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1 Introduction

Gene expression studies interrogating various speci�c aspects of cellular physiology � cell cycle regulation, dynamic
response to perturbations or natural circadian rhythms � involve samples being collected over a time series. A number
of methods have been developed to infer di�erentially expressed genes from temporal transcriptional data. One class
of methods involves extending static di�erential expression methods like ANOVA ([1]) and empirical Bayes ([2, 3]) to
temporal data sets. Another approach is to use functional data analysis methods to model the time series data as linear
combinations of basis functions (splines) ([4, 5, 6, 7, 8, 9]). Di�erential expression is then inferred by hypothesis testing
on the basis coe�cients, empirical Bayes analysis ([10, 11]) or by hypothesis testing between two groups ([5, 9, 12, 8, 13])

The method proposed by [8] and [9] utilizes a model driven approach to infer di�erential expression. The null hypothesis
is that for a given gene, the di�erence in pro�les between two treatments (or their deviation from the population average
for the gene) is random. They model this scenario by �tting a single average curve, constructed from natural cubic
spline basis curves, onto the two pro�les. Under the alternative hypothesis, the two pro�les arise from distinct underlying
biological processes and this is modeled by using di�erent models for each pro�le. If the gene is signi�cantly DE, the
quality of �t (as measured by the sum of squares of the regression residuals) under the alternative model is better than
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under the null model. To get the signi�cance of the �t statistic, the method instead uses a bootstrapping based approach
to simulate expression pro�les under the null model and empirically estimates the frequency of the simulated �t statistic
being higher than the observed one. A critical parameter in this modeling approach is the dimensionality of the spline
basis p. [8] propose a method to pick an optimal model that minimizes the generalized cross-validation error on the
top eigenvectors inferred from the data. In the current work, we extend the previous work by proposing an alternative
approach to model selection for inference in complex temporal data. We identify distinct optimal models for clustered
subsets of genes sharing complex patterns based on the statistical power to detect genes with di�erential trajectories. We
implement this approach in a statistical package written in R, Rnits, to assist the research community in the end-to-end
genomic analysis of time course experiments, from raw data import normalization, inference of DE and visualization of
results.

2 Method

2.1 Data preprocessing and normalization

Raw or pre-processed expression data can be imported into Rnits either as a data matrix, an RGList object created by
the package limma, an A�yBatch object (package a�y) or an eSet object downloaded from NCBI's Gene Expression
Omnibus by package GEOquery. For all data formats, Rnits o�ers probe �ltering and normalization options that are
native to the respective packages. Processed data, along with probe and sample phenotype data, is stored as an Rnits

class object, which inherits all methods from the ExpressionSet object in R that is commonly used for storing expression
data and metadata.This allows expression and metadata retrieval from the object using the standard methods de�ned for
ExpressionSet objects. In addition to the standard metadata requirements for the ExpressionSet object, building Rnits

objects requires columns labeled "Sample" and "Time" in the phenotype data matrix, and a column labeled "GeneName"
for the probe data matrix (for gene level summarization). One of the time series experiments may be labeled as 'control'
for the purpose of clustering data. Inference can be done at the probe level or at the gene level if multiple probes represent
a single gene. For gene level analysis, probe data is collapsed into a gene level summary using the robust Tukey Biweight
estimator, which penalizes outlier values. For analysis, the distinct time series experiments must have been sampled at
the same points.

2.2 B-spline basis model based hypothesis testing

The analysis approach is to model the time course data under the null hypothesis that individual gene expression trajec-
tories from distinct sets is a realization of the same underlying basis trajectory modeled as a B-spline curve. Under the
alternative hypothesis, each series is modeled as a distinct underlying basis. [8] et al describe a method of selecting the
optimal B-spline basis model L. For each data set, the top eigenvectors are computed and the set of models L are used
to compute the generalized cross-validation error using the eigenvectors as predicted variables. For each data set, the
model that minimizes the cross-validated error across all top components is chosen as optimal and the largest optimal
model among all data sets is chosen (Rnits.gcv). We extend this work to develop a parallel approach for selecting the
optimal model based on the power of inferring di�erentially expressed genes. Rnits.power. A series of candidate models
L are evaluated on the entire data set and optimal models are selected based on the distribution of the p-values of �t.

