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1 Introduction

canceR is a graphical user friendly interface to explore, compare, and analyse all available Cancer Data
(Clinical data, Gene Mutation, Gene Methylation, Gene Expression, Protein Phosphorylation, Copy
Number Alteration) hosted by the Computational Biology Center (cBio) at Memorial-Sloan-Kettering
Cancer Center (MSKCC). canceR implements functions from various packages:

1. to acces, explore and extract Genomics Cancers Data Base of MSKCC (cgdsr,[2, 4]),

2. to associate phenotypes with gene expression (phenoTest, [10]),

3. to predict which biological process or pathway or immune system are significantly different under
the phenotypes and which genes are associated ((GSEA-R) [12, 11]),

4. to predict the most up/down regulated gene sets belonging to one of MSigDB collections [12]
(GSEAlm,[9]),

5. to classify genes by diseases (geNetClassifier,[1]), or

6. to classify genes by variable or phenotype (rpart, [13]),

7. to plot genes correlations.

8. to plot survival curves

9. to plot muti-omics data using Circos style (circlize, [5])

2 Installation

No R packages:

❼ tktable http://tktable.sourceforge.net/

❼ BWidget http://sourceforge.net/projects/tcllib/files/BWidget/

❼ GnuWin32 (for Windows) http://sourceforge.net/projects/getgnuwin32/?source=typ_redirect

For Debian distribution (GNU/Linux)

sudo apt-get insall ("r-cran-tcltk2","r-cran-tkrplot")

sudo apt-get install(✬Tk-table✬, ✬BWidget✬)

sudo apt-get install libcurl4-openssl-dev

sudo apt-get install r-cran-xml

For Windows distribution
LibXml2: parser for XML http://sourceforge.net/projects/gnuwin32/files/

For OS X distribution X11: graphics device
run R and write theses lines in console to install dependancies.

## dependencies from CRAN

install.packages("RCurl", "XML")

install.packages(c("cgdsr", "tkrplot", "Formula", "RSvgDevice","RCurl" ))

## dependencies from Bioconductor

source("http://bioconductor.org/biocLite.R")

biocLite("GSEABase", "GSEAlm","geNetClassifier","Biobase", "phenoTest")

biocLite("canceR")

library(canceR)

canceR()

Get the development version from github

library(devtools)

devtools::install_github("kmezhoud/canceR")
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3 Starting Window

run R and write theses lines in console to run canceR package.

library(canceR)

canceR()

The starting window (Figure 1) loads all available Cancer Studies (Figure 1 3) or search some ones by
key word (Figure 1 4). Before to get Cancers Data (Figure 1 7), it is important to set workspace for
output files (Figure 1 1). The starting window displays Help menu where user can get this vignette
(Figure 1 2).

Figure 1: Starting Windows. 1, File Menu; 2, Help Menu; 3, Button to get all available studies; 4, Button
to get only matched studies using key words; 5, list box that displays the number of studies listed in 6;
6, list box that displays the result of quering the Cancer Genomics Data Server. User can select one or
multiple Studies; 7, Button to get Genetic Profiles and Clinical data for selected Studies.
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3.1 Setting Workspace

canceR package uses input files to compute models and generates output files for biological knowledges.
It is important to set workspace and know the location of used files and results. The Button ”Set
Workspace” allows user to set easily workspace (Figure 2). User needs just to browse workspace folder
or creates a new one. The others necessary folders would be created by simple pressing ”Set” buttons.

Figure 2: Setting Workspace

4 Main Window

After selecting studies and pressing on ”Get Cases and Genetic Profiles”Button, the main window appears
(Figure 3) and displays the progress of loading data of selected studies. The Main Window has a Toolbar
with Menus (see following paragraphs). It is subdivised in two columns. The first column lists Cases
for all selected studies. The first line of every study indicates its Index and its short description. The
remain lines enumerate Cases with short description of data type and the number of samples. The second
list box shows selected Cases. Similarly, the second column displays informations of Genetic Profiles.
User can select a single or multiple lines with attention to correspond the Case with appropriate Genetic
Profile.

Figure 3: Main Window of canceR package. 1, Toolbar, 2, list box of loaded Cases; 3, list box of selected
Cases; 4, list box of loaded Genetic Profiles; 5, list box of selected Genetic Profiles

4.1 Gene List

The first step to get genomics data is to specify what are interesting genes for user. The Gene List

button browses folders to load Gene list file or displays examples of genes list. The genes could be in
text file (.txt) with one gene by line using HUGO gene Symbol. The function removes automatically
duplicate genes.
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Gene List from MSigDB User can focus analysis on some gene set or pathways. This function loads
gene list from selected gene sets available in MSigDB.

Figure 4: Getting Gene List from MSigDB. User can select one by one any gene set using keywords.

4.2 Clinical Data

The Multiple Cases button displays successively selected Cases. Results are returned in a table with
row for each case and a column for each clinical attribute (Figure 5B). User could select all or some
clinical data by checking dialog box (Figure 5A). For example, we select clinical attributes:

❼ Overall Survival months: Overall survival, in months.

❼ Overall Survival Status: Overall survival status, usually indicated as ”LIVING” or ”DECEASED”.

❼ Disease Free Survival months: Disease free survival, in months.

❼ Disease Free Survival status: Disease free survival status, usually indicated as ”DiseaseFree” or
”Recurred/Progressed”.

