
TEQC: Target Enrichment Quality Control

Manuela Hummel Sarah Bonnin Ernesto Lowy
Guglielmo Roma

October 13, 2015

Contents

1 Introduction 1

2 Automated html Reports 2

3 Load Reads and Targets Data 3

4 Specificity and Enrichment 7

5 Coverage 9

6 Read Duplicates 16

7 Reproducibility 20

8 Acknowledgement 22

9 Session Information 22

10 References 23

1 Introduction

With whole genome sequencing it is still rather expensive to achieve sufficient
read coverage for example for the detection of genomic variants. Further, in
some cases one might be interested only in some fraction rather than the whole
genome, for example linkage regions or the complete exome. Target capture
(target enrichment, targeted sequencing) experiments are a suitable strategy
in these situations. The genomic regions of interest are selected and enriched
previous to next-generation sequencing. A frequently used application for the
enrichment of the target sequences is based on hybridization with pre-designed
probes, either on microarrays or in solution. The hybridized molecules are
then captured (eluted from the microarrays or pulled-down from the solution,
respectively), amplified and sequenced.

Besides quality control of the sequencing data, it is also crucial to assess
whether the capture had been successful, i.e. if most of the sequenced reads
actually fall on the target, if the targeted bases reach sufficient coverage, and so

1

on. This package provides functionalities to address this issue. Quality measures
comprise specificity and sensitivity of the capture, enrichment, per-target read
coverage, coverage uniformity and reproducibility, and read duplicate analysis.
The coverage can further be examined for its relation to target region length
and GC content of the hybridization probes. The analyses can be based on
either single reads or read pairs in case of paired-end sequence data. Results are
given as values (e.g. enrichment), tables (e.g. per-target coverage), and several
diagnostic plots. The package makes use of data structures and methods from
the IRanges package, which makes dealing with large sequence data feasible.

TEQC does not include general sequencing data quality control (e.g. Phred
quality plots), neither tools for sequence alignment. It also does not provide
functionalities for follow-up analysis like SNP detection.

2 Automated html Reports

The fastest way to run TEQC quality analysis is to launch the html report gen-
eration. The main arguments for TEQCreport are tables containing positions of
sequenced reads and of genomic targets, or information about how to read the
respective data files. There are several other options for customization of the
report. In especially, you can choose whether or not to produce certain figures or
coverage wiggle files and whether the data should be treated as single- or paired-
end data. Calculation-intensive R objects can also be saved as workspace, for
further usage. With option destDir you can specify the output folder, where all
results will go and where you will find the index.html page of the html report.
The parameters sampleName, targetsName and referenceName simply allow to
include information about the sample and experiment in the report.

> library(TEQC)

> exptPath <- system.file("extdata", package="TEQC")

> readsfile <- file.path(exptPath, "ExampleSet_Reads.bed")

> targetsfile <- file.path(exptPath, "ExampleSet_Targets.bed")

> TEQCreport(sampleName="Test Sample",

+ targetsName="Human Exome",

+ referenceName="Human Genome",

+ destDir="report",

+ reads=get.reads(readsfile, skip=0, idcol=4),

+ targets=get.targets(targetsfile, skip=0),

+ genome="hg19")

The function TEQCreport provides a quality report for only one sample at a
time. Usually research projects include several samples, and it might be of inter-
est to compare enrichment quality among all of them. Since it is cumbersome to
check the TEQC reports one by one, we provide the function multiTEQCreport,
which collects results from previously created single-sample reports and summa-
rizes them in a new html report. While the creation of single-sample reports is
time and memory intensive, multiTEQCreport finishes quickly, since no heavy
calculations have to be done anymore. The main input to this function are the

2

paths to the respective TEQCreport output folders and the sample names that
shall be used in tables and plots. The results can be browsed via the index.html
file in a new destDir output directory.
As an example, let’s assume that we have already present TEQC reports for two
samples in folders report and report2, respectively. Then the multiple sample
report can be created by

> multiTEQCreport(singleReportDirs=c("report", "report2"),

+ samplenames=c("Sample A","Sample B"),

+ projectName="Test Project",

+ targetsName="Human Exome",

+ referenceName="Human Genome",

+ destDir="multiTEQCreport")

For details about the different steps, options and results of a TEQC analysis,
it is recommended to read also the following sections of this documentation.

3 Load Reads and Targets Data

The (minimum) input needed for the quality control analysis are two files

� A bed file containing the genomic positions (chromosome, start, end) of
the targeted regions, one genomic range per line. The targets might be
custom designed or commercial solutions, e.g. for the capture of the whole
human exome. The file does not have to be sorted with respect to genomic
position.

� A bed or BAM file containing the genomic positions (chromosome, start,
end) of sequenced reads aligned to a reference genome, one genomic range
per line. In case of paired-end data an additional column with the read
pair ID is suggested. The bed file format is very general and hence the
QC analysis is not limited to any sequencing platform or alignment tool.
The file does not have to be sorted with respect to genomic position. The
BAM file format is now quite standard in NGS analysis. The usage of
bam files has the advantage that reading the data is much faster (using
functionality of the ShortRead package) than with bed files.