2.3 Clustering

In the �rst step of this approach, the genes (or probes) may be clustered. Clustering allows models of varying complexity
to be selected to represent the diverse expression patterns observed within the data. Each gene/probe is assigned to one
of K distinct clusters using k-means clustering on gene centered data (either all the series or based on a single "control"
series). The total number of clusters may be provided by the user as an argument or is determined empirically as twice
the number of eigenvectors required to explain 70% of variation in the time series labeled as control or the entire data
set. If any of the resulting clusters have less than 500 genes, clustering is iteratively repeated with one less initial cluster
centroid.
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2.4 Candidate model evaluation

The size r of the individual time series experiment determines the set of candidate B-spline models that can be investigated.
Each model L(c, p, r) is de�ned by its degree of curvature c and the degrees of freedom p i.e. the number of basis splines
used. The rank constrains the curvature and the number of basis splines as follows. For a given matrix with rank r, the
set of candidate models L were:

L(c, p, r)
{
3 ≤ p ≤ min(8, r − 2)
2 ≤ c ≤ min(5, p− 1)

(1)

where each model was constrained to have a maximum degree of curvature of 5 and maximum number of basis splines
at 8. Whenever su�cient degrees of freedom were available to allow manual placement of knots (p− c− 1 > 0), knots
were chosen based on which time points had the maximum in�ection. For each cluster k (or for the entire data), each
model L ∈ L or the optimal model obtained by generalized cross-validation was evaluated as follows:

� The gene expression data matrix for series s can be represented as Ymkn where m represents the number of probes
(or genes) in cluster k, and n equals size of the data series. The candidate model L is represented by its B-spline
basis XLpn. For models with larger basis splines, knot placement is guided by regions of higher curvature.

� Under the null model of no di�erential expression between the di�erent time series, the distinct pro�les are assumed
to be generated from the same underlying curve, and the expression matrix for all series Ymn is �t as follows:

Ymn = β̂mnX
L
pn +Emn = Ŷnull +Enull (2)

� Under the alternate hypothesis, for each individual series s ∈ (1, S) , we �t a distinct curve and the individual data
matrix is �t as follows

Ymr = β̂mrX
L
pr +Emr = Ŷalt +Ealt (3)

� The two models are evaluated using a ratio statistic FLk

FLk =

∑r
E2

null −
∑s∑r

E2
alt∑s∑r

E2
alt + s0

(4)

where
∑r

E2
null is the vector of sum of square of residuals under the null hypothesis for all genes in cluster k and∑s∑r

E2
alt is the sum of squared residuals for each gene in cluster k added over all series s. We add a variance

stabilizing factor to the denominator s0 computed as described by [14].

To compute p-values for the ratio statistic, we use the bootstrap approach as described by [8]. First the residuals under
the alternate model Ealt are standardized to correct for heteroskedasticity for each series. This penalizes the models with
larger basis splines by increasing the e�ective size of their residuals.

E
′

alt =
Ealt√

1−X(XTX)−1XT
(5)

For each bootstrap iteration b, a synthetic null data set is constructed by adding the bootstrapped studentized residuals
to the null �t.

Y∗null = Ŷnull +E
′∗
alt (6)

Eqn (2)-(4) are repeated for each iteration and ratio statistics FL∗k under the null hypothesis of no di�erential expression
are computed. Empirical p-values are computed for the observed ratio statistic based on the distribution of the simulated
ones under the null hypothesis.

PLk =
#(FL∗k > FLk )

B
(7)

where B are the number of bootstrap iterations.
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2.5 Model Selection

For each cluster k, p-values are similarly calculated for each model L ∈ L. The signi�cance of each model �t is a function
of the size of the studentized residuals under the null and alternative hypotheses. While more complex models (larger
number of basis functions) may yield smaller residuals during the alternative �t, these may get heavily penalized during
correction for heteroskedasticity, leading to low statistical power. At the other extreme, an insu�ciently complex model
may not e�ectively capture the complexity of the expression trajectories that may lead to larger residuals and lack of
power. To alleviate this e�ect, we select the model L which results in the maximum power, as determined by the number
of genes inferred at an estimated False Discovery Rate < 5%

3 Expression pro�ling in Yeast in a chemostat perturbation experiment

We applied the Bspline methods to time course expression data tracking the glucose perturbation responses of a wild type
yeast strain grown at steady state in a chemostat with galactose as the carbon source ([15]). Two glucose concentrations
(e�ective concentration of 0.2 g/l and 2 g/l) were used as pulses and responses were tracked at 10, 15, 20, 30, 45,
90, 120 and 150 minutes post each treatment. We obtained the published microarray data from NCBI Gene Expression
Omnibus (GEO accession GSE4158) and analyzed it using Rnits.