❼ Age at diagnosis: Age at diagnosis.

4.3 Mutation

User can search all mutation in gene list of all selected studies. He needs to select All tumors samples

in Cases and Mutations in gentics profiles to get mutations (Figure 6).
Mutation function allows user to select about 15 informations corresponding to mutations (Fig-

ure 7A). The results is a table with rows for each sample/case, and columns corresponding to the
informations cheched in dialog mutation check box (Figure 7B).

User can filter mutation result only for specific amino acid change (Figure 8).
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Figure 5: Getting clinical data for Breast Invasive Carcinoma. A, Dialog Check Box to select clinical
data; B, Results of quering clinical data of Breast Invasive Carcinoma (TCGA, Nature 2012).

Figure 6: Get all/specific mutations for selected Cases

4.4 Methylation

User can search gene methylation and its correlation with mRNA expression. User needs to select Cases
and Genetic Profiles with same methylation assay (HM450 or HM27) for the same study. Multiple Cases
selection is allowed for one gene list (Figure 9).

The dialog box of methylation function allows user to specify the threshold of the correlation rate
(Figure 10A). cBioportal [2, 4] includes only methylation data from the probe with the strongest negative
correlation between the methylation signal and the gene’s expression. The result table (Figure 10B) lists
genes with median of rate upper than 0.8.
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Figure 7: A, mutation dialog; B, mutation data

Figure 8: Filtering mutation by specific amino acid change. A, the search is done using regular express
language. In this case the query specify 3 options: D438., search all mutation of D Amino acid at position
438 or D.*K search the position of amino acid change of D to K or D.*. search for all D amino acid
changes; B, Results of the merge of the 3 options filter of D amino acid changes.
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Figure 9: Selecting methylation data

Figure 10: A, Methylation dialog box; B, Methylation results. Correlation of silensing gene expression by
methylation (HM27) with correlation rate r > 0.8 for gene list in Breast Invasive Carcinoma (TCGA,
Nature 2012).

4.5 Profiles

The function get Profile Data depends on gene list, cases, and genetic profiles. If a Single gene option
is done, dialog box appears to specify gene symbol (Figure 11A). The returned dialog check box allows
user to choose some/all profiles data (Figure 11B). The result (table) lists some/all genetic profiles data
in columns (CNA, Met, Mut, mRNA,RPPA) and all available samples in rows (Figure 11C). Oppositely,
if Multiple genes option is done, the returned table displays genes expression for gene list (column) for
all samples (rows). In the case of multiple genes, the tables are saved in Results/ProfilesData folder.
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Figure 11: Getting profile data of a single gene

4.6 PhenoTest

The function was implemented from package PhenoTest [10]. The object of this function is to predict
the association between a list of phenotype variables (Survival, DFS Status, OS Status) and the gene
expression. There are two possible formula to get associations:

1. Three variables: Survival status (event/time as Dead-Living / 30 Months), Categorical or ordinal
description (DSF STATUS or Tumor stage), and Continuous value (DFS MONTHS, Tumor size).

2. Two variables: Categorical or ordinal description (DSF STATUS or Tumor stage), and Continuous

value (DFS MONTHS, Tumor size). In this case user does not need to select any variables for
survival variable in the phenoTest dialog box (Figure 13A).

The output of this function does not expect to give systematically a relevant association between all
formula of the chosen variables, although in some cases it is possible to cluster a list of genes significantly
regulated (gene expression) at a range of tumor size (continuous) or tumoral stage (ordinal) for recurred
or DiseaseFree cases (survival and categorical). The type of variables could be explored with Clinical Data
tables and selected in the phenoTest dialog box (Figure 13A). The effect of both continuous, categorical
and ordinal phenotype variables on gene expression levels are tested via lmFit from limma package [14].
Gene expression effects on survival are tested via Cox proportional hazards model [3], as implemented
in function coxph from survival package.

NB: Continuous or Categories can not have more than 4 classes.

Examples

Study: Prostate Adenocarcinoma (Broad/Cornal, Call 2013)

❼ Cases: All tumor samples (57 samples),

❼ Genetic Profiles: mRNA expression,

❼ Gene list: 1021.txt file

❼ Survival variable: empty

❼ Categorical variable: Pathology Tumor Stage

❼ Numeric variable: Serum PSA level
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Figure 12: Profile data of a multiple genes

❼ pVal adjust method: BH

❼ PhenoTest with Two variables (Figure 13)

After running Pheno/Exp, PhenoTest function returns two tables. The first table ranks gene list by
pval (Figure 13B). The first part (red square) displays pValues of the association between gene expression
and Tumor stage. The second part (blue square) displays the fold change (fc) by PSA level rang.
Interpretation: Notice that a single pValue is reported for each phenotype variable. For categorical
variables these corresponds to the overall null hypothesis that there are no differences between groups.
In the second table, PhenoTest function filters only gene that has significant pval (pval <0.05, Figure 13C
red). Here we see that tumor stage has been categorized into 2 groups (pT2c, pT3c) and PSA level has
been ranged into 2 groups (7.3-12.9, 12.9-16.7). This results shows that ANO3 gene is significantly down
regulated (negative fold change) for the two pathology tumor stages (pT2c, pT3c).

