfScl2$replicate==2 & dfScl2$Direction==2],

+ col="red",pch=19)

−2 −1 0 1 2 3

−
2

−
1

0
1

2

technical replicate 1

te
ch

ni
ca

l r
ep

lic
at

e
2

−4 −3 −2 −1 0 1

−
4

−
3

−
2

−
1

0

technical replicate 1

te
ch

ni
ca

l r
ep

lic
at

e
2

●

●

Figure 5: Within screen replication for screen 2.

8

> data(faultyscreen)

> par(mfrow=c(1,2))

> fdf = cellHTS2df(normalizePlates(faultyscreen,method="shorth",

+ scale="multiplicative",log=TRUE),neutral="Fluc")

> WithinScreenPlot(fdf[fdf$replicate==2,],main="with plate column 13"

+ ,pch=".",smooth=FALSE)

> systerr = which(fdf$Pair%in%(unique(fdf$Pair[grep(13,fdf$well)])))

> fdf$value[systerr]=NA

> WithinScreenPlot(fdf[fdf$replicate==2,],main="without plate column 13"

+ ,pch=".",smooth=FALSE)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

with plate column 13

technical replicate 1

te
ch

ni
ca

l r
ep

lic
at

e
2

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

without plate column 13

technical replicate 1

te
ch

ni
ca

l r
ep

lic
at

e
2

Figure 6: Within screen replicates in faulty screen

9

> BetweenScreenPlot(dfScl1,smooth=FALSE)

replicate1

−2 0 1 −2 0 1 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2

−
2

0
1

2

−
2

0
1

corr=0.98 replicate2

corr=0.98 corr=0.99 replicate3

−
2

0
1

−
2

0
1

corr=0.98 corr=0.98 corr=0.98 replicate4

corr=0.98 corr=0.98 corr=0.98 corr=0.99 replicate5

−
2

0
1

−
4

−
2

0
2

corr=0.85 corr=0.85 corr=0.85 corr=0.85 corr=0.85 replicate6

corr=0.83 corr=0.83 corr=0.83 corr=0.83 corr=0.83 corr=0.97 replicate7
−

4
−

2
0

2

−
4

−
2

0
2

corr=0.84 corr=0.84 corr=0.83 corr=0.84 corr=0.83 corr=0.98 corr=0.97 replicate8

corr=0.83 corr=0.83 corr=0.82 corr=0.83 corr=0.83 corr=0.97 corr=0.97 corr=0.97 replicate9

−
4

−
1

1

−2 0 1 2

−
4

−
2

0
2

corr=0.84 corr=0.84

−2 0 1

corr=0.83 corr=0.83

−2 0 1

corr=0.83 corr=0.97

−4 −2 0 2

corr=0.97 corr=0.96

−4 −1 1

corr=0.97 replicate10

Figure 7: Between screen replicates in screen 1

10

> dfScl1$batch[dfScl1$replicate%in%1:5]=1

> dfScl1$batch[dfScl1$replicate%in%6:10]=2

Figure ?? suggests that we might gain power by fitting the main ef-
fects separately for each biological replicate, we will investigate this in more
details in Section 4 .

Next we have to decide which data we want to include in the analysis.
The wells with only RNAi against controls (controlN2, controlP1N1 and
controlP2) do not add anything to the interaction analysis and should be
excluded. In addition there might be cases when one does not want to
include the so called “double” and/or “single” (controlN1) knockdowns. The
function weightDf is used to exclude unwanted data points from the down
stream analysis.

> dfScl1 = weightDf(dfScl1,exclude = c("controlN2", "controlP2","controlP1N1"

+ ,"controlP1","double","controlN1"))

> dfScl2 = weightDf(dfScl2,exclude = c("controlN2", "controlP2","controlP1N1"

+ ,"controlP1","double","controlN1"))

4 Effect estimation

The next step is to estimate the main effects, that is the effects caused by
each RNAi separately. This is done by the function lmmain or by the rlm-
main which uses a robust M estimator. As mentioned earlier, it sometimes
makes sense to fit the main effects separately for each replicate. From our
BetweenScreenPlot earlier we know that the different batches in screen 1
look different so we choose to fit main effects for each batch separately.

> lmres1 = lmmain(dfScl1,per = "batch")

The three replicates in screen 2 are also biological replicates and we
choose to fit the main effects separately for each replicate. We can also fit
the main effects separately for each Direction if we so wish.

