
SigFuge (Tutorial)

Patrick K. Kimes, Christopher R. Cabanski

October 13, 2015

Contents

1 Summary 1

2 Introduction 1
2.1 Citation . 2

3 Importing data 2

4 SigFuge Case Study 4
4.1 SFfigure . 5
4.2 SFpval . 6
4.3 SFlabels and SFnormalize . 8

1 Summary

SigFuge is a tool that takes as input RNA-seq read depth (coverage) for multiple samples across a genomic locus
(gene/transcript) and (1) clusters samples using the coverage data, (2) assesses significance of the clusters using SigClust
and (3) visualizes transcript coverage along genomic coordinates. This document provides a tutorial on how to use the
functions of the SigFuge package.

2 Introduction

Frequently, one of the main goals of an RNA-seq experiment is to identify genes that are differentially expressed (DE)
between two conditions, e.g. tumor and matched normal samples. In this setting where the contrasting groups of samples
are known, several existing DE tools, including Bioconductor packages DESeq [1] and edgeR [2], can be used to identify
the set of DE genes.

SigFuge is for expolartory analysis in RNA-seq experiments not designed to compare two pre-defined conditions. For
example, several studies sequence multiple tumor samples with few, if any, matched normals. These studies are better
suited for identifying subtypes with similar gene expression patterns using unsupervised clustering. Although many
previous studies have performed unsupervised clustering using gene expression values across many genes, here we focus
on clustering samples using per-base expression levels (coverage) across one gene locus at a time. This allows us to
identify genes exhibiting different expression patterns across the gene transcript, such as alternative splicing or gene
fusions, that may be missed when summarizing gene expression to one value. Our focus is on identifying genes that could
each individually stratify the samples into different clinically important subgroups.

SigFuge is a tool for identifying genes with statistically significant clusters. For each gene, SigFuge treats each sample
as a curve where RNA-seq read depth (coverage) is a function of genomic position. See Figure 1 for an example of

1

http://bioconductor.org/packages/release/bioc/html/SigFuge.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

SigFuge (Tutorial) 2

multiple samples visualized as curves across the CDKN2A locus. SigFuge clusters samples based on the shape of these
expression curves. The significance of clustering at each locus is quantified by a p-value calculated using SigClust [3].
The SigClust method formulates the question of statistical significance in clustering as a hypothesis test. The null
hypothesis of SigClust is that the data are from a single Gaussian distribution. The significance of a given clustering is
measured by the strength of clustering relative to an appropriate simulated null distribution. As the p-value calculation
depends on simulation, results will vary slightly between implementations even for the same data matrix. SigFuge output
for each locus includes a SigClust p-value and corresponding visualizations of expression clusters along the locus.

Visualization of RNA-seq transcript coverage is an important aspect of any study. The plotting functions that we present
here, which can be used independently of the SigFuge clustering results, show the expression level at the per-base
resolution across a gene. Treating these expression profiles as curves allows users to visualize the expression of multiple
samples in the same plot.

This tutorial is split into two parts. The first part (Section 3) provides examples for loading the data in the appropriate
format. The second part (Section 4) provides a fully worked case study including normalization, clustering, significance
testing and plotting.

2.1 Citation

For a more in depth discussion of clustering per-base expression profiles, see our manuscript describing the SigFuge

algorithm in further detail. Please try to cite the following article when you publish results obtained using the software.

Kimes, P.K., Cabanski, C.R., Wilkerson, M.D., Zhao, N., Johnson, A.R., Perou, C.M., Makowski, L., Maher,
C., Liu, Y., Marron, J.S., Hayes, D.N. (2014) SigFuge: single gene clustering of RNA-seq reveals differential
isoform usage among cancer samples. Nucleic Acids Research, 42(14):e113.

3 Importing data

Two objects are needed to run SigFuge: (1) a GRanges object or similar data.frame containing information about the
locus (gene) of interest and (2) a data matrix of coverage for each sample at each base (position) across the locus. The
GRanges object is only used to plot the exon boundaries, so it may be omitted if only calcualting SigFuge p-values.

There are two ways to create a GRanges object. The first way is to manually input the start and end positions of exons,
the chromosome, and the strand orientation. If a gene has mutliple isoforms with overlapping exons, it is advised to take
the union of all isoform models in order to detect possible alternative splicing. Below is an example for manually creating
a GRanges object containing annotation data for the CDKN2A locus.