Heteroneous Clinical Data In some cases it is possible to have digital (0-9) and character (a-z) data
in the same variable. in this case phenoTest function considers it as Categorical variable (Figure 14).

Study: Prostate Adenocarcinoma, Metastatic (Michigan, Nature 2012)

❼ Cases: All tumor samples (61 samples),

❼ Genetic Profiles: mRNA expression
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Figure 13: PhenoTest; A, Dialog Boxused to select variables; B, Results; C, Only significant pValues.

Figure 14: Clinical Data heterogeneity. In PURITY ABSOLUTE column is there digital and character
values. in this cas PhenoTest consider this variable as Categoric.

❼ Gene list: 1021.txt file

❼ Survival variable: OS MONTHS, OS STATUS

❼ Categorical variable: OS STATUS

❼ Numeric variable: Serum PSA level

❼ pVal adjust method: BH

❼ PhenoTest with three variables (Figure 15)

In This test, Overall Survival (OS STATUS) was used in survival and caterogical variables. The
Clinical Data does not have enougth categorical variables. Figure 15 B and C shows signicant association
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between 7 genes and Living Status (OS STATUS.Living.pval column). The two last columns show
opposite regulation of the 7 genes expression in living patient with serum PSA level. The Cox proportion
hazard model does not give results with survival variables (OS STATUS column).

Figure 15: PhenoTest: Prostate Adenocarcinoma, Metastatic (Michigan, Nature 2012)

Study:Lung Adenocarcinoma (TCGA, Nature, in press)

❼ Cases: All Samples with mRNA expression data (230 samples),

❼ Genetic Profiles: mRNA expression z-Scores (RNA Seq V2 RSEM)
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❼ Gene list: 1021.txt file

❼ Survival variable: empty

❼ Categorical variable: OS STATUS

❼ Numeric variable: OS MONTHS

❼ pVal adjust method: BH

❼ PhenoTest with two variables.

In this Lung cancer Study, the test shows significant association between living patient and 10 genes
expression (Figure 16).

Figure 16: PhenoTest: Lung Adenocarcinoma (TCGA, Nature, in press)
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4.7 GSEA-R

Gene Set Enrichment Analysis (GSEA) is computational method that uses expression matrix of thousands
of genes with phenotypes data (two biological states) and Molecular Signatures DataBase (MSigDB)
to define which biological process or pathway or immune system are significantly different under the
phenotypes and which genes are associated [12].

4.7.1 Preprocessing of Exprimental Data

getGCT_CLS function loads Profile and Clinical data of selected study and saves two files into ”gct cls”
folder (Figure 17C).

The GCT file contents genes expression values with genes in the rows and samples in the columns.

The CLS file contents the two biological phenotypes selected from Clincical data. User needs to select
clinical phenotype only with two classes.

4.7.2 Molecular Signatures DataBase

The Molecular Signatures DataBase (MSigDB) is a collection of annotated gene sets for use with GSEA
computational method. The MSigDB gene sets are divided into 7 collections (positional gene sets,
curated gene sets, motif gene sets, computational gene sets, GO gene sets, oncogenic signatures, and
immunological signatures). All these collections are available at (http://www.broadinstitute.org/
gsea/msigdb/index.jsp). Every collections consists in a tab delimited file format (.GMT file) that
describes gene sets. Each row shows annotation terme with associated genes. User needs to download
.gmt file with genes Symbols and saves them into ”workspace/MSigDB/” folder. The MSigDB folder is
created with the file menu in the starting windows (Figure 1).

For more detail about GCT, CLS, GMT files, see this link (http://www.broadinstitute.org/cancer/
software/gsea/wiki/index.php/Data_formats).

MSigDB Collection

C1: Positional Gene Sets Gene sets corresponding to each human chromosome and each cytogenetic
band that has at least one gene. These gene sets are helpful in identifying effects related to
chromosomal deletions or amplification, epigenetic silencing, and other region effects.

C2: Curated Gene Sets into Pathways Gene sets collected from various sources such as online
pathway databases.

CGP: Chemical and Genetic Perturbation Gene sets represent expression signatures of ge-
netic and chemical perturbations.

CP: Reactome gene sets Gene sets derived from the Reactome pathway database.

C3: Motifs Gene Sets Gene sets that contain genes that share:

MIR: microRNA targets A 3’-UTR microRNA binding motif.

TFT: tanscription factor targets A transcription factor binding site defined in the TRANS-
FAC (version 7.4, http://www.gene-regulation.com/) database.

C4: Computational Gene Sets Computational gene sets defined by mining large collections of cancer-
oriented microarray data.

C5: GO Gene Sets Gene sets are named by GO term (http://geneontology.org/) and contain
genes annotated by that term: Biological Process, Cellular Component, and Molecular Function.

C6: Oncogenic Signatures Gene sets represent signatures of cellular pathways which are often dis-
regulated in cancer. The majority of signatures were generated directly from microarray data from
NCBI GEO.

C7: Immunologic Signatures Gene sets that represent cell states and perturbations within the im-
mune system. This resource is generated as part of the Human Immunology Project Consortium
(HIPC; http://www.immuneprofiling.org/).
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4.7.3 Examples

Study: Uterine Corpus Endometrioid Carcinoma (TCGA, Nature 2013)

❼ Cases: All Samples with mRNA, CNA, and sequencing data (232 samples),

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ MSigDB: c5.bp.v4.0.symbols

❼ Gene list: 1021.txt file

❼ Nbr of Samples: 100

❼ Phenotype: DFS STATUS

Based only on Gene list the function getGCT,CLS files builts the .gct and .cls files and save them
under the folder ”/gct cls/”. The Figure 17 shows the preporcessing steps to get gct and cls files.