> lmres2D= lmmain(dfScl2,per = c("replicate","Direction"))

> lmres2 = lmmain(dfScl2,per = c("replicate"))

The result is a lm object or, when different batches, replicates etc are
fitted separately, a list with one lm object per fit. The fitted main effects are
in the slot coefficient. We can have a look at the main effects in screen
1 in the following barplot:

11

> barplot(t(sapply(lmres1,function(x) x$coefficient)),las=2,beside=T,

+ col=c("skyblue","steelblue"))

> legend("topleft",legend=c("batch1","batch2"),fill=c("skyblue","steelblue"))

A
nn

IX
C

G
12

78
5

C
G

16
93

5
C

G
31

65
C

G
78

89
C

G
81

08
C

S
N

3
C

S
N

4
C

S
N

5
R

bf
R

ho
1

fw
d

pb
l

so
s

tr
bl zi
p

−0.5

0.0

0.5

1.0 batch1
batch2

Figure 8: “Main” effects in screen 1

12

We now have an estimate of the non-interaction effects for each well. The
residuals after fitting this model to the data are our interaction observations.
To add the residuals to our data frame object we use the function updateDf
with the dataframe and the result from the lmmain or rlmmain function as
arguments.

> dfScl1 = updateDf(dfScl1,lmres1,per = "batch")

> dfScl2 = updateDf(dfScl2,lmres2,per=c("replicate"))

> head(dfScl1)

plate well controlStatus ID1 ID2 GeneID Pair Direction

1.1.1 1 A01 sample fwd pbl fwd pbl pbl fwd 2

1.1.2 1 A02 sample fwd CG16935 fwd CG16935 fwd CG16935 1

1.1.3 1 A03 sample fwd CG3165 fwd CG3165 fwd CG3165 1

1.1.4 1 A04 sample fwd CSN4 fwd CSN4 fwd CSN4 1

1.1.5 1 A05 sample fwd Rho1 fwd Rho1 fwd Rho1 1

1.1.6 1 A06 sample fwd Fluc fwd Fluc fwd Fluc 1

Type value replicate batch weight residuals

1.1.1 comb 0.53154683 1 1 1 -0.1355659

1.1.2 comb 0.04178004 1 1 1 0.1055307

1.1.3 comb 0.20369738 1 1 1 0.1180895

1.1.4 comb -0.39451978 1 1 1 0.3577241

1.1.5 comb 0.79709904 1 1 1 0.1205957

1.1.6 controlN1 0.31861514 1 1 0 NA

We can see that the data points of type ’comb’ now have a residuals
value, whereas the data types which had been excluded by the weightDf
will have NA in the residuals column.

4.1 Fit diagnostic

At this point it is important to have a look at the fit diagnostics. Plotting
the residuals as a function of the sum of the two main effects in each well
will tell us if there is a trend in the data, e.g. that wells with high expected
viability effects have larger residuals. This would indicate that the model
used is inappropriate.

The red and blue lines indicate local regression estimates of local mean
and standard deviation of εijk. We don’t see any large trend in the data.
In is worth noticing that different knock down pairs might have different
variability. For the 50 randomly chosen pairs in screen 1 the boxplot look
as this:

13

> par(mfrow=c(1,2))

> MainFitPlot(lmres1,xlab=expression(hat(y)[0*k]+hat(m)[i*k]+hat(m)[j*k]),

+ ylab=expression(epsilon[i*j*k]),pch=".",main="screen 1")

> MainFitPlot(lmres2,xlab=expression(hat(y)[0*k]+hat(m)[i*k]+hat(m)[j*k]),

+ ylab=expression(epsilon[i*j*k]),pch=".",main="screen 2",sd.fit=FALSE)

−1 0 1 2

−
0.

5
0.

0
0.

5

screen 1

ŷ0k + m̂ik + m̂jk

ε ij
k

−3.0 −2.0 −1.0 0.0

−
3

−
2

−
1

0
1

screen 2

ŷ0k + m̂ik + m̂jk

ε ij
k

Figure 9: Fit diagnostics for screen 1 and 2.

> pairs=sample(unique(dfScl1$Pair[dfScl1$Type=="comb"]),50)

> sub = dfScl1[dfScl1$Pair%in%pairs,]

> boxplot(residuals~Pair,sub,las=2,axis.cex=0.5,col ="palevioletred",

+ ylab=expression(epsilon[i*j*k]),xlab="RNAi combinations",

+ names = NA,xaxt="n")

> abline(h=0,lwd=2)

●●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0.5

RNAi combinations

ε ij
k

Figure 10: Boxplot of residuals from 50 interaction pairs in screen 1.

