Approaches to R as web and analytic service

Nianhua Li, Martin T. Morgan, Seth Falcon, Robert Gentleman

Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N.
PO Box 19024 Seattle, WA 98109

15 Sept, 2006

Abstract

The aim of RWebServices is to facilitate exposing R functions as ef-
fective Java-based web or grid services. The application uses existing
technologies in web and grid services, XML, as well as new and exist-
ing inter-system interfaces between R and other languages. We briefly
review the state of art of these research areas here, with an emphasis on
applications related to RWebServices.

1 Introduction

Web services [1, 2] refer to a set of standards and techniques that allow appli-
cations to be described, published, discovered and invoked over an internet pro-
tocol backbone. Web services enable applications to communicate in a platform
and language independent way, increasing software sharing and reuse. Multiple
programming languages have been used in web services, such as Java [3, 4],
Perl [5], C++, C#, Python, PHP, VB, and Ruby.

A grid service is a web service specializing on a computing environment that
integrates distributed and heterogeneous resources across various administrative
organizations [7, 8]. An important distinction between a grid service and a gen-
eral web service is the support of stateful resources, i.e., services can be created
and destroyed during run-time. The high-level definitions of grid service archi-
tecture and its requirements are given by the Open Grid Services Architecture
(OGSA) [6, 9]. The Web Services Resource Framework (WSRF) [10] provides
detailed specifications for stateful resource management using web services tech-
nology. There are implementations of OGSA and WSRF in various languages.
Example implementations include the Globus Toolkit in Java and C++ [11],
WSRF::Lite in Perl [12], WSRF.NET in Microsoft .NET framework [13], and
pyGlobus in Python [14].

Web and grid service support for R is still in its early stages. An effective
way to connect R with web or grid services is to leverage existing efforts in



other language domains, in particular using Java as a conduit to provide R web
and grid services. We chose Java rather than other languages because web and
grid services support is well-established in the Java community, and because
communication with third-party Java components is a feature of the caBIG
project.

This document discusses systems integrating R and Java, and provides a
brief review of existing web and grid services support in the R community. The
document concludes with a brief synopsis of formats for statistical data ex-
change.

2 Bridging R and Java

Two different approaches have been used to achieve interoperability between R
and Java: message streams and shared libraries.

2.1 The message stream approach

In this approach, R and Java are run as separate processes. Data is transported
as message streams with an encoding that can be understood by both parties.
Message streams can be text-based or binary. Transportation media can be
socket connections, web services over the internet, or even file systems (standard
I/0). Open Statistical Services (0SS) [15] and Rserve [16] are two examples of
the message streams approach.

This approach is useful if the R component may potentially talk with other
language systems in the future. New language systems can be easily included,
since the only requirement is serialization and deserialization between the mes-
sage encoding and language specific data structures. Moreover, it is known that
R is not thread-safe, whereas Java supports multi-threading. Because R and
Java processes are independent from each other in this approach, it is possible
to have multiple Java threads communicating with R concurrently.

There are several disadvantages to a message streaming approach. First is
efficiency: data is serialized and deserialized at every stage during transporta-
tion. Second, stream-based transportation is slower than direct programming
calls, no matter what encoding or transportation mechanism is used. The third
concern is related to data persistence and error handling. Because R and Java
belong to separate processes, extra implementation is required to ensure the
ability to deliver error messages even after after a server or data transportation
failure. Security is also a challenge in server-client architectures. The final chal-
lenge is session management: imagine that a Java process invokes an R function
which uses objects of the caller (the Java process). Both parties need server
support, and the transportation layer needs to support session management.

Open Statistical Services (0SS) integrates Java and R via StatML, an XML-
based markup language for encoding statistical data. OSS contains two major
components: the Java bridge and the R bridge. Both components support data
serializations between StatML and data structures in R (the R bridge) and Java



(the Java bridge). The message transportation channel can be either standard
I/0, or internet-based web services. A message of R method invocation from
Java includes two parts: the function name as a character string, and input
parameters in StatML encoding. Basic R data types including numeric, integer,
logical, and character vectors, as well as list and array, are covered by the StatML
encoding. The StatML encoding is text-based for scalars, and 64-bit binary for
lists and arrays. Invocation of Java methods from R is performed in a similar
manner.

Rserve is a TCP/IP server that allows R to be invoked from other applica-
tions. Session management is supported. For example, a client can first store
data on Rserve, then modify the R environment on Rserve through several
method invocations, with intermediate results kept on the server, and finally re-
trieve results. Method invocation follows normal R syntax, and is sent as a series
of text messages. Data is sent in binary forms using an in-house serialization
protocol. The current implementation supports basic R data types including
integer, numeric and character vectors. Complex data types such as S3 and S4
objects can also be encoded using a low-level interface, but the decoding part
has not been implemented yet. The unique part of Rserve is that it forks a
new R process for each client. Therefore multiple clients can be supported si-
multaneously. This cannot be done with standard R. Rserve also provides error
handling and security support. There are C/C++ and Java clients available for
Rserve.

2.2 The shared library approach

R and Java can also be integrated into a single process, with one embedded
into the other. There is no direct programming interface between R and Java.
However, the interface between Java and C is well-developed in the Java Na-
tive Interface (JNI), and the internals of R itself are largely written in C. The
technique of bridging R and Java via C has been used by applications such as
SJava [17], arji [18], and JGR [19] and related tools (JRI and rJava).

The shared library approach has two advantages. First, the interface (C)
is a programming language, which is more powerful than any encoding mecha-
nism. It therefore gives more flexibility to integrate languages. Secondly, both
R and Java are in a single process, avoiding challenges in a typical client-server
architecture such as session management, data persistence and security. Error
handling is also easy inside one process, because both JNI and the R interface
to C have error handling mechanism. Some applications also provide advanced
features such as callback and object references. These concepts are easier to
implement than when using the message stream approach.

There are also downsides to the shared library approach. Because R is not
thread-safe, parallel processing requires additional layers even though Java sup-
ports multi-threading. Also, the learning curve for low-level application de-
velopment is steep, because interactions between at least three languages are
involved.



SJava can be used to embed R in Java, or to embed Java in R. Interest-
ing features of SJava includes callbacks, object references, and customized data
conversion. For example, the R instance embedded in Java can call back to
the original Java virtual machine. Object references allow data stored in one
language format to be referred to in another language. Thus a Java data struc-
ture (e.g. Vector) can contain a reference to R data. This avoids unneces-
sary between-language data transformation and evaluation. Data conversion in
SJava is highly configurable yet easy to use. Built-in converters map R charac-
ter, integer, numeric and logical vectors to Java primary type arrays or existing
classes in Java. Users can provide additional converters written in C or R to
extend or overwrite the default data transformation behavior. These convert
functions can be “high-level”, with details of the data conversion handled by
SJava. Moreover, the registration of user-level converters in SJava is performed
during run time via a well-defined interface. Therefore, the transformation of
arbitrary or complex data types is achieved with minimal efforts.

JGR is an integrated development environment for R written in Java. Its
Java-based graphical user interface communicates with R through two facilities:
JRI (Java/R Interface) for Java to R and rJava for the reverse task. Both
provide low-level R-Java interfaces using JNI. Yet another example of the shared
library approach is arji, a Bioconductor package similar to rJava.

3 Bridging R and web or grid services

Web and grid services support in the R community is receiving increasing atten-
tion. At least two applications have been developed in the last year to transform
R and Bioconductor packages into web services.

RProteomics uses Open Statistical Services to integrate R with Java. The
Java application is further developed as a caGrid analytical service