3.1 Data preparation

First, we download the data from GEO and format it.

# Download NCBI GEO data with GEOquery

library(knitr)

rm(list = ls())

library(GEOquery)

## Loading required package: Biobase

## Loading required package: BiocGenerics

## Loading required package: parallel

##

## Attaching package: 'BiocGenerics'

##

## The following objects are masked from 'package:parallel':

##

## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

## clusterExport, clusterMap, parApply, parCapply, parLapply,

## parLapplyLB, parRapply, parSapply, parSapplyLB

##

## The following objects are masked from 'package:stats':

##

## IQR, mad, xtabs

##

## The following objects are masked from 'package:base':

##

## Filter, Find, Map, Position, Reduce, anyDuplicated, append,

## as.data.frame, as.vector, cbind, colnames, do.call, duplicated,

## eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply,

## lengths, mapply, match, mget, order, paste, pmax, pmax.int, pmin,

## pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,

## tapply, union, unique, unlist, unsplit

##
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## Welcome to Bioconductor

##

## Vignettes contain introductory material; view with

## 'browseVignettes()'. To cite Bioconductor, see

## 'citation("Biobase")', and for packages 'citation("pkgname")'.

##

## Setting options('download.file.method.GEOquery'='auto')

## Setting options('GEOquery.inmemory.gpl'=FALSE)

library(stringr)

library(Rnits)

## Loading required package: ggplot2

## Loading required package: limma

##

## Attaching package: 'limma'

##

## The following object is masked from 'package:BiocGenerics':

##

## plotMA

gds <- getGEO("GSE4158", AnnotGPL = FALSE)[[1]]

## ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE4nnn/GSE4158/matrix/

## Found 1 file(s)

## GSE4158_series_matrix.txt.gz

## File stored at:

## /tmp/RtmpySch4q/GPL3415.soft

class(gds)

## [1] "ExpressionSet"

## attr(,"package")

## [1] "Biobase"

gds

## ExpressionSet (storageMode: lockedEnvironment)

## assayData: 10752 features, 26 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: GSM94988 GSM94989 ... GSM95013 (26 total)

## varLabels: title geo_accession ... data_row_count (36 total)

## varMetadata: labelDescription

## featureData

## featureNames: 1 2 ... 10752 (10752 total)

## fvarLabels: ID METACOLUMN ... TYPE (10 total)

## fvarMetadata: Column Description labelDescription

## experimentData: use 'experimentData(object)'

## Annotation: GPL3415

# Extract non-replicate samples

pdata <- pData(gds)

filt <- pdata$characteristics_ch2 %in% names(which(table(pdata$characteristics_ch2) ==

2))

gds <- gds[, filt]

pdata <- pData(gds)
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time <- as.numeric(str_extract(pdata$characteristics_ch2, "\\d+"))

sample <- rep("2g/l", length(time))

sample[grep("0.2g/l", gds[["title"]])] <- "0.2g/l"

# Format phenotype data with time and sample information

gds[["Time"]] <- time

gds[["Sample"]] <- sample

dat <- gds

fData(dat)["Gene Symbol"] <- fData(dat)$ORF

3.2 Running Rnits

3.2.1 Build Rnits object from ExpressionSet or data matrix

Next we build the Rnits object

# Build rnits data object from formatted data (samples can be in any order) and

# between-array normalization.

rnitsobj <- build.Rnits(dat[, sample(ncol(dat))], logscale = TRUE, normmethod = "Between")

## Between Array normalization

## Data set with 2 time series

## Dataset with 10752 features and 16 samples

rnitsobj

## Rnits (storageMode: lockedEnvironment)

## assayData: 10752 features, 16 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: GSM95010 GSM95011 ... GSM94998 (16 total)

## varLabels: title geo_accession ... Sample (38 total)

## varMetadata: labelDescription

## featureData

## featureNames: 1 2 ... 10752 (10752 total)

## fvarLabels: ID METACOLUMN ... GeneName (12 total)

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation:

# Alternatively, we can also build the object from just a data matrix, by

# supplying the 'probedata' and 'phenodata' tables

datdf <- exprs(dat)

rownames(datdf) <- fData(dat)$ID

probedata <- data.frame(ProbeID = fData(dat)$ID, GeneName = fData(dat)$ORF)

phenodata <- pData(dat)

rnitsobj <- build.Rnits(datdf, probedata = probedata, phenodata = phenodata, logscale = TRUE,

normmethod = "Between")