14

Here we can see that different pairs have different distributions. We
also see that some boxes are over or under the 0-line, those are potential
interactions. The next step now is to decide which of the pairs actually have
a significant interaction effect.

4.2 Significance

We use the moderated t-test implemented in the eBayes function in the
limma package. The df2lmFit function will take our data frame, format
the data and then call the lmFit function. In the next step we can run
eBayes on the resulting object and then summarise the results in a table
using interactiontable.

> ebfit = df2lmFit(dfScl1)

> eb = eBayes(ebfit)

> tt1 =interactiontable(eb,ord.t=TRUE)

> ebfit = df2lmFit(dfScl2)

> eb = eBayes(ebfit)

> tt2 = interactiontable(eb)

> head(tt2)

size AveExpr t P.Value adj.P.Val B

P10 P1 -0.03268785 -0.03268785 -0.8264217 0.4330918 0.8512556 -5.944463

P11 P1 -0.03359387 -0.03359387 -0.9360597 0.3772869 0.8298942 -5.848945

P11 P10 -0.01242421 -0.01242421 -0.4585930 0.6590215 0.9200436 -6.187933

P12 P1 -0.02612789 -0.02612789 -0.8446439 0.4234339 0.8426232 -5.929263

P12 P10 -0.02318000 -0.02318000 -0.8858898 0.4021368 0.8418516 -5.893851

P12 P11 -0.03252821 -0.03252821 -1.2972469 0.2315626 0.7500673 -5.472697

The following command produces the p-value plot that shows the cumu-
lative p-values from the analyses. The bends at small p-values indicates that
true interactions are present in this data set.

4.3 Results

In the screen 1 experiment we know which genes are involved in cell-cycling
and which genes that were randomly chosen, we can therefore provide some
external information to the interaction plots.

> data(key)

> colkey = ifelse(key$cellCycle==0,"grey","orange")

15

> Pplot(tt2$P,maint = "Screen 2")

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Screen 2

1 − pi

N
(p

i)
/ 1

00
0

● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ●●● ● ●●●●●●

Figure 11: p-value plot for screen 2.

> names(colkey)=as.character(key$GeneID)

> key = key$cellCycle

> names(key) = names(colkey)

We now set a threshold, here we use 0.001.

> thrs1 = 0.001

Now we can look at the graph of significant interactions. As the best
way to visualise the networks is to use the Graphviz software, the function
data2graph writes a .dot file to the current directory. This .dot file can then
be used to create a pdf file as shown in the code below. The graph for screen
1 is shown in Fig. 12a.

> tt1t = tt1

> thrs1 = 0.1

> g1= data2graph(tt1,thres=thrs1,thresBy="ord.p.adj",nodecolor=colkey,

+ sizethres=0.3, writedot=TRUE, filename = 'interactionGraph1.dot',

+ shape='ellipse',scaleFactor=10,fixedsize=FALSE,fontsize=100,

+ penwidth=20,width=2,gamma.col=0)

> system('neato -Tpdf -o interactionGraph1.pdf interactionGraph1.dot')

And the graph for screen 2 is shown in Fig. 13a

> g2 = data2graph(tt2,thres=thrs1,writedot=TRUE, scaleFactor=10,

+ filename = 'interactionGraph2.dot',fontsize=20,penwidth=10,

16

+ width=2,fixedsize=TRUE,nodecolor="grey",sizethres=0.3,gamma.col=0)

> system('neato -Tpdf -o interactionGraph2.pdf interactionGraph2.dot')

We can also plot the correlation network by first calculating the corre-
lations between the interaction profiles. The function tt2matrix transform
the data in the interactiontable to a matrix. cortestmatrices calculates the
correlation coefficients and the corresponding p-values.

> mat = tt2matrix(tt1,what="size")

> thrs=0.9

> cormat = cortestmatrices(mat,method="spearman")

> cormat[[2]][abs(cormat[[1]])<0.8]=1

> c1 = data2graph(list("size"=cormat[[1]],"pvalues"=cormat[[2]]),

+ thres=thrs,writedot=TRUE, scaleFactor=2, filename = 'correlationGraph1.dot',

+ shape='ellipse',fixedsize=FALSE,nodecolor=colkey,fontsize=30,penwidth=5,

+ gamma.col=0)

> system('neato -Tpdf -o correlationGraph1.pdf correlationGraph1.dot')

The correlation graph for screen 1 is shown in Fig. 12b

> mat = tt2matrix(tt2,what="size")

> cormat = cortestmatrices(mat,method="spearman")

> c2 = data2graph(list("size"=cormat[[1]],"pvalues"=cormat[[2]]),thres=

+ thrs1,writedot=TRUE, scaleFactor=20, filename = 'correlationGraph2.dot',

+ width=2,fontsize=50,penwidth=4,fixedsize=TRUE,nodecolor="grey")

> system('neato -Tpdf -o correlationGraph2.pdf correlationGraph2.dot')

The correlation graph for screen 2 is shown in Fig. 13b
Sometimes a levelplot will be more informative, like here for screen 1. It

is also possible to cluster all dsRNA based on their interaction profiles.