> library(SigFuge)

> geneAnnot <- GRanges(seqnames=Rle("chr9", 5),

+ ranges=IRanges(start=c(21967751,21968574,21970901,21974403,21994138),

+ end=c(21968241,21968770,21971207,21975132,21994490)),

+ strand=Rle(strand("-"), 5))

> geneAnnot

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr9 [21967751, 21968241] -

[2] chr9 [21968574, 21968770] -

[3] chr9 [21970901, 21971207] -

[4] chr9 [21974403, 21975132] -

[5] chr9 [21994138, 21994490] -

seqinfo: 1 sequence from an unspecified genome; no seqlengths

http://cran.fhcrc.org/web/packages/SigClust/index.html

SigFuge (Tutorial) 3

The second way to create a GRanges object is to extract the annotation information from an appropriate R package
database. Below shows how to extract gene annotation data from the set of UCSC known genes. Notice that exons 4
and 5 are overlapping, so we use the reduce function to merge these exons.

> library(org.Hs.eg.db)

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> genesym <- c("CDKN2A")

> geneid <- select(org.Hs.eg.db, keys=genesym, keytype="SYMBOL", columns="ENTREZID")

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> ex <- exonsBy(txdb, "gene")

> geneAnnot <- ex[[geneid$ENTREZID[1]]]

> geneAnnot

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr9 [21967751, 21968241] - | 128318 <NA>

[2] chr9 [21968574, 21968770] - | 128319 <NA>

[3] chr9 [21970901, 21971207] - | 128320 <NA>

[4] chr9 [21974403, 21974826] - | 128321 <NA>

[5] chr9 [21974677, 21975132] - | 128322 <NA>

[6] chr9 [21994138, 21994490] - | 128323 <NA>

seqinfo: 93 sequences (1 circular) from hg19 genome

> geneAnnot <- reduce(geneAnnot)

> geneAnnot

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr9 [21967751, 21968241] -

[2] chr9 [21968574, 21968770] -

[3] chr9 [21970901, 21971207] -

[4] chr9 [21974403, 21975132] -

[5] chr9 [21994138, 21994490] -

seqinfo: 93 sequences (1 circular) from hg19 genome

Now that we have the gene annotation, the next step is to construct the data matrix. For each locus, a d-by-n coverage
matrix is required as input, where d is the locus length and n is the sample size. Each column corresponds to a sample
and each row to the coverage (number of overlapping reads) at each base. We assume that the sequencing data has
been aligned to a reference genome and the output is a sorted and indexed BAM file [4]. To demonstrate how to extract
coverage data from a list of BAM files, we will use the example BAM files contained in the prebsdata package (see [5]
for the original data source). First, we load, sort and index the BAM files for each sample. We also create a GRanges
object corresponding to the exons of gene DPM1 located on chromosome 20.

> library(Rsamtools)

> library(prebsdata)

> geneAnnot <- GRanges(seqnames=Rle("20", 9),

+ ranges=IRanges(

+ start=c(49551405,49552685,49557402,49558568,49562274,

+ 49562384,49565166,49571723,49574900),

+ end=c(49551773,49552799,49557492,49558663,49562299,

+ 49562460,49565199,49571822,49575060)),

+ strand=Rle(strand("-"), 9))

> bam_file1 <- system.file(file.path("sample_bam_files", "input1.bam"),

http://bioconductor.org/packages/release/data/experiment/html/prebsdata.html

SigFuge (Tutorial) 4

+ package="prebsdata")

> bam_file2 <- system.file(file.path("sample_bam_files", "input2.bam"),

+ package="prebsdata")

> sorted1 <- sortBam(bam_file1, tempfile())

> indexBam(sorted1)

> sorted2 <- sortBam(bam_file2, tempfile())

> indexBam(sorted2)

> bam_files <- c(sorted1, sorted2)

Next, we use the GRanges object to generate a matrix of per-base coverage. To do this, we first create a function to
extract coverage, calcInfo.

> calcInfo <- function(x) {

+ info <- apply(x[["seq"]], 2, function(y) {

+ y <- y[c("A", "C", "G", "T"), , drop=FALSE]

+ cvg <- colSums(y)

+ })

+ info

+ }

> param <- ApplyPileupsParam(which=geneAnnot, what=c("seq", "qual"),

+ yieldBy="position", yieldAll=TRUE)

> fls <- PileupFiles(bam_files, param=param)

> res <- applyPileups(fls, calcInfo, param=param)

> geneDepth <- t(do.call(cbind,res))

> colnames(geneDepth) <- c("Sample1", "Sample2")

> geneDepth[500:505,]

Sample1 Sample2

[1,] 110 75

[2,] 95 60

[3,] 105 60

[4,] 95 80

[5,] 95 50

[6,] 85 55

Depending on the number of samples, the above method may take several minutes per gene to create the coverage
matrix.