Figure 17: Preprocessing of gct and cls files. A, Sampling the Cases from Uterine Corpus Endometrioid
Carcinoma study; B, selecting phenotype variable with only two classes; C, Displaying cls and gct files.
The names of the two files are indicated in the title of the windows.

For enrichment, GSEA function needs three files. The gct file with gene expression, the cls with pheno-
types and gmt file with Molecular signature of Gene Sets. There are two options to load gmt file, from ex-
amples (Figure 18A, MSigDB.gmt button) available into canceR package or from ”workspace/MSigDB/”
folder (Figure 18A, browse button) . In the two ways the gmt files must be from Broad Institute
(http://www.broadinstitute.org/gsea/index.jsp) and has gene Symbols.

Study: Breast Invasive Carcinoma (TCGA, Provosional)

❼ Cases: All Samples with mRNA expression data (562 samples),

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ MSigDB: c5.bp.v4.0.symbols

❼ Gene list: 1021.txt file

❼ Nbr of Samples: 100

❼ Phenotype: OS STATUS

The Figure 19 summarizes the gene sets enrichment analysis of Breast Invasive Carcinoma study
using ”Deceased/living” phenotypes. The Figure 19C shows 4 vs 1 biological process involved re-
spectively into Deceased/Living phenotypes. The size and the genes of appropriate GS are indicated
in the second (size) and third (source) columns. The report of significant GS are saved into ”/Re-
sults/GSEA/name of folder/”. Every GS has a report (.txt file) indicating the gene list and which
genes (CORE ENRICHMENT column: YES) are involved in the specific phenotype (DECEASED for

15

http://www.broadinstitute.org/gsea/index.jsp


Figure 18: Gene Set Enrichment Analysis of Uterine Corpus Endometrioid Carcinoma study using ”Dis-
easeFree/Recurred” phenotypes. A, Selecting cls, gmt, gmt files ans setting output folder; B, Specifying
the phenotype; C, displying the classes of the selected phenotype; D, Selecting Summary results files of
the output and setting FDR; E, displying specific (FDR=0.25) Gene Sets (GS) involved in DiseaseFree
phenotype. In this GSEA there is not significant GS involved specifically for Recurred phenotype.

RESPONSE To STRESS). The plots of significant GS are save with .pdf format file. In a heat map,
expression values are represented as colors for every patient, where the range of colors (red, pink, light
blue, dark blue) shows the range of expression values (high, moderate, low, lowest). For more de-
tails about result interpretation see user guide of GSEA (http://www.broadinstitute.org/gsea/doc/
GSEAUserGuideFrame.html).

Figure 19: Gene Sets Enrichment Analysis of Breast Invasive Carcinoma (TCGA, Provosional) study
using ”Deceased/Living” phenotypes. A, Selecting cls, gmt, gmt files ans setting output folder; B,
Selecting Summary results files of the output and setting FDR; C, displying specific (FDR=0.25) Gene
Sets (GS) involved in Deceased and Living phenotypes.
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4.7.4 GSEA-R Result Interpretation

The primary result of the gene set enrichment analysis is the enrichment score (ES), which reflects the
degree to which a gene set is overrepresented at the top or bottom of a ranked list of genes. A positive
value indicates correlation with the first phenotype and a negative value indicates correlation with the
second phenotype. For continuous phenotypes (time series or PSA level), a positive value indicates
correlation with the phenotype profile and a negative value indicates no correlation or inverse correlation
with the profile [12].

The number of enriched gene sets that are significant, as indicated by a false discovery rate (FDR)
of less than 25%. Typically, these are the gene sets most likely to generate interesting hypotheses and
drive further research.

The number of enriched gene sets with a nominal p-value of less than 1% and of less than 5%. The
nominal p-value is not adjusted for gene set size or multiple hypothesis testing; therefore, it is of limited
value for comparing gene sets.

The false discovery rate (FDR) is the estimated probability that a gene set with a given NES represents
a false positive finding. For example, an FDR of 25% indicates that the result is likely to be valid 3 out
of 4 times. The GSEA analysis report highlights enrichment gene sets with an FDR of less than 25%
as those most likely to generate interesting hypotheses and drive further research, but provides analysis
results for all analyzed gene sets. In general, given the lack of coherence in most expression datasets and
the relatively small number of gene sets being analyzed, an FDR cutoff of 25% is appropriate. However,
if you have a small number of samples and use geneset permutation (rather than phenotype permutation)
for your analysis, you are using a less stringent assessment of significance and would then want to use a
more stringent FDR cutoff, such as 5% [12].

Resolved limits

❼ GSEA does not accept negative values from Profile data. In this case the adding of absolute of less
negative value to all the matrix is done.

❼ GSEA does not accept missing value in cls file. The sampling is done only on existing phenotype
information.

❼ GSEA needs more than 10000 to be robust but url/gcds-r package accept less that 1000 genes.