The package includes a small example data set. First we load the target
positions. The input targetsfile does not need to have a fixed format. Just three
columns containing chromosome (as string, e.g. chr1), start and end position
of each target are required. The options chrcol , startcol and endcol specify
in which columns of the file the respective information is found. The output
of get.targets is of class RangedData from the IRanges package. Note that
overlapping or adjacent targets are merged, such that the returned target regions
are not-overlapping. Therefore, also a bed file containing information about the
hybridization probes, which might be highly overlapping due to tiling, can be
used as targetsfile.

> library(TEQC)

> exptPath <- system.file("extdata", package="TEQC")

> targets <- get.targets(targetsfile=paste(exptPath, "ExampleSet_Targets.bed", sep="/"), chrcol=1, startcol=2, endcol=3, skip=0)

3

[1] "read 50 (non-overlapping) target regions"

> targets

RangedData with 50 rows and 0 value columns across 21 spaces

space ranges |

<factor> <IRanges> |

1 chr1 [11158025, 11158264] |

2 chr1 [25870174, 25870293] |

3 chr1 [65656333, 65656572] |

4 chr1 [68611504, 68611743] |

5 chr1 [70225862, 70226101] |

6 chr1 [112269528, 112270487] |

7 chr1 [160970804, 160970923] |

8 chr1 [182635998, 182636117] |

9 chr1 [186270664, 186270903] |

...

42 chr6 [152787105, 152787224] |

43 chr6 [170639528, 170639647] |

44 chr7 [144345876, 144345995] |

45 chr8 [1830798, 1830917] |

46 chr9 [6241680, 6241799] |

47 chr9 [77277336, 77277575] |

48 chr9 [79827855, 79827974] |

49 chrX [47086386, 47086505] |

50 chrX [150891046, 150891285] |

NOTE: We assume that genomic positions in bed files follow the 0-based start
/ 1-based end coordinate system as defined by UCSC (http://genome.ucsc.
edu/FAQ/FAQformat). In TEQC we need 1-based coordinates, so by default
get.targets and get.reads (see later) shift all start positions forward by 1.
If the coordinates in your files are already 1-based, set the parameter zerobased
to FALSE in order to avoid the shifting.

We might ask what fraction of the genome is targeted. In the function frac-

tion.target the corresponding genome can be specified by the option genome.
At the moment only hg18 and hg19 are available. The corresponding genome
sizes are taken from http://genomewiki.ucsc.edu/index.php/Genome_size_

statistics. For any other case, you can specify the genome size manually with
the option genomesize. In our little example the total targeted region and hence
the fraction within the genome is very small.

> ft <- fraction.target(targets, genome="hg19")

> ft

[1] 4.158855e-06

Next, we load the genomic positions of the aligned reads. Depending on the
number of reads, this can be quite time and memory consuming with real data.
The function get.reads is quite similar to get.targets. However, overlapping
or identical reads are not merged. Furthermore, a column containing read iden-
tifiers can be specified with option idcol . This is essential in case of paired-end

4

http://genome.ucsc.edu/FAQ/FAQformat
http://genome.ucsc.edu/FAQ/FAQformat
http://genomewiki.ucsc.edu/index.php/Genome_size_statistics
http://genomewiki.ucsc.edu/index.php/Genome_size_statistics

data, when you want quality statistics to be done (also) on read pairs rather
than on single reads. In this case the ID has to be the identifier of the read
pair (i.e. the same unique ID for both reads of the pair). Our example data
was derived by paired-end sequencing, so we keep the pair IDs in the resulting
RangedData object. The genomic positions in our bedfile containing the reads
are 1-based, so we avoid coordinate shifting by setting zerobased to FALSE .

> reads <- get.reads(paste(exptPath, "ExampleSet_Reads.bed", sep="/"), chrcol=1, startcol=2, endcol=3, idcol=4, zerobased=F, skip=0)

[1] "read 19546 sequenced reads"

> reads

RangedData with 19546 rows and 1 value column across 24 spaces

space ranges | ID

<factor> <IRanges> | <character>

1 chr1 [13328, 13381] | 1_16_7090_2464

2 chr1 [13467, 13520] | 1_16_7090_2464

3 chr1 [1420325, 1420378] | 1_99_1631_6326

4 chr1 [1420402, 1420455] | 1_99_1631_6326

5 chr1 [2321365, 2321418] | 1_5_14614_17275

6 chr1 [2321479, 2321532] | 1_5_14614_17275

7 chr1 [2452643, 2452696] | 1_15_18642_6232

8 chr1 [2452775, 2452828] | 1_15_18642_6232

9 chr1 [2535217, 2535270] | 1_20_2015_5490

...

19538 chrX [154014582, 154014635] | 1_6_7123_16490

19539 chrX [154261641, 154261694] | 1_88_4216_1073

19540 chrX [154261777, 154261830] | 1_88_4216_1073

19541 chrY [3551497, 3551550] | 1_87_3763_6007

19542 chrY [3551666, 3551719] | 1_87_3763_6007

19543 chrY [10028334, 10028387] | 1_63_1439_10606

19544 chrY [10028434, 10028487] | 1_63_1439_10606

19545 chrY [28425424, 28425477] | 1_105_17963_15521

19546 chrY [28425590, 28425643] | 1_105_17963_15521

Whenever BAM files are available, it is recommended to use those instead
of bed files as input for get.reads, while setting parameter filetype to ”bam”.
In this case, get.reads makes use of the ShortRead function scanBam, with
flag option isUnmappedQuery=FALSE . All other previously described options
of get.reads are ignored, since genomic positions and read identifiers are taken
automatically from the BAM file.