It is important to note that the GRanges object is only used to define properties of the SigFuge figures and does not
affect any of the analysis. Most notably, the locus information will not be used to parse the coverage matrix. As such,
the matrix should only contain the exonic regions of interest and the matrix dimension d should equal the total length of
the exons specified in the GRanges object.

4 SigFuge Case Study

This section gives a fully worked case study. We will analyze a subset of 179 lung squamous cell tumor samples sequenced
as part of the Cancer Genome Atlas [6]. We will restrict attention to the CDKN2A locus. For this example, we skip the
data retrieval step and apply SigFuge to a depth count matrix included with the package. geneDepth is a data matrix
of coverage with rows corresponding to genomic positions and columns to samples, and geneAnnot is a GRanges object
containing annotation information about the CDKN2A locus.

> data(geneAnnot)

> data(geneDepth)

SigFuge (Tutorial) 5

0

10

100

1000

5

50

500

5000

 2

19
94

49
0

21
99

41
38

 2

19
75

13
2

21
97

44
03

 2

19
71

20
7

21
97

09
01

 2

19
68

77
0

21
96

85
74

 2

19
68

24
1

21
96

77
51

chr9 genomic positions

re
ad

 d
ep

th
 (

lo
g 1

0
pl

ot
tin

g)

CDKN2A locus, LUSC samples, pval = 0.000394

Figure 1: Graphical output from SFfigure for lplots = 1. Each curve represents the expression level of one sample
across the CDKN2A locus. The curves are colored using default colors.

4.1 SFfigure

SFfigure is a comprehensive function that performs 4 main tasks: (1) normalization of the data matrix, (2) unsupervised
clustering on the normalized values, (3) p-value calculation for significance of clustering, and (4) plotting of the data
curves. The following code uses the default normalization and clustering procedures to produce 3 plots (Figures 1-3).
These plots will be saved in the working directory as ’CDKN2A 1.pdf’, ’CDKN2A 2.pdf’, and ’CDKN2A 3.pdf’. To
speed up calculations, we will only consider a subset of 50 samples.

> genename <- "CDKN2A"

> mdata <- geneDepth[,101:150]

> SFfigure(data=mdata, locusname=genename,

+ annot=geneAnnot, lplots=1:3, savestr=genename,

+ titlestr="CDKN2A locus, LUSC samples")

Figure 1 shows the raw coverage curves across the CDKN2A locus, produced by setting lplots = 1. The x-axis shows
genomic position, where different exons are colored using alternating colors (introns are not included). The y-axis shows
coverage on the log10 scale. Each curve corresponds to a distinct sample (50 curves are overlaid, one for each sample).
The SigClust p-value is reported in the title. There are only two clear clusters visible in Figure 1: a low expression class
and a high expression class. However, the significant p-value indicates that after filtering out samples with low expression,
the high expression samples can be further split into two distinct clusters. Although these clusters are difficult to see in
Figure 1, they are easily observed in Figures 2 and 3.

Figure 2 shows the same curves as Figure 1, but the curves are now colored according to cluster labels. The red curves
represent a class of lowly expressed samples. Because these lowly expressed curves may represent an important biological
class (e.g. copy number deleted samples) independent of another transcript alteration such as alternative splicing, they are
filtered out when normalizing, clustering, and assessing significance of the clusters. The blue and green curves represent
the two clusters as determined by 2-means clustering. The number of curves/samples in each class is also reported on

SigFuge (Tutorial) 6

Cluster 1 size = 13
Cluster 2 size = 19
Cluster 3 size = 18

0

10

100

1000

5

50

500

5000

 2

19
94

49
0

21
99

41
38

 2

19
75

13
2

21
97

44
03

 2

19
71

20
7

21
97

09
01

 2

19
68

77
0

21
96

85
74

 2

19
68

24
1

21
96

77
51

chr9 genomic positions

re
ad

 d
ep

th
 (

lo
g 1

0
pl

ot
tin

g)

Clusters

Cluster 1

Cluster 2

Cluster 3

CDKN2A locus, LUSC samples, pval = 0.000394

Figure 2: Graphical output from SFfigure for lplots = 2. The curves are colored according to class label. The red
curves represent a low expression class. There is a large difference in expression of the second exon between the blue and
green curves. This difference is reflected in the highly significant p-value.

the plot. The thick colored lines represent the median read depth for each class. Although the green and blue classes
have similar expression profiles in four of the five exons, there is a clear difference in expression at the second exon. This
difference is reflected in the highly significant p-value.