❼ The size of samples is between 50 and 100

❼ Removing and cleaning the heterogeneity of the data frames of gene expression: space, character,
empty boxes and convert them to readable form by GSEA-R function.

4.8 Linear Modeling of GSEA (GSEAlm)

GSEAlm is a function implemented from GSEAlm package [9]. GSEAlm function is a Linear Model inference
and diagnostics for Gene Set Enrichment Analysis. It uses mRNA expression matrix of gene list, vari-
able(s) from clinical data (phenotype) and Molecular Signature Data Base (MSigDB) that groups genes
sharing common biological function, chromosomal location, pathway or regulation [12]. The result is a
prediction of the most up/down regulated gene sets belonging to one of MSigDB collections [12, 8].

The linear model assumes that the mean of the response variable has a linear relationship with the
explanatory variable(s). The data and the model are used to calculate a fitted value for each observation
(gene expression). It is strongly recommanded to use crude gene expression data and avoid z-score or
standardized preprocessing data. we recommend to use the mRNA expression (RNA Seq V2 RSEM).

Two options are available to get linear model. In the first option (phenotypes into disease) the
model predicts which gene sets are modulated between patients having the same disease and different
phenotypes (OS STATUS, DFS STATUS). In the second option (disease vs disease) the model predicts
which gene sets are modulated between patient having different disease.

The output is saved in /Results/GSEAlm/selected-disease-name folder. The names of output
files describe their content. Three files are saved by model. The pVal_MSigDB_GeneList_Disease.txt

file lists full results. The down/upRegulated_MSigDB_GeneList_Disease.txt files filter only significant
gene sets. The filtered result is merged in one table and displayed in the screen.
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Results interpretation:

❼ NA NA: The gene set is unrepresentative in the used gene list

❼ 1 1: No significant different of mRNA expression between the two phenotypes

Limitations:

❼ Use categorical phenotype (not numeric) only with TWO classes

❼ Use crude and not normalised mRNA expression data

❼ The accuracy of the results is better with high number of genes (1000 - 10000) and 1000 permuta-
tions. This request takes a while to run. User is recommended to reduce the permutation to 100
instead 1000 and/or reduce the size of gene list.

❼ If two or more phenotypes are checked, only the latter is taken.

4.8.1 Which Molecular Signature Data base (MSigDB) for gene list

This function matches genes list with MSigDB files selected from example or directory (Figure 20) and
computes the mean of matched Genes by Gene Sets as:

Mean(Gene∈GeneSet) =

∑I,J

1,1 Genei ∈ GeneSetj
∑I

1 Genei

With I is the number of genes in the list and J is the number of Gene Sets in the MSigDB file.
The returned table indicates the mean of gene number that matched for every Gene Set. For ex-
ample in the first row (Figure 20), there are about 10 genes that mached for every Genes Set in
c2.cp.reactome.v4.0.Symbol.gmt.

Figure 20: Match gene list with MSigDB folder.

4.8.2 get SubMSigDb for genes list

The SubMSigDb is a subset of MSigDB generated from gene list in the expression Set (eSet). This specific
subsetting reduces the time of GSEA computing. User needs to run before eSet from phenoTest menu.

4.8.3 GSEAlm: Phenotypes into Disease

Disease Free Status (DFS STATUS) into Prostate Cancer:

❼ Study: Prostate Adenocarcinoma (TCGA, Provisional)

❼ Cases: All Samples with mRNA expression data (246 samples),

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ MSigDB: c2.cp.reactome.v4.0.symbols.gmt
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❼ Gene list: 73.txt file

❼ Phenotype: DFS STATUS

❼ Permutation: 1000

❼ pVal: 0.05

Figure 21: Linear model of GSEA of Prostate Adenocarcinoma (TCGA, Provosional) study using ”Dis-
easeFree/Reccured” phenotypes. A, Selecting MSigDB file; B, Selecting Phenotypes, permutation, and
pVal parameters; C, displying down and up regulated gene sets in table.

This example uses Reactome pathways gene sets (Figure 21A, http://www.reactome.org/) to com-
pare the gene expression of patients with reccured prostate disease versus patient with free prostate
disease. The run was done with 1000 permuattion and pVal 0.05 (Figure 21B). The result (Figure 21C)
shows only up regulated gene sets from Reactome pathways were observed in disease free patients.

Copy Number Cluster Level into Stomach Adenocarcinoma:

❼ Study: Stomach Adenocarcinoma (TCGA, Nature 2014)

❼ Cases: All Samples that have mRNA, CNA, and sequencing data (258 samples),

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ MSigDB: c5.bp.reactome.v4.0.symbols.gmt

❼ Gene list: 73.txt file

❼ Phenotype: Copy Number Cluster (Low, High)

❼ Permutation: 1000

❼ pVal: 0.05
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The losses and the gains of DNA can contribute to alterations in the expression of tumor suppressor
genes and oncogenes. Therefore, the identification of DNA copy number alterations in tumor genomes
may help to discover critical genes associated with cancers and, eventually, to improve therapeutic
approaches. In this study we test GSEAlm algorithm with the level of the Copy Number cluster using
Biological Process gene sets from Reactome. The Figure 22C shows significant down/up regulated gene
sets in patients with low level compared to patients with high level of copy number cluster.