> reads <- get.reads("myBAM.bam", filetype="bam")

Paired-end data
When reads are paired, in order to perform statistics on pairs rather than

on single reads, the read pairs have to be matched together using function
reads2pairs. To run the function can be quite time consuming, depending on
the number of reads. The output is a RangedData object whose ranges start

5

at the first base of the first read within a read pair and end at the last base
of the respective second read. This is equivalent to the positions of the DNA
molecule that was actually sequenced from both ends. The reads table might
also contain single reads (i.e. whose corresponding partners did not align to the
reference). In this case a list of two RangedData tables will be returned, the
first one containing the original positions of the single reads without partners
(table singleReads), and the other one containing the merged pairs positions
(table readpairs). The provided reads data might also contain cases where the
two reads of a pair align to different chromosomes. Since for such read pairs a
’merging’ does not make sense, they will be returned within the singleReads

table. Further, for some pairs the respective reads might align very far apart
within the same chromosome. If you wish to remove such reads, you can specify a
value for option max.distance. Reads with a larger distance (from start position
of first read to end position of second read) will be added to table singleReads.

> readpairs <- reads2pairs(reads)

> readpairs

RangedData with 9773 rows and 1 value column across 24 spaces

space ranges | ID

<factor> <IRanges> | <character>

1 chr1 [13328, 13520] | 1_16_7090_2464

2 chr1 [1420325, 1420455] | 1_99_1631_6326

3 chr1 [2321365, 2321532] | 1_5_14614_17275

4 chr1 [2452643, 2452828] | 1_15_18642_6232

5 chr1 [2535217, 2535407] | 1_20_2015_5490

6 chr1 [2814194, 2814357] | 1_36_17959_12842

7 chr1 [6488248, 6488458] | 1_58_10090_11513

8 chr1 [6741034, 6741168] | 1_66_3980_7233

9 chr1 [7332529, 7332654] | 1_85_5028_4821

...

9765 chrX [153700924, 153701112] | 1_26_10299_1105

9766 chrX [153814666, 153814897] | 1_74_16848_10502

9767 chrX [153851675, 153851897] | 1_14_5061_8480

9768 chrX [153997431, 153997581] | 1_100_7570_16280

9769 chrX [154014446, 154014635] | 1_6_7123_16490

9770 chrX [154261641, 154261830] | 1_88_4216_1073

9771 chrY [3551497, 3551719] | 1_87_3763_6007

9772 chrY [10028334, 10028487] | 1_63_1439_10606

9773 chrY [28425424, 28425643] | 1_105_17963_15521

You may decide to use for all further analyses only ”valid pairs”, i.e. to
exlude those reads that ended up in the singleReads table (in case there were
any). This can be done e.g. in the following way

> reads <- reads[!(reads$ID %in% readpairs$singleReads$ID), , drop=TRUE]

Again, only for the case of paired-end data, we can visualize the read pair
insert sizes, i.e. the distances from the start of read 1 to the end of read 2,
respectively. For the function insert.size.hist we need the output of the
previous call to reads2pairs. In our example, the alignment was done in a

6

way that reads were only kept if the two reads aligned at a maximum distance
of 250 bases. Therefore, the resulting histogram is truncated at 250, see figure
1. Note that also average and median insert sizes displayed in the graph are
based on the truncated data, and hence are not statistics for the true read pair
distribution. The insert sizes for all read pairs can also be returned using option
returnInserts = TRUE .

> insert.size.hist(readpairs, breaks=10)

Insert size

F
re

qu
en

cy

50 100 150 200 250

0
50

0
10

00
15

00
20

00

average (189.97)
average +− SD (33.99)
median (192)

Figure 1: Histogram of read pair insert sizes.

4 Specificity and Enrichment

One important component of quality control in target capture experiments is
to check whether most of the sequenced reads actually fall on target regions.
A barplot showing the numbers of reads aligning to each chromosome can give
a first impression on that. When providing the function chrom.barplot only
with the reads table, the resulting barplot will show absolute counts. There is
also the option to give both the reads and the targets table, which will show
fractions of reads and targets, respectively, falling on each chromosome. For
the reads, this is the fraction within the total number of reads (since reads
are usually expected to have all the same length). In contrast, for the targets,
the fraction of targeted bases on each chromosome is calculated. Since targets
might strongly vary in length it is reasonable to account for the actual target

7

sizes instead of considering merely numbers of targets per chromosome. In this
way you can compare directly if the amount of reads corresponds more or less
to the amount of target on a certain chromosome (see figure 2).

> chrom.barplot(reads, targets)

F
ra

ct
io

n

0.
00

0.
05

0.
10

0.
15

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0
ch

r1
1

ch
r1

2
ch

r1
3

ch
r1

4
ch

r1
5

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0
ch

r2
1

ch
r2

2
ch

rX
ch

rY

reads
targets

Figure 2: Fractions of reads (green) and target (orange) per chromosome.

A measure for the capture specificity is the fraction of aligned reads that over-
lap with any target region. It can be calculated by function fraction.reads.target.
The function has an option mappingReads that can be set to TRUE in order
to retrieve a reduced reads RangedData table containing only those reads over-
lapping target regions.