## Log scale is TRUE

## Between Array normalization

## Data set with 2 time series

## Dataset with 10752 features and 16 samples

# Extract normalized expression values

http://bioconductor.org/packages/release/bioc/html/Rnits.html
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lr <- getLR(rnitsobj)

head(lr)

## GSM95010 GSM95011 GSM95012 GSM95013 GSM95002 GSM95004

## 1 -0.99269970 -0.84741081 -0.22867060 0.5941574 -1.18590131 0.5137818

## 2 0.12448779 0.76758977 1.43044492 0.9482546 -0.04944478 0.4212989

## 3 0.05362765 -0.69975822 -0.70887206 0.2560923 0.62460336 0.3294558

## 4 -0.59017581 -0.47129159 -0.08102022 0.7885572 -1.03973077 0.8060511

## 5 -1.05032467 0.04912668 0.09804767 0.4690431 -1.59731454 0.4243162

## 6 0.84482623 1.10519264 1.25240820 1.6704265 -0.22307705 0.3077783

## GSM95006 GSM95008 GSM94988 GSM94989 GSM94991 GSM94992

## 1 -0.31852729 -0.19303436 -0.20592568 -0.0797288 -0.05466009 0.005671936

## 2 0.31219698 0.13219700 0.62636186 0.6992206 0.78594481 0.684897162

## 3 -0.09733628 -0.39948994 -0.26945402 -0.7516256 -1.01418075 -1.066315054

## 4 0.57356735 0.43055165 -0.07012699 -0.3610244 -0.97771053 -0.841308620

## 5 0.38912313 0.09812534 0.25315615 0.0561665 0.17523029 0.273787476

## 6 0.24570856 -0.19826540 0.85110526 0.7232386 1.04992619 1.053762306

## GSM94993 GSM94994 GSM94996 GSM94998

## 1 0.3418725 -2.487601 0.1680312 0.2977183

## 2 0.8925079 NA 1.1047615 0.7014654

## 3 -1.0909498 NA 0.1363547 0.7593684

## 4 -0.1664416 NA -0.2371354 NA

## 5 0.1791928 NA 0.3288013 0.5037860

## 6 1.0160011 -1.292664 0.8986091 0.7248260

# Impute missing values using K-nn imputation

lr <- getLR(rnitsobj, impute = TRUE)

## Warning in knnimp(x, k, maxmiss = rowmax, maxp = maxp): 1635 rows with more than 50 % entries

missing;

## mean imputation used for these rows

## Cluster size 9117 broken into 6018 3099

## Cluster size 6018 broken into 4290 1728

## Cluster size 4290 broken into 428 3862

## Done cluster 428

## Cluster size 3862 broken into 1966 1896

## Cluster size 1966 broken into 1191 775

## Done cluster 1191

## Done cluster 775

## Done cluster 1966

## Cluster size 1896 broken into 1298 598

## Done cluster 1298

## Done cluster 598

## Done cluster 1896

## Done cluster 3862

## Done cluster 4290

## Cluster size 1728 broken into 1542 186

## Cluster size 1542 broken into 976 566

## Done cluster 976

## Done cluster 566

## Done cluster 1542

## Done cluster 186

## Done cluster 1728

## Done cluster 6018
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## Cluster size 3099 broken into 1001 2098

## Done cluster 1001

## Cluster size 2098 broken into 522 1576

## Done cluster 522

## Cluster size 1576 broken into 941 635

## Done cluster 941

## Done cluster 635

## Done cluster 1576

## Done cluster 2098

## Done cluster 3099

head(lr)