5 Choice of Scale

In viability screens, the cells are ideally in exponential growth. The number
of cells, N is then a function of the time t described by Eq. 1.

N(t) = N0e
kt (1)

where N0 is the number of cells at the beginning of the experiment and k
is the growth rate. The readout measurements from the screens are pro-
portional to the number of cells alive in each well. However, one should be

17

CG16935

CG3165

CG7889

CSN3

CSN4

CSN5

Rbf
Rho1

pbl

trbl

zip

CG12785

CG16935 CG3165

CG7889

CSN3 CSN4CSN5

Rbf
Rho1

fwd

trbl

Figure 12: Interaction graph (left panel) and correlation graph (right panel)
for screen 1.

P12

P13 P16

P22

P23

P24

P25

P26

P3

P31

P38

P39

P40

P43

P44

P45

P46

P5
P57

P58

P61

P66

P67

P70

P73

P74

P76

P78

P84

P1

P10P11

P12

P13

P14

P15

P16

P17

P18

P19

P2

P20

P21

P22

P23

P24

P25

P26

P27
P28

P29

P3

P30

P31

P32

P33

P34

P35

P36

P37

P38

P39

P4

P40
P41

P42

P43

P44

P45

P46

P47

P48

P49

P5

P50

P51P52

P53

P54

P55

P56

P57

P58

P59

P6

P60

P61

P62
P63

P64

P65

P66

P67

P68

P69

P7P70

P71

P72

P73 P74

P75

P76

P77

P78

P79

P8

P80

P81

P82

P83

P84

P9

Figure 13: Interaction graph (left panel) and correlation graph (right panel)
for screen2.

18

> InteractLevelPlot(tt1,key = key,thresh=thrs1,by="P.Value",zerolimit=0.1,

+ colorRampPalette(c("blue", "white", "red")))

CSN3
CSN4
CSN5
Rho1

fwd
pbl
trbl
zip

AnnIX
CG12785
CG16935

CG3165
CG7889
CG8108

Rbf
sos

C
S

N
3

C
S

N
4

C
S

N
5

R
ho

1
fw

d
pb

l
tr

bl zi
p

A
nn

IX
C

G
12

78
5

C
G

16
93

5
C

G
31

65
C

G
78

89
C

G
81

08 R
bf

so
s

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 14: Levelplot for resulting interactions in screen 1.

19

> PlotHeatmap(tt2,dendrogram="none",margins = c(2,2),

+ colorRampPalette(c("blue", "white","red")),

+ lmat=rbind(c(0, 3), c(2,1), c(0,4)),

+ lhei=c(0.1, 4, 0.1) ,lwid=c(0.1,2))

P
28

P
12

P
19

P
13 P

7
P

59
P

60
P

29
P

32
P

34
P

33
P

81
P

82
P

35
P

31
P

58
P

48
P

50
P

44
P

43
P

21
P

52
P

53
P

55
P

51
P

49
P

47
P

56
P

54
P

14 P
9

P
6

P
4

P
8

P
10

P
11

P
20

P
41

P
15

P
37

P
36

P
18

P
75

P
77

P
27

P
30

P
80

P
79

P
63

P
62

P
23

P
26

P
57 P

1
P

2
P

72
P

71
P

73 P
3

P
78

P
24 P

5
P

39
P

40
P

67
P

38
P

70
P

84
P

83
P

46
P

45
P

17
P

64
P

42
P

65
P

69
P

68
P

25
P

74
P

76
P

16
P

22
P

61
P

66

P28
P12
P19
P13
P7
P59
P60
P29
P32
P34
P33
P81
P82
P35
P31
P58
P48
P50
P44
P43
P21
P52
P53
P55
P51
P49
P47
P56
P54
P14
P9
P6
P4
P8
P10
P11
P20
P41
P15
P37
P36
P18
P75
P77
P27
P30
P80
P79
P63
P62
P23
P26
P57
P1
P2
P72
P71
P73
P3
P78
P24
P5
P39
P40
P67
P38
P70
P84
P83
P46
P45
P17
P64
P42
P65
P69
P68
P25
P74
P76
P16
P22
P61
P66

Figure 15: Heatmap representation of the resulting interactions in screen 2.