> fr <- fraction.reads.target(reads, targets)

> fr

[1] 0.3899007

In many of the functions within TEQC you can specify an ”offset” that will
enlarge every target on each side by the specified number of bases. Since usually
the captured DNA molecules are longer than what is actually sequenced, it is
expected to have many reads that do not overlap, but are close to the target.
Considering e.g. the actual targets plus 100 bases on each side, we get a higher
on-target fraction:

> fraction.reads.target(reads, targets, Offset=100)

[1] 0.4853679

With the fraction of on-target reads and the fraction of the targeted region
within the reference genome, we can calculate the enrichment

enrichment =
reads on target/# aligned reads

target size/genome size

Since in our artificial example the total target size is unrealistically small,
we achieve a huge enrichment.

8

> fr / ft

[1] 93751.94

Instead of considering single reads, we could also calculate the fraction of
read pairs that are on-target. A read pair is counted as on-target if at least
one of its reads overlaps with a target region or, in case of small targets, if
the first read lies ”left” and the second read ”right” of the target and hence
the corresponding sequenced molecule covered the target completely. For the
specificity calculation the same function can be used, just the input changes
from the table containing all reads to the table created above by reads2pairs.

> fraction.reads.target(readpairs, targets)

[1] 0.4934002

5 Coverage

Besides high capture specificity, it is of course important to check the read cov-
erage within target regions, since it is crucial for follow-up analyses. The func-
tion coverage.target calculates read coverage for each base that is sequenced
and/or located in a target region. It returns a list with the average (list ele-
ment avgTargetCoverage), standard deviation (targetCoverageSD) and main
quantiles (targetCoverageQuantiles) of the coverage over all targeted bases.
When option perBase is set to TRUE , the returned list additionally has the two
elements coverageAll and coverageTarget. The former one is a SimpleRleList
containing coverages for all bases present in the reads table, the latter one con-
tains coverages for all targeted bases. For some TEQC functions we need either
one or the other. When option perTarget is set to TRUE , the returned list has
the additional element targetCoverages. This is the input targets Ranged-
Data table, now including as ’values’ columns the average coverage (column
avgCoverage) and standard deviation (column coverageSD) per target region.
Coverage calculations might take a while, depending on the numbers of reads
and targets.

> Coverage <- coverage.target(reads, targets, perTarget=T, perBase=T)

> Coverage

$avgTargetCoverage

[1] 27.47927

$targetCoverageSD

[1] 23.68119

$targetCoverageQuantiles

0% 25% 50% 75% 100%

0 8 21 42 117

$targetCoverages

RangedData with 50 rows and 2 value columns across 21 spaces

space ranges | avgCoverage coverageSD

9

<factor> <IRanges> | <numeric> <numeric>

1 chr1 [11158025, 11158264] | 44.12917 10.088934

2 chr1 [25870174, 25870293] | 0.00000 0.000000

3 chr1 [65656333, 65656572] | 31.75833 6.931217

4 chr1 [68611504, 68611743] | 28.79583 13.489341

5 chr1 [70225862, 70226101] | 24.16667 8.049360

6 chr1 [112269528, 112270487] | 10.14479 3.755132

7 chr1 [160970804, 160970923] | 16.25833 3.074689

8 chr1 [182635998, 182636117] | 33.85833 5.987797

9 chr1 [186270664, 186270903] | 32.48333 7.509529

...

42 chr6 [152787105, 152787224] | 45.0750000 13.6708993

43 chr6 [170639528, 170639647] | 31.1916667 9.0834560

44 chr7 [144345876, 144345995] | 78.3250000 7.9061326

45 chr8 [1830798, 1830917] | 0.2166667 0.4137009

46 chr9 [6241680, 6241799] | 42.5083333 5.7203688

47 chr9 [77277336, 77277575] | 72.5125000 18.9239794

48 chr9 [79827855, 79827974] | 26.1250000 3.8731190

49 chrX [47086386, 47086505] | 14.5916667 2.8269288

50 chrX [150891046, 150891285] | 10.0083333 2.7244310

$coverageAll

RleList of length 24

$chr1

integer-Rle of length 248737162 with 3785 runs

Lengths: 13327 54 85 54 ... 185876 54 130 54

Values : 0 1 0 1 ... 0 1 0 1

$chr10

integer-Rle of length 135113702 with 1032 runs

Lengths: 294227 54 116 54 ... 37 17 14 54

Values : 0 1 0 1 ... 2 1 0 1

$chr11

integer-Rle of length 134010621 with 1004 runs

Lengths: 233012 54 14 54 ... 335161 54 85 54

Values : 0 1 0 1 ... 0 1 0 1

$chr12

integer-Rle of length 133740173 with 1352 runs

Lengths: 274541 54 37 54 ... 56585 54 76 54

Values : 0 1 0 1 ... 0 1 0 1

$chr13

integer-Rle of length 115007810 with 1218 runs

Lengths: 19409537 54 81 54 ... 54 92 54

Values : 0 1 0 1 ... 1 0 1

...