Figure 22: Linear model of GSEA of Stomach Adenocarcinoma (TCGA, Nature 2014) study using
”Low/High” level of copy number cluster phenotypes. A, Selecting MSigDB file; B, Selecting Phenotypes,
permutation, and pVal parameters; C, displying down and up regulated gene sets in table.

This finding suggests to repeat modeling with copy number alteration profile to predict which bio-
logical process (gene set) could be with low level of copy number cluster. The Figure 23D lists gene sets
with low level of copy number cluster in the case of stomach adenocarcinoma.
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Figure 23: Linear model of GSEA of Stomach Adenocarcinoma (TCGA, Nature 2014) study using copy
number alteration data (GISTIC algorithm) as matrix and copy number cluster level (Low/High) as
phenotypes. A, Selecting genetic profile; B, Selecting MSigDB file; c, Selecting Phenotypes, permutation,
and pVal parameters; D, displying gene sets with low copy number cluster level.

4.8.4 GSEAlm: Disease vs Disease

Breast vs Prostate Cancers: In this function, the linear modeling uses the disease type as phenotype
for the run. User needs to select two diseases and a gene list.

❼ Studies: Breast Invasive Carcinoma (TCGA, Provisional) versus Prostate Adenocarcinoma (TCGA,
Provisional)

❼ Cases: All Samples with mRNA expression data (959/257 samples),

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ MSigDB: c2.cp.reactome.v4.0.symbols.gmt

❼ Gene list: 73.txt file

❼ Phenotype: Diseases type

❼ Permutation: 1000

❼ pVal: 0.05

❼ Samples number: 50

The Figure 24 shows the results of the linear modeling.

4.9 Genes Classification using mRNA expression (Classification)

The Classification menu displays two functions to rank genes by phenotypes into- and inter-diseases,
depending on mRNA expression data.
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Figure 24: Linear model of GSEA of Breast Invasive carcinoma (TCGA, Provisional) and Prostate
Adenocarcinoma (TCGA, Provitional) studies. A, Sampling; B, Selecting MSigDB file; c, Selecting
Phenotypes, permutation, and pVal parameters; D, displying gene sets upregulated in prostate cancer.

4.9.1 Genes vs Diseases (inter-diseases)

The first classifier is implemented from geNetClassifier package [1]. It uses calculateGenesRanking
function which based on Parametric Empirical Bayes method included in EBarrays package [6]. This
method implements an expectation-maximization (EM) algorithm for gene expression mixture models,
which compares the patterns of differential expression across multiple conditions and provides a posterior

probability. The posterior probability is calculated for each gene-class pair, and represents how much
each gene differentiates a class from the other classes; being 1 the best value, and 0 the worst. In this
way, the posterior probability allows to find the genes that show significant differential expression when
comparing the samples of one class versus all the other samples (One-versus-Rest comparison) [1].

In the following examples, we would like to predict specific modulated genes by cancer type. The
features of the runs are:

Example 1: Breast vs Glioblastoma vs Liver vs Lung Cancers (Figure 25A):

❼ Studies:

– Breast Invasive Carcinoma (TCGA, Provisional)

– Glioblastoma Multiforme (TCGA, Provisional)

– Liver Hepatocellular Carcinoma (TCGA, Provisional)

– Lung Squamous Cell Carcinoma (TCGA, Provisional)

❼ Cases: All Samples with mRNA expression data,

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ Samples: 50

❼ Gene list: 223.txt file

❼ lpThreshold: 0.95
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Example 2: Bladder vs Breast vs Glioblastoma vs Lung vs Ovarian vs Prostate Cancers
(Figure 25A’):

❼ Studies:

– Bladder Urothelial Carcinoma(TCGA, Provisional)

– Breast Invasive Carcinoma (TCGA, Provisional)

– Glioblastoma Multiforme (TCGA, Provisional)

– Lung Adenocarcinoma (TCGA, Provisional)

– Ovarian Serous Cystadenocarcinoma (TCGA, Provisional)

– Prostate Adenocarcinoma (TCGA, Provisional)

❼ Cases: All Samples with mRNA expression data,

❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ Samples: 50

❼ Gene list: 73.txt file

❼ lpThreshold: 0.95

The significant genes (dots) are over the threshold of posterior probability (Figure 25B, B’). Their
number are listed in the legend. The details are displayed in table (Figure 25C, C’) and saved in
/Results/Classifier folder.
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Figure 25: Genes/Disease Classification. A, A’ Sampling and lpThreshold choice; B, B’ Plot of the
posterior probabilities of the genes of Disease classes, ordering the genes according to their rank. brca:
breast; gbm: Glioblastoma; lihc: Liver; lusc: Lung; blca: Bladder; luad: Lung; ov: Ovary; prad:
Prostate. C, C’ The table lists the significant genes ranked by class (disease). The columns are ordered
as Gene Symbols, Ranking, Class, PostProb, ExprsMeanDiff, ExprsUpDw.

4.9.2 Genes vs Phenotypes (intra-disease)

The second function of genes classification is implemented from rpart package [13]. The resulting models
can be represented as binary trees with gene expression profile threshold (P53 > 2.56) is in node and
classes (Living/Deceased) of selected variable in branch. The root of the tree is the best gene divisor of
classes. The goal is to pedict which genes combinaison (P53> 2.56 + CAD < -0.45 + MDM4 > 1.92
lead to 80% Diseased) could be split classes in two or more groups. The tree is built by the following
process: first the single variable is found which gene level splits the data into two groups. The data is
separated, and then this process is applied separately to each sub-group, and so on recursively until the
subgroups either reach a minimum size or until no improvement can be made [13].