## GSM95010 GSM95011 GSM95012 GSM95013 GSM95002 GSM95004

## 1 -0.99269970 -0.84741081 -0.22867060 0.5941574 -1.18590131 0.5137818

## 2 0.12448779 0.76758977 1.43044492 0.9482546 -0.04944478 0.4212989

## 3 0.05362765 -0.69975822 -0.70887206 0.2560923 0.62460336 0.3294558

## 4 -0.59017581 -0.47129159 -0.08102022 0.7885572 -1.03973077 0.8060511

## 5 -1.05032467 0.04912668 0.09804767 0.4690431 -1.59731454 0.4243162

## 6 0.84482623 1.10519264 1.25240820 1.6704265 -0.22307705 0.3077783

## GSM95006 GSM95008 GSM94988 GSM94989 GSM94991 GSM94992

## 1 -0.31852729 -0.19303436 -0.20592568 -0.0797288 -0.05466009 0.005671936

## 2 0.31219698 0.13219700 0.62636186 0.6992206 0.78594481 0.684897162

## 3 -0.09733628 -0.39948994 -0.26945402 -0.7516256 -1.01418075 -1.066315054

## 4 0.57356735 0.43055165 -0.07012699 -0.3610244 -0.97771053 -0.841308620

## 5 0.38912313 0.09812534 0.25315615 0.0561665 0.17523029 0.273787476

## 6 0.24570856 -0.19826540 0.85110526 0.7232386 1.04992619 1.053762306

## GSM94993 GSM94994 GSM94996 GSM94998

## 1 0.3418725 -2.4876007 0.1680312 0.2977183

## 2 0.8925079 0.8512363 1.1047615 0.7014654

## 3 -1.0909498 -0.2650156 0.1363547 0.7593684

## 4 -0.1664416 -0.1232633 -0.2371354 0.0988995

## 5 0.1791928 0.6795649 0.3288013 0.5037860

## 6 1.0160011 -1.2926636 0.8986091 0.7248260

3.2.2 Fitting the model

Next �t the model using gene-level summarization and by clustering all genes.

# Fit model using gene-level summarization

rnitsobj <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = TRUE)

## Collapsing probes into gene level log-ratios

## 3066 probes had no gene names. Removing them from further processing.

## Found 6342 unique genes.

## ############################

## Analyzing Models

## Computed number of clusters is 12

## Repeating clustering to eliminate small clusters

## Repeating clustering to eliminate small clusters

## Repeating clustering to eliminate small clusters

## Repeating clustering to eliminate small clusters

## Repeating clustering to eliminate small clusters

## Repeating clustering to eliminate small clusters

## Repeating clustering to eliminate small clusters
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## Number of clusters is: 5

## ############################

## Cluster 1 of size 1000

## Cluster 2 of size 504

## Cluster 3 of size 1708

## Cluster 4 of size 2602

## Cluster 5 of size 528

## Estimated proportion of null genes is 46.12 %

The model may be �t using no clustering of samples, or by precomputing the optimal model using the method of [8].

rnitsobj_nocl <- fit(rnitsobj, gene.level = TRUE, clusterallsamples = FALSE)

opt_model <- calculateGCV(rnitsobj)

rnitsobj_optmodel <- fit(rnitsobj, gene.level = TRUE, model = opt_model)

3.2.3 Get top genes and other �t summary statistics

# Get pvalues from fitted model

pval <- getPval(rnitsobj)

head(pval)

## YAL001C YAL003W YAL005C YAL008W YAL010C YAL012W

## 0.333647541 0.013530000 0.008665105 0.218993082 0.435983859 0.047720000

# Get ratio statistics from fitted model

stat <- getStat(rnitsobj)

head(stat)

## YAL001C YAL003W YAL005C YAL008W YAL010C YAL012W

## 0.019826266 1.134269251 0.570045135 0.053763321 0.004774746 0.624189085

# If clustering was used, check the cluster gene distribution

table(getCID(rnitsobj))

##

## 1 2 3 4 5

## 1000 504 1708 2602 528

# P-values, ratio statistics and cluster ID's can be retrieved for all genes

# together

fitdata <- getFitModel(rnitsobj)

head(fitdata)

## Ratio.statistic p.value clusterID

## YAL001C 0.019826266 0.333647541 3

## YAL003W 1.134269251 0.013530000 1

## YAL005C 0.570045135 0.008665105 3

## YAL008W 0.053763321 0.218993082 4

## YAL010C 0.004774746 0.435983859 4

## YAL012W 0.624189085 0.047720000 1

# View summary of top genes

summary(rnitsobj, top = 10)

## Rank Name Statistic p.value FDR.percent ClusterID Model.degree

## YLR108C 1 YLR108C 12.910 0 0 1 5

## YGL157W 2 YGL157W 9.327 0 0 1 5
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## YDR277C 3 YDR277C 9.177 0 0 1 5

## YLR044C 4 YLR044C 8.783 0 0 1 5

## YLR377C 5 YLR377C 7.996 0 0 2 2

## YOL126C 6 YOL126C 6.536 0 0 2 2

## YNL117W 7 YNL117W 5.954 0 0 2 2

## YJL045W 8 YJL045W 5.081 0 0 2 2

## YLR411W 9 YLR411W 5.005 0 0 2 2

## YJR048W 10 YJR048W 2.562 0 0 4 2

## Model.df

## YLR108C 6

## YGL157W 6

## YDR277C 6

## YLR044C 6

## YLR377C 3

## YOL126C 3

## YNL117W 3

## YJL045W 3

## YLR411W 3

## YJR048W 3

# Extract data of top genes (5% FDR)

td <- topData(rnitsobj, fdr = 5)