<19 more elements>

10

$coverageTarget

RleList of length 21

$chr1

integer-Rle of length 2520 with 1079 runs

Lengths: 1 1 1 1 2 2 1 2 1 1 1 ... 1 1 2 1 1 2 1 1 1 1

Values : 23 22 21 23 24 23 24 21 22 21 22 ... 39 40 38 37 36 35 34 33 34 33

$chr10

integer-Rle of length 360 with 62 runs

Lengths: 8 12 1 1 5 1 2 5 6 3 1 ... 9 2 7 21 11 2 13 7 11 13

Values : 6 7 8 9 8 9 8 7 6 5 6 ... 4 3 4 3 2 3 2 1 2 3

$chr12

integer-Rle of length 480 with 201 runs

Lengths: 1 2 2 2 2 1 1 4 1 2 4 ... 1 4 3 5 5 3 1 3 2 9

Values : 18 20 22 20 21 20 22 21 23 24 25 ... 3 4 5 6 7 8 7 8 10 9

$chr13

integer-Rle of length 720 with 491 runs

Lengths: 1 1 1 2 1 5 2 1 1 1 3 ... 1 1 3 2 2 3 8 1 1 1

Values : 32 31 32 33 37 38 37 39 43 41 43 ... 25 23 21 22 25 24 23 22 24 25

$chr15

integer-Rle of length 240 with 102 runs

Lengths: 9 1 1 9 1 6 2 5 3 3 5 ... 2 2 1 1 2 2 3 1 5 4

Values : 14 13 12 11 10 9 10 9 10 11 12 ... 19 18 17 15 16 17 16 15 16 17

...

<16 more elements>

> targets2 <- Coverage$targetCoverages

Note that coverage should not be calculated using the output of function
reads2pairs in place of reads, since the genomic ranges in that table span the
whole region from the first to the second read of a pair. However, for the re-
spective read insert there is no actual coverage, because only the ends of the
original fragment were sequenced.

A different measure for the per-target coverage would be to count the num-
bers of reads overlapping with each target. This can be calculated by the func-
tion readsPerTarget. It returns again the input targets table while adding
a ’values’ column that gives the respective numbers of reads per target. If we
provide the table targets2 from above, we will get both the average per-target
coverages and the numbers of target-overlapping reads in the same table. In
order to speed things up, instead of all reads we could also provide the map-

pingReads output of function fraction.reads.target, since for counting the
reads per target it is enough to look at the reads from which we already know
they are on-target. Just make sure that the Offset option was set the same in
both fraction.reads.target and readsPerTarget.

11

> targets2 <- readsPerTarget(reads, targets2)

> targets2

RangedData with 50 rows and 3 value columns across 21 spaces

space ranges | avgCoverage coverageSD nReads

<factor> <IRanges> | <numeric> <numeric> <numeric>

1 chr1 [11158025, 11158264] | 44.12917 10.088934 231

2 chr1 [25870174, 25870293] | 0.00000 0.000000 0

3 chr1 [65656333, 65656572] | 31.75833 6.931217 164

4 chr1 [68611504, 68611743] | 28.79583 13.489341 152

5 chr1 [70225862, 70226101] | 24.16667 8.049360 126

6 chr1 [112269528, 112270487] | 10.14479 3.755132 185

7 chr1 [160970804, 160970923] | 16.25833 3.074689 50

8 chr1 [182635998, 182636117] | 33.85833 5.987797 90

9 chr1 [186270664, 186270903] | 32.48333 7.509529 166

...

42 chr6 [152787105, 152787224] | 45.0750000 13.6708993 129

43 chr6 [170639528, 170639647] | 31.1916667 9.0834560 84

44 chr7 [144345876, 144345995] | 78.3250000 7.9061326 241

45 chr8 [1830798, 1830917] | 0.2166667 0.4137009 1

46 chr9 [6241680, 6241799] | 42.5083333 5.7203688 124

47 chr9 [77277336, 77277575] | 72.5125000 18.9239794 369

48 chr9 [79827855, 79827974] | 26.1250000 3.8731190 84

49 chrX [47086386, 47086505] | 14.5916667 2.8269288 46

50 chrX [150891046, 150891285] | 10.0083333 2.7244310 51

The resulting RangedData table can be converted to a data frame, and as
such easily be written to a file, e.g. by

> write.table(as.data.frame(targets2), file="target_coverage.txt",

sep="\t", row.names=F, quote=F)

Talking about coverage, it is interesting to ask which fraction of target bases
reach a coverage of at least k (some value relevant for further analyses, e.g. SNP
calling) or which fraction of target bases is covered at all by any read (sensitivity
of the capture). The function covered.k calculates such fractions based on the
coverageTarget output of coverage.target. Option k specifies the values for
which to calculate the fraction of bases achieving the respective coverage.

> covered.k(Coverage$coverageTarget, k=c(1, 5, 10))

1 5 10

0.9520963 0.8444087 0.7033801

With coverage.hist we can visualize the coverage distribution, see figure
3. A line is added to the histogram that shows the cumulative fraction of tar-
get bases with a coverage of at least the corresponding x-axis value. The line
represents the results of covered.k for all possible values of k. Additionally,
you can highlight with dashed lines the base fraction achieving a coverage of at
least a certain value by defining the option covthreshold .