20

aware that suboptimal experimental conditions can cause saturation effects
and/or unknown background intensities.

In the analysis above the so called relative population size, Ntreat/Nwt,
measurement was used. That means the ratio between number of cells in
each treatment and the number of cells in the wild type. As the experimental
conditions, as well as N0 and t of the were constant over all treatments this
measurement is appropriate fitness measurement. Another fitness measure-
ment that has been used in literature is the relative growth rate, ktreat/kwt.
To use the relative growth rate measurement instead of the relative popula-
tion size one needs to transform the data using Eq. 2.

y = ln
y

N0
(2)

In the datasets used here, the choice of scale makes very little difference.
In fact, for screen 1, the results are practical identical regardless of which
scale used. In screen 2 a few data points are affected by the scale choice as
can be seen in the following plots.

In our experiments N0 = 15.000, so to get the data on the growth rate
scale we do:

> N0=15000

> sc2 = screen2_raw

> Data(sc2) = log(Data(sc2)/N0)

Using the data in sc2 we can now re-run our analysis as described above.

> ksdf2 = cellHTS2df(normalizePlates(sc2,method="shorth",

+ scale="multiplicative",log=TRUE),neutral="Fluc")

> ksdf2 = weightDf(ksdf2,exclude = c("controlN2", "controlP2",

+ "controlP1N1","controlP1","double"))

> lmres2 = lmmain(ksdf2,per = c("replicate","Direction"))

> ksdf2 = updateDf(ksdf2,lmres2,per = c("replicate","Direction"))

A Q-Q plot of the residuals will show us if the residuals are normally
distributed.

There are a few outliers but in general the residuals are normally dis-
tributed in both scales. It is not possible to tell which scale is more appro-
priate, but for the absolute majority of the data points it does not make a
difference.

21

> par(mfrow=c(1,2))

> qqnorm(ksdf2$residuals,main="log(log(N/N0))",pch=".")

> qqnorm(dfScl2$residuals,main="log(N)",pch=".")

−4 −2 0 2 4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

log(log(N/N0))

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−4 −2 0 2 4

−
3

−
2

−
1

0
1

log(N)

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

Figure 16: Q-Q plot of residuals using two different scales.

6 Usage of moderated t-test

In cases when there are few replicates, the normal t-test will occasionally
underestimate the standard variation within replicates. A moderated t-test
will adjust for this. The t-values from the moderated t-test will follow a t-
distribution but with a higher number of degrees of freedom which will make
the p-values more significant. To show how the moderated t-test compares
to the normal t-test in experiments with few replicates, we produce pseudo
ROC curves.

We used the data from screen 1. We applied the ranking methods to the
data from a single plate, hosting two technical replicate measurements per
gene pair. We applied a set of thresholds, with decreasing stringency, to the
three ranking methods and obtained the corresponding hit list. We then,
for each hit list, computed the true positive rate (TPR) as the ratio between
the number of true (as defined by the reference) hits found by the ranking
method and the total number of true hits, and the false positive rate (FPR)
as the ratio between the number of false (as defined by the reference) hits
and the total number of true non-hits. This resulted in an ROC curve per
plate, shown in panel (a). The curves indicate clear benefits from using the
moderated t or the average effect over the ordinary t. In this particular data
set, the variance between replicates from the same plate was constant or
close to constant across the different interaction pairs. Hence, the variance

22

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

moderated t
normal t
effect size

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

moderated t
normal t
effect size

Figure 17: ROC curves for two technical replicates (a) and two biological
replicates with two technical replicates each (b).

estimates used in the moderated t test were the same or almost the same
for all gene pairs making the resulting moderated t-statistic proportional
to the numerator of the t-statistic (the average effect ŵij). Therefore no
significant difference in performance could be seen between the two methods
in this setting. Nevertheless, we prefer the moderated t approach, as it is
more robust in cases where variations are high. This is illustrated by the
second set of ROC curves in panel (b), where instead of using only technical
replicates, we used two biological replicates hosting two technical replicates
each.