## 1283

head(td)

## 0.2g/l_10 0.2g/l_15 0.2g/l_20 0.2g/l_30 0.2g/l_45 0.2g/l_90

## YLR108C 0.5685404 -1.103856 -0.920593 -0.6556341 0.03927246 -2.2515196

## YGL157W 2.6492136 2.318524 3.000039 1.8748751 1.25321768 -0.8536410

## YDR277C 0.9715954 1.605899 2.144856 1.8467730 2.19654505 1.4071820

## YLR044C 0.8418638 1.074910 1.873320 1.5850722 0.26911068 -0.2902454

## YLR377C -1.2391829 -1.767067 -2.287780 -1.0063690 -0.82232518 0.8824731

## YOL126C -1.9560429 -1.823695 -1.256064 -0.5267378 -0.30743812 1.3158447

## 0.2g/l_120 0.2g/l_150 2g/l_10 2g/l_15 2g/l_20 2g/l_30

## YLR108C -0.1540562 0.07452528 0.8272629 0.9679145 1.4876804 1.65439917

## YGL157W 1.0488212 0.50091541 1.6802568 2.7494918 3.1017524 4.00086971

## YDR277C 0.3663740 0.51117759 -1.3601205 -0.8216271 -0.5638514 0.04898597

## YLR044C -0.8900869 -0.58703064 1.1211933 1.5203426 1.7523680 2.33330558

## YLR377C 0.9316106 1.07983128 -1.8115118 -2.5088787 -2.8089979 -2.70192631

## YOL126C 1.0227485 1.84276981 -1.4861348 -2.3854609 -2.4288680 -2.07939884

## 2g/l_45 2g/l_90 2g/l_120 2g/l_150

## YLR108C 1.7804393 1.669185 2.322039 2.263248

## YGL157W 3.3594363 2.626783 3.101510 2.974053

## YDR277C 0.4385779 1.141847 2.291573 2.599364

## YLR044C 2.5023404 1.734326 2.062824 1.783147

## YLR377C -3.4228364 -2.697300 -3.086772 -3.658583

## YOL126C -2.9615985 -1.614670 -2.408455 -2.435676

Next we plot the results for the top 16 di�erentially expressed genes by FDR

# Plot top genes trajectories

plotResults(rnitsobj, top = 16)

## Next: 1 of 1
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sessionInfo()

## R version 3.2.2 (2015-08-14)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 14.04.3 LTS

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C
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## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] Rnits_1.4.0 limma_3.26.0 ggplot2_1.0.1

## [4] stringr_1.0.0 GEOquery_2.36.0 Biobase_2.30.0

## [7] BiocGenerics_0.16.0 knitr_1.11

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.1 BiocInstaller_1.20.0 formatR_1.2.1

## [4] RColorBrewer_1.1-2 plyr_1.8.3 highr_0.5.1

## [7] bitops_1.0-6 tools_3.2.2 zlibbioc_1.16.0

## [10] boot_1.3-17 digest_0.6.8 evaluate_0.8

## [13] preprocessCore_1.32.0 gtable_0.1.2 proto_0.3-10

## [16] grid_3.2.2 qvalue_2.2.0 impute_1.44.0

## [19] XML_3.98-1.3 reshape2_1.4.1 magrittr_1.5

## [22] scales_0.3.0 codetools_0.2-14 MASS_7.3-44

## [25] splines_3.2.2 BiocStyle_1.8.0 colorspace_1.2-6

## [28] labeling_0.3 stringi_0.5-5 affy_1.48.0

## [31] RCurl_1.95-4.7 munsell_0.4.2 affyio_1.40.0

4 Summary

Dynamic changes in transcriptional programs to changing stimulus or cell cycle stages necessitate an experimental design
that tracks expression changes over a period of time. There are often constrains on the replication levels in such designs,
posing a challenging inference problem. A number of methods have been developed to infer di�erential expression
between conditions. We extend a previously developed method by [8] of using B-splines to perform hypothesis testing.
We extended the method to include a model selection step that optimizes for distinct subsets within the expression data,
corresponding to diverse transcriptional regulatory patterns in cells. We present this method as an comprehensive analysis
R package Rnits to enable the data import, pre-processing, normalization, analysis and visualization of gene expression
data from a variety of sources (GEO, raw or normalized data tables).
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