There are 3 methods of splitting rule : classification, anova, and Poisson.
The Classification used either Gini or log-likelihood function rules. It is used when there are only

two categories into the selected variable. The dependent variable is nominal (factor). At each splitting
step, the rule tries to reduce the total impurity of the two son nodes relative to the parent node.

In the anova, the variable is numeric and it used to predict the closest value to the true one. The
method uses splitting criteria SST −(SSL+SSR), where SST =

∑
(yi− (̄y)2 is the sum of squares for the

node, and SSR, SSL are the sums of squares for the right a,d left son respectively. This is equivalent to
choosing the split to maximize the between-groups sum-of-squares in a simple analysis of variance [13].

The poisson splitting method attempts to extend rpart models to event rate data. The model in
this case is λ = f(x), where λ is an event rate and x is some set of predictors.
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Example 1: Genes classification vs OS STATUS (Living/Deceased)

❼ Studies: Breast Invasive Carcinoma (TCGA, Provisional)

❼ Cases: All Samples with mRNA expression data (526 samples),

❼ Genetic Profiles: mRNA expression z-score (RNA Seq V2 RSEM)

❼ Gene list: 223.txt file

❼ Variable: OS STATUS

❼ Split method: class

In this example, the main clinical endpoint of interest is the Living/Deceased Status of patient having
breast cancer. We run classification to predict which genes from 223 that make the difference between
deceased and living patient having breast cancer. The tree in Figure 26B indicates that all deceased
patients have the following z-score gene expression profile: RAD51<-1.091, HSPA1A>1.424, JUN> -
0.4016. All remain patient are living.

Example 2: Genes regression vs OS STATUS (Living/Deceased)

❼ Studies: Breast Invasive Carcinoma (TCGA, Provisional)

❼ Cases: All Samples with mRNA expression data (526 samples),

❼ Genetic Profiles: mRNA expression z-score (RNA Seq V2 RSEM)

❼ Gene list: 223.txt file

❼ Variable: OS STATUS

❼ Split method: anova

When we split the same clinical data used in the first example (Living/Deceased) using regression
method (anova), we see in the Figure 27C the same genes and split points with further splitting nodes.
For example, the gene HSPA11 has 124 patients with 109 are living. In classification method, all patient
have the same predicted value (0.846, Figure 26C) because the error (misclassification) with and without
the split is identical. In the regression context the two predicted values of 16.08 and 1.84 (Figure 27B)
are different. The split has identified a nearly pure subgroup of significant size.

Example 3: Genes classification vs tumor grade (grade1/2/3)

❼ Studies: Uterine Corpus Endometrioid Carcinoma (TCGA, Nature 2013)

❼ Cases: All Samples with mRNA expression data (333 samples),

❼ Genetic Profiles: mRNA expression z-score (RNA Seq V2 RSEM)

❼ Gene list: 223.txt file

❼ Variable: Tumor Grade

❼ Split method: class

Classification method could work with phenotype with more than two classes. In this case, the
tumor grades are splitted following this order from left to right Grade1/Grade2/Grade3. The nodes are
named by the must frequent grade (Figure 28).
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Figure 26: Genes/phenotype Classification. A, Selecting variable and the splitting method; B, Tree
result, In any node (ellipse or rectangle) the ratio indicates in numerator/Deceased and in the denomi-
nator/Living patients. The condition RAD51 z-score < - 1.091 descriminates 12 cases with 7 deceased
and so on. The Deceased cases go to the left an the living cases go to the right. The plot could be saved
as svg, png or jpg format and scaled in vertical and horizontal; C, The reading of the tree.

26



Figure 27: Genes/phenotype Regression. A, Selecting variable and the splitting method; B, The reading
of the tree; C, Tree result, In any node (ellipse or rectangle) the ratio indicates in numerator/Deceased
and in the denominator/Living patients.

4.10 Plots

Their are two plotting functions.The first one (1 Gene/ 2 Gen. Profiles) plots gene data for specified
case and two genetic profiles from the same study. It associates between the two selected genetic profiles.
The dialog box allows user to specify:

❼ Layout Skin

– cont: This is the default skin. It treats all data as being continuous

– disc cont: Requires two genetic profiles. The first datasetin handled as being discrete data,
and the function generates a boxplot with distributions for each level of the discrete genetic
profile.

– cna mrna mut : This skin plots mRNA expression level as function of CNA or DNA methy-
lation status for given gene. Data points are colored respectively by mutation status or CNA
and mutation status.

❼ Correlation Method
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Figure 28: Genes/phenotype Classification. A, Selecting Tumor Grade as phenotype and the class as
splitting method; B, The reading of the tree; C, Tree result, In any node (ellipse or rectangle) the ratio
indicates in numerator/Deceased and in the denominator/Living patients.

– Pearson correlationis is used for parametric distribution (more than 30 samples by genetic
profile)

– Spearman correlation is used for non-parametric data.

– Kendall tau is non-parametric test that mesures the rank correlation.