12

> coverage.hist(Coverage$coverageTarget, covthreshold=8)

Coverage Distribution

Coverage

F
ra

ct
io

n
of

 ta
rg

et
 b

as
es

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

C
um

ul
at

iv
e

fr
ac

tio
n

of
 ta

rg
et

 b
as

es

8X coverage

Figure 3: On-target coverage histogram. The orange line shows the cumulative

fraction of target bases (right y-axis) with a read coverage of at least x. The dashed

lines highlight the fraction of target bases covered by at least 8 reads.

A similar graph is the coverage uniformity plot, see figure 4. It corresponds
more or less to the cumulative line in the coverage histogram. However, cov-
erage.uniformity calculates normalized coverages, i.e. the per-base coverages
divided by the average coverage over all target bases. Normalized coverages
are not dependent on the absolute quantity of sequenced reads and are hence
better comparable between different samples or even different experiments. By
default, the x-axis in the figure is truncated at 1, which corresponds to the av-
erage normalized coverage. The steeper the curve is falling, the less uniform is
the coverage.

> coverage.uniformity(Coverage)

There are more graphical functions concerning read coverage. For example
you might be interested in whether large targets are covered by more reads, as
expected, since for larger target regions there should also be more hybridiza-
tion capture probes (”baits”). Or you might ask whether quite small tar-
gets have worse coverage, because the bait tiling might not be as good as
for larger targets. Those questions can be addressed by the function cover-

age.targetlength.plot. As input a RangedData targets table has to be given

13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized coverage

F
ra

ct
io

n
of

 ta
rg

et
 b

as
es

Figure 4: Fraction of targeted bases (y-axis) achieving a normalized coverage of at

least x. Dashed lines indicate the fractions of bases achieving at least the average

(= 1) or at least half the average coverage (= 0.5).

that contains the relevant information in the ’values’ column(s). The graphs are
useful for targets of very different lengths. In our example, where all the targets
are rather small, the figures are not very informative, see figure 5.

> par(mfrow=c(1,2))

> coverage.targetlength.plot(targets2, plotcolumn="nReads", pch=16,

cex=1.5)

> coverage.targetlength.plot(targets2, plotcolumn="avgCoverage", pch=16,

cex=1.5)

Another thing to check is the dependency between coverage and GC content
of the hybridization capture probes (”baits”). For calculating the GC contents
the bait sequences are needed. A file has to be created beforehand that con-
tains the positions as well as the sequences of all baits. The file is loaded by
function get.baits which is similar to get.targets, with the difference that
overlapping or adjacent baits are not merged, and that a column seqcol has to be
specified that holds the bait sequences. Like get.targets and get.reads, also
get.baits by default converts the bait start positions from 0-based to 1-based
coordinates. If the positions given in your baitsfile are already 1-based, set
option zerobased to FALSE .

14

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●
●

●●
●

●

● ●

●●
● ●
●

●
●

●

●●
●

●

●

●

●

●● ●

200 400 600 800 1000 1200

0
50

0
10

00
15

00

Target length (bp)

nR
ea

ds ●

●

●
●
●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

200 400 600 800 1000 1200

0
20

40
60

80

Target length (bp)

av
gC

ov
er

ag
e

Figure 5: Scatter plots and smoothing splines of number of reads per target (left

panel) or average coverage per target (right panel) versus respective target length.

> baitsfile <- paste(exptPath, "ExampleSet_Baits.txt", sep="/")

> baits <- get.baits(baitsfile, chrcol=3, startcol=4, endcol=5, seqcol=2)

[1] "read 108 hybridization probes"

With the baits RangedData table and the coverageAll output of cover-

age.target the (normalized) coverage versus GC content plot can be created.
This can take quite some time, since GC content and average (normalized) cov-
erage have to be calculated for every bait. The bait coverages can be returned by
setting option returnBaitValues = TRUE . You would expect the added smooth-
ing spline to have an inverse U-shape, with a peak in coverage for baits with
GC content around 40-50%. In our small example there are not enough baits
with low GC content to encounter the expected shape, see figure 6.

> coverage.GC(Coverage$coverageAll, baits, pch=16, cex=1.5)

There is also a function coverage.plot to visualize per-base coverages along
chromosomal positions. The input has to be the coverageAll output of func-
tion coverage.target, since also coverages of off-target bases are needed. The
positions of target regions, potentially extended on both sides, can be high-
lighted as well by specifying options targets and Offset (see figure 7).

> coverage.plot(Coverage$coverageAll, targets, Offset=100, chr="chr1",

Start=11157524, End=11158764)

Of course, coverages can also be visualized by genome browsers. We provide
the function make.wigfiles to create wiggle files that can then be uploaded e.g.
to the UCSC genome browser. You can make wiggle files for all chromosomes
on which there are reads or just for some selected chromosome(s) by specifying
option chroms. With option filename the name and location where to save

15

●
●

●

●

●

●

●●

●

●
●●● ●

● ●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●● ●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●

●●●●
●

●

●

●●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

0.3 0.4 0.5 0.6 0.7

0
1

2
3

Bait GC content

N
or

m
al

iz
ed

 c
ov

er
ag

e

Figure 6: Scatter plot and smoothing spline of normalized average coverage per

hybridization probe versus GC content of the respective bait.

the files can be manipulated. Base positions are given as 1-based (i.e. the
first base on a chromsome has position 1), as defined for wiggle files by UCSC
(http://genome.ucsc.edu/goldenPath/help/wiggle.html).