The ROC curves in Figure 17 are for normal t-statistic, moderated t-
statistic and effect size. With two technical replicates (a) and two biological
replicates with two technical replicates each (b). The moderated t-statistic
and effect size outperform the ordinary t-statistic in both scenarios, on bio-
logical replicates the moderated t-statistics performs better than the effect
size.

7 Speeding up analysis for large datasets

The combinatorial RNAi knockdown technique is suitable for large scale
experiment. It is possible to test many genes against each other or even to
test a gene set against the whole genome. In those cases, it is a reasonable
assumption that most of the data will not be affected by either main effects
nor interaction effects. This assumption allows for a shortcut in estimating
the main effects. As the functions lmmain and rlmmain tend to be rather

23

> lmm = lmmain(dfScl2)

> mm = estmodel(dfScl2,estimate="median")

> par(mfrow=c(1,2))

> plot(mm$coefficient,lmm$coefficient,pch=".",ylab="OLS estimates",

+ xlab="median estimates",main="main effects")

> abline(0,1,col="red")

> plot(mm$residuals,lmm$residuals,pch=".",ylab="OLS estimates",

+ xlab="median estimates",main="residuals")

> abline(0,1,col="red")

−1.5 −1.0 −0.5 0.0

−
1.

5
−

1.
0

−
0.

5
0.

0

main effects

median estimates

O
LS

 e
st

im
at

es

−3 −2 −1 0 1

−
3

−
2

−
1

0
1

residuals

median estimates

O
LS

 e
st

im
at

es

Figure 18: Effect fitted by lmmain and estmodel.

slow on large datasets this can become convenient.
The estmodel estimates the main effects by a location estimate. That

means that the estimate for treatment j will be the median/shorth/mean of
all (included by the function weightDf) wells where treatment j was added.

In screen 2 the underlying assumption is valid and fitting the effects with
the estmodel generates similar results as the lmmain.

Consequently the fit diagnostic plots are also similar

8 Session information

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

24

> par(mfrow=c(1,2))

> MainFitPlot(mm,main="fitted by estmodel",pch=".")

> MainFitPlot(lmm,main = "fitted by lmmain",pch=".")

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
3

−
2

−
1

0
1

fitted by estmodel

Fitted values

R
es

id
ua

ls

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
3

−
2

−
1

0
1

fitted by lmmain

Fitted values
R

es
id

ua
ls

Figure 19: Fit diagnostic for lmmain and estmodel.

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] coRNAi_1.20.0 limma_3.26.0 cellHTS2_2.34.0

[4] locfit_1.5-9.1 hwriter_1.3.2 vsn_3.38.0

[7] splots_1.36.0 genefilter_1.52.0 Biobase_2.30.0

[10] BiocGenerics_0.16.0 RColorBrewer_1.1-2

loaded via a namespace (and not attached):

[1] gtools_3.5.0 reshape2_1.4.1 splines_3.2.2

[4] lattice_0.20-33 pcaPP_1.9-60 colorspace_1.2-6

[7] stats4_3.2.2 Category_2.36.0 survival_2.38-3

[10] XML_3.98-1.3 RBGL_1.46.0 DBI_0.3.1

[13] affy_1.48.0 affyio_1.40.0 plyr_1.8.3

25

[16] robustbase_0.92-5 stringr_1.0.0 zlibbioc_1.16.0

[19] munsell_0.4.2 gtable_0.1.2 caTools_1.17.1

[22] mvtnorm_1.0-3 IRanges_2.4.0 BiocInstaller_1.20.0

[25] AnnotationDbi_1.32.0 preprocessCore_1.32.0 DEoptimR_1.0-3

[28] GSEABase_1.32.0 proto_0.3-10 Rcpp_0.12.1

[31] KernSmooth_2.23-15 xtable_1.7-4 scales_0.3.0

[34] gdata_2.17.0 S4Vectors_0.8.0 graph_1.48.0

[37] annotate_1.48.0 gplots_2.17.0 ggplot2_1.0.1

[40] digest_0.6.8 stringi_0.5-5 bitops_1.0-6

[43] tools_3.2.2 magrittr_1.5 RSQLite_1.0.0

[46] cluster_2.0.3 rrcov_1.3-8 MASS_7.3-44

[49] Matrix_1.2-2 prada_1.46.0

26

	Introduction
	Creating cellHTS object for coRNAi
	Analysis of co-RNAi screens
	Getting started
	Normalisation
	Quality Assessment plots
	Screen control plots

	Effect estimation
	Fit diagnostic
	Significance
	Results

	Choice of Scale
	Usage of moderated t-test
	Speeding up analysis for large datasets
	Session information