Example: Association of P53 copy number alteration and mRNA exprssion in glioblastoma

❼ Study: Glioblastoma Multiforme (TCGA, Provisional)

❼ Cases: All tumor Samples that have mRNA,CNA and sequencing data (135 samples),

❼ Genetic Profiles 1: Putative copy-number alterations from GISTIC

❼ Genetic Profiles 2: mRNA expression (RNA Seq V2 RSEM)

❼ Gene: P53

❼ Skin: cna mrna mut

❼ correlation method: pearson

No significant pearson correlation was observed between P53 Copy Number Variation (CNV) and
P53 mRNA expression (r=0.23, Figure 29B). The CNV is ranged into 4 levels that derived from the
copy-number analysis algorithms GISTIC or RAE, and indicate the copy-number level per gene. ”-2” is
a deep loss, possibly a homozygous deletion (Homdel), ”-1” is a single-copy loss (heterozygous deletion:
Hetloss), ”0” is Diploid, ”1” indicates a low-level gain, and ”2” is a high-level amplification. Note that
these calls are putative.
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Figure 29: P53: CNA status vs mRNA expression. Homdel, homozygous deletion; Hetloss, heterozygous
deletion; Diploid, No modification; Gain, ADN amplification.

The second plot function evaluates the relationship of two genes expression levels in the same study
(Figure 30).

Example: MAP2K2 and ABHD17A mRNA expression (RNA Seq V2 RSEM) levels in
Uterine Corpus Endometrioid Carcinoma (TCGA, Nature 2013)

❼ Study: Uterine Corpus Endometrioid Carcinoma (TCGA, Nature 2013)

❼ Cases: All Samples with mRNA expression data (333 samples),
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❼ Genetic Profiles: mRNA expression (RNA Seq V2 RSEM)

❼ Genes: MAP2K2 and ABHD17A

❼ correlation method: pearson

Figure 30: MAP2K2 and ABHD17A mRNA expression levels correlation in Uterine Corpus Endometrioid
Carcinoma

4.10.1 Survival Plots

In medical research is often useful to estimate the survival of patient amount time at tumor stage, or
after treatment or particular event. The OS MONTHS is the overall Survival duration of patient after
the first surgery. The OS STATUS is the event at OS MONTHS. The survival plot works only with
studies that have non empty OS MONTHS and OS STATUS.

Kaplan-Meier Curves The Kaplan-Meier estimator mesures the fraction of patients in life for a
certain amount of time after the first surgery. The survival curve can be created assuming various
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situations. This can be calculated for two groups (DiseaseFree, Recurred) or more of subjects. When
the shapes of the curves are similar, the Survival would not be dependent of the groups. The Figure 31
shows two plots of survival curves depending, in left, to Tumor stage of patients grouped into 4 stages.
The curves show that patients with advanced stage (4) have less survive than early ones (stage 1). in
the same way, the right plot shows more survival patients without disease than patients with recurred
disease.

Figure 31: Kaplan-Meier Curves, left, Tumor Stage; right, DFS STATUS

Cox proportional Hazards Model A Cox model is a statistical technique for exploring relationship
between the survival of a patient and several explanatory variables. In survival analysis the Cox model is
preferred to a logistic model, since the latter one ignores survival times and censoring information. The
Figure 32 shows an example of Cox model of survival patients with 62 years old. If selected variable has
NA value (Censoring data), two curves were plotted (censored and variable).

Figure 32: left, Cox Proportional Hazard model; right, plot of residuals and/or test of proportional
hazards assumptions for Cox model.

4.10.2 Circos Style

Circular layout is an interesting way to integrate multi-omics heterogeneous and big data of cancer disease
in the same plot [7]. The goal is to make easy the interpretation and the exploring of the relationships
between cancers, genes or dimensions. There are two R packages (RCircos and Circlize) available for
Circular layout but its use remain laborious and needs computational skills. CanceR package implements
getCircos function to facilitate the visualization of cancer disease using Circos style. User needs only
to select cancers and check which dimensions will be plotted.
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User can select a simple gene list from files or examples or can focus on gene list from gene sets
selected from MSigDB.

In the following case, I focus my exploring to two gene lists corresponding to gene set involved in
DNA repair and Response to oxidative stres. canceR package allows user to select any gene sets from
MSigDB without gene duplication.

I selected mRNA (0.3 threshold), CNA (0.85), Met HM450 (0.3), Mutation (Frequency 101). Only
genes with significant rates are plotted with corresponding colors. For example Gold for mutation,
Orange (Methylation), Green (CNA), red (mRNA expression) (Figure 33).

I selected 5 cancers represented with 5 sectors. In the same sector there are 7 tracks (layouts)
corresponding respectively (out : in) to: Gene List, Gene Sets, mRNA, CNA, Methylation, Mutation
(Figure 34).

5 Perspectives

1. Pairwise, Multiple comparative of Genetics Profiles

2. search nearest Cancer by Matching Genetic Profile for gene list.

3. Onco Query Language
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Figure 34: Circos plot of 5 diseases (brc tcga, gbm tcga, prad tcga, stad tcga, ucec tcga pub) and 4
dimensions (Exp, CNA, Met HM450 and Mutation). The significant gene were plotted with corresponding
color (red (Exp), green (CNA), orange (Methylation) and gold (Mutation) and bilong to two gene sets
(purpe : DNA repair, cyano: Responce to oxydative stress). The choice of the gene set was done by
selecting Gene list from MSigDB (load Menu).
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