> make.wigfiles(Coverage$coverageAll)

6 Read Duplicates

A crucial issue in target capture experiments is read duplication. Usually, read
duplicates, i.e. reads that have exact same start and end positions, are removed
before follow-up analysis of sequencing data, since they are supposed to be PCR
artifacts. However, here we expect a probably substantial amount of ”real” read
duplication due to the enrichment process. ”Real” read duplicates would be
derived from actually separate input DNA molecules that by chance were frag-
mented at the same position. The duplicates.barplot shows which fraction
of reads / read pairs is present in the data in what number of copies. Read mul-
tiplicity proportions are calculated and shown separately for on- and off-target
reads / read pairs. Therefore, the plot gives an impression about the amount of
”real” duplication (expected mostly in the target regions) versus artifactual du-
plication (expected both on- and off-target). With option returnDups = TRUE
the absolute numbers (given on top of the bars, in millions) and percentages

16

http://genome.ucsc.edu/goldenPath/help/wiggle.html

11157600 11158000 11158400 11158800

0
10

20
30

40
50

60

Chromosome 1

C
ov

er
ag

e

Figure 7: Per-base coverages along chromosomal positions. Target regions (plus

addition of 100 bases on both sides) are highlighted in orange (yellow).

(bar heights) can be returned.

> duplicates.barplot(reads, targets)

In figure 8 we see, firstly, that for some reads there are quite a lot of identical
copies (x-axis up to 10). Secondly, the percentage of reads with multiple copies
is much higher within on-target reads than within off-target reads (red bars are
much higher than blue ones for x > 1). This suggest, as mentioned before, that
there might be substantial amount of ”real” read duplication.

In the case of paired-end data, the position information of both reads of a
pair can be used. Reads only have to be considered duplicated if the positions
of both reads are found again in another pair. We can use duplicates.barplot
with the table readpairs we created before to make the graph for read pairs
instead of single reads. For read pairs the extent of duplication is by far not as
high as for single reads, see figure 9.

> duplicates.barplot(readpairs, targets, ylab="Fraction of read pairs")

Unfortunately, it is not possible to distinguish the artfactual duplicates from
the naturally occurring ones. For that reason it might still be recommendable
to remove duplication before further analysis by keeping each duplicated read
position only once. (Since here we just deal with genomic positions and not with

17

1 2 3 4 5 6 7 8 10

Read multiplicity

F
ra

ct
io

n
of

 r
ea

ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

on target
off target

0

0.01

0

0

0

0
0

0 0 0 0 0 0 0 0 0 0 0

Figure 8: Duplicates barplot treating data as single-end. It shows fractions of on-

and off-target reads, respectively, that are unique, that are there in two copies, three

copies, etc. (x-axis). The numbers on top of the bars are absolute counts in millions.

the actual reads that might differ in sequence and quality, it does not matter
which copy of a duplicated read to keep.) You might also decide to do all the
QC analysis on the ”collapsed” data. Either a bed file is provided that includes
only unique read positions, or the tables are collapsed within R, e.g. by the
following code.

> dupfun <- function(x) duplicated(x$ranges)

> params <- RDApplyParams(rangedData=reads, applyFun=dupfun)

> dups <- unlist(rdapply(params))

> reads.collapsed <- reads[!dups,,drop=T]

In the case of paired-end data, as said before, reads only have to be con-
sidered duplicated if the positions of both reads are found again in another
pair. Removing duplicates can be done like follows, selecting non-duplicated
reads from the readpairs table (and in case of duplication just keep one of the
respective reads) and extracting those from the original read table.

> params2 <- RDApplyParams(rangedData=readpairs, applyFun=dupfun)

> dups2 <- unlist(rdapply(params2))

> ID.nondups <- readpairs$ID[!dups2]

> sel <- reads$ID %in% ID.nondups

> reads.collapsed.pairs <- reads[sel,,drop=T]

18

1 2 3 4

Read multiplicity

F
ra

ct
io

n
of

 r
ea

d
pa

irs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 on target

off target0

0

0

0 0 0 0 0

Figure 9: Duplicates barplot for read pairs.

In single-end data it is probable to lose a large number of reads by removing
duplicates. When treating our example data like single-end sequences, we are
left with only 16417 out of originally 19546 reads. Hence, the actual coverage
could decrease dramatically.

> coverage.target(reads.collapsed, targets, perBase=F, perTarget=F)

$avgTargetCoverage

[1] 17.43535

$targetCoverageSD

[1] 11.7878

$targetCoverageQuantiles

0% 25% 50% 75% 100%

0 7 16 27 46

Before removing duplicates we calculated a coverage of 27.5.
When using position information of both reads per pair, much less reads are

lost, e.g. in the example we can keep 18714 reads. Therefore, the coverage will
not decrease that much.

> coverage.target(reads.collapsed.pairs, targets, perBase=F, perTarget=F)

19

$avgTargetCoverage

[1] 25.09604

$targetCoverageSD

[1] 21.22714

$targetCoverageQuantiles

0% 25% 50% 75% 100%

0 7 20 38 110

7 Reproducibility

For any new technology, reproducibility is an important issue. Here we base
the reproducibility check on per-target-base coverages. Especially for technical
replicates we should yield similar results. But the following graphs might also
be useful to ensure homogeneity across biological replicates.

To give an example, we create an artificial new sample by removing randomly
10% of the reads from our data.