Instead of overlaying all curves in a single panel, Figure 3 plots each class of curves separately. The scale of the y-axis is
constant between all plots to allow for easier comparison between classes.

Although not present in this example, occasionally there will be an outlier sample that is of interest. Using SFfigure

with the option lplots = 4 produces a series of plots, where each plot shows one individual curve colored by its class
label. The column names of the data matrix are assumed to be the sample IDs and reported at the top of each plot.
This makes it easy to identify the outlier sample(s).

> genename <- "CDKN2A"

> SFfigure(data=mdata, locusname=genename,

+ annot=geneAnnot, lplots=4, savestr ="CDKN2A_individual_curves",

+ titlestr="CDKN2A locus, LUSC samples")

4.2 SFpval

SFpval allows you to obatin the p-value without creating any plots.

> output <- SFpval(mdata)

> output@pvalnorm

[1] 0.001082421

SigFuge (Tutorial) 7

Cluster 1 size = 13

Cluster 2 size = 19

Cluster 3 size = 18

0

10

100

1000

5

50

500

5000

0

10

100

1000

5

50

500

5000

0

10

100

1000

5

50

500

5000

C
luster 1

C
luster 2

C
luster 3

 2

19
94

49
0

21
99

41
38

 2

19
75

13
2

21
97

44
03

 2

19
71

20
7

21
97

09
01

 2

19
68

77
0

21
96

85
74

 2

19
68

24
1

21
96

77
51

chr9 genomic positions

re
ad

 d
ep

th
 (

lo
g 1

0
pl

ot
tin

g)

Clusters

Cluster 1

Cluster 2

Cluster 3

CDKN2A locus, LUSC samples, pval = 0.000394

Figure 3: Graphical output from SFfigure for lplots = 3.

This reported p-value may not perfectly match the p-value reported in the plots because the p-value calculation depends
on simulation. This function is useful if you are interested in testing hundreds or thousands of loci in the genome. Once
you have obtained all of the p-values, you can create plots for only the most significant genes. Since SFpval does not
correct for multiple comparisons, it is important to adjust the p-values using p.adjust if iterating over multiple loci.

SigFuge (Tutorial) 8

4.3 SFlabels and SFnormalize

Cluster labels can be computed with SFlabels. First, we have to normalize the data using SFnormalize. Because we
are interested in alterations such as splicing and fusions instead of differential gene expression, the SigFuge normalization
procedure adjusts for differences in total expression (read counts). The normalization procedure first filters out lowly
expressed samples because these samples are unable to provide any evidence of an alteration.

> norm <- SFnormalize(mdata)

> labels <- SFlabels(norm)

> labels[1:10]

[1] 1 2 2 2 3 1 2 1 3 1

The SigFuge normalization procedure reduces the variability between samples and exaggerates any difference not ex-
plained by a simple difference in overall expression. See the SigFuge manuscript for more details about the normalization
procedure employed here. Plots showing the read depth before and after normalization can be produced using the
following code. Note, we first remove low-expression samples since they are not included in the normalization procedure.

> exp.data <- mdata[,-which(norm$flag == 1)]

> labels <- labels[-which(norm$flag == 1)]

> SFfigure(exp.data, locusname=genename, annot=geneAnnot,

+ data.labels=labels, flag=0, lplots=2,

+ savestr="Raw_CDKN2A", titlestr="Raw coverage",

+ pval=0)

> SFfigure(norm$data.norm, locusname=genename, annot=geneAnnot,

+ data.labels=labels, flag=0, lplots=2,

+ savestr="Norm_CDKN2A", titlestr="Normalized coverage",

+ pval=0)

References

[1] Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology 11:R106.

[2] Robinson M.D., McCarthy D.J. and Smyth GK (2010). edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 26, 139−140.

[3] Liu, Y., Hayes, D.N., Nobel, A., Marron, J.S. (2008) Statistical Significance of Clustering for High-Dimension,
Low-Sample Size Data. Journal of the American Statistical Association 103(408), 1281−1293.

[4] Li, H., Handsaker, B., Wysoker, A. (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics
25, 2078−2079.

[5] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y. (2008) RNA-seq: an assessment of technical
reproducibility and comparison with gene expression arrays. Genome Research 18(9), 1509−1517.

[6] The TCGA Research Network (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature
489(7417), 519−525.

	1 Summary
	2 Introduction
	2.1 Citation

	3 Importing data
	4 SigFuge Case Study
	4.1 SFfigure
	4.2 SFpval
	4.3 SFlabels and SFnormalize