> r <- sample(nrow(reads), 0.1 * nrow(reads))

> reads2 <- reads[-r,,drop=T]

> Coverage2 <- coverage.target(reads2, targets, perBase=T)

With function coverage.density the coverage densities of several samples
can be compared. With option normalized you can choose whether to plot orig-
inal or normalized coverages. When plotting original values in the example, it is
obvious that the second sample does not reach as high coverage for many bases
as the first one, see figure 10, right panel. In contrast, normalized coverages
are not dependent on the total amount of reads, and we observe a very similar
coverage distribution for both samples (left panel), as expected since we just
removed some reads randomly.

> covlist <- list(Coverage, Coverage2)

> par(mfrow=c(1,2))

> coverage.density(covlist)

> coverage.density(covlist, normalized=F)

Also the coverage uniformity and coverage along chromosome plots shown
above (figures 4 and 7) can be produced for several samples within the same
graph. The functions can be called repeatedly, while specifying option add=TRUE
(see figures 11 and 12). As for the densities, the uniformity is almost identical
for the two samples since normalized coverage values are used for this plot.

> coverage.uniformity(Coverage, addlines=F)

> coverage.uniformity(Coverage2, addlines=F, add=T, col="blue", lty=2)

> coverage.plot(Coverage$coverageAll, targets, Offset=100, chr="chr1",

Start=11157524, End=11158764)

> coverage.plot(Coverage2$coverageAll, add=T, col.line=2, chr="chr1",

20

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

Normalized coverage

D
en

si
ty

sample 1
sample 2

0 20 40 60 80 100 120

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Coverage

D
en

si
ty

sample 1
sample 2

Figure 10: Target coverage densities of two samples, using normalized (left) or

original (right) coverages.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized coverage

F
ra

ct
io

n
of

 ta
rg

et
 b

as
es

Figure 11: Target coverage uniformity of two samples.

Start=11157524, End=11158764)

With function coverage.correlation we can produce scatterplots between
coverage values of pairs of replicate samples. Since a scatterplot for all per-

21

11157600 11158000 11158400 11158800

0
10

20
30

40
50

60

Chromosome 1

C
ov

er
ag

e

Figure 12: Coverage along chromosome plot for two samples.

target-base coverages would be huge (e.g. as pdf graph), and moreover the
difference between one million or ten million points in the graphic might not
be visible at all, just some fraction of randomly selected values is displayed.
The amount of points to plot can be controlled by option plotfrac. By default,
0.1% of all targeted bases are taken into account. In the example we set the
fraction to 10%, see figure 13. Scatterplots are shown in the style of a pairs

plot. In the lower panels the corresponding Pearson correlation coefficients are
shown. Correlation calculations are always based on all coverage values, even if
plotfrac < 1 is chosen. Like in coverage.density, by option normalized it can
be chosen whether to plot normalized or original coverage values.

> coverage.correlation(covlist, plotfrac=0.1, cex.pch=4)

8 Acknowledgement

The example data used in this manual was taken from an exome sequencing
data set of Raquel Rabionet and Xavier Estivill.

9 Session Information

> toLatex(sessionInfo())

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

22

sample 1

0 1 2 3 4

0
1

2
3

4

1 sample 2

Figure 13: Correlation plots of normalized target coverage values of two samples.

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, stats4, utils

� Other packages: BiocGenerics 0.16.0, Biostrings 2.38.0,
GenomeInfoDb 1.6.0, GenomicRanges 1.22.0, IRanges 2.4.0,
Rsamtools 1.22.0, S4Vectors 0.8.0, TEQC 3.10.0, XVector 0.10.0,
hwriter 1.3.2

� Loaded via a namespace (and not attached): Biobase 2.30.0,
BiocParallel 1.4.0, bitops 1.0-6, futile.logger 1.4.1, futile.options 1.0.0,
lambda.r 1.1.7, tools 3.2.2, zlibbioc 1.16.0

10 References

Hummel M, Bonnin S, Lowy E, Roma G. TEQC: an R-package for quality con-
trol in target capture experiments. Bioinformatics 2011; 27(9): 1316-1317.

Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Mor-
gan MT, Carey VJ. Software for Computing and Annotating Genomic Ranges.

23

PLoS Comput Biol 2013; 9(8): e1003118.

Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D’Ascenzo M,
Kitzman J, Wu Y-Q, Newsham I, Richmond TA, Jeddeloh JA, Muzny D, Albert
TJ, Gibbs RA. Whole exome capture in solution with 3 Gbp of data. Genome
Biology 2010; 11:R62.

Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell
T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum
C. Solution hybrid selection with ultra-long oligonucleotides for massively par-
allel targeted sequencing. Nat Biotechnol. 2009; 27(2): 182-9.

Tewhey R, Nakano M, Wang X, Pabon-Pena C, Novak B, Giuffre A, Lin E,
Happe S, Roberts DN, LeProust EM, Topol EJ, Harismendy O, Frazer KA. En-
richment of sequencing targets from the human genome by solution hybridiza-
tion. Genome Biol. 2009; 10(10): R116.

24

	Introduction
	Automated html Reports
	Load Reads and Targets Data
	Specificity and Enrichment
	Coverage
	Read Duplicates
	Reproducibility
	Acknowledgement
	Session Information
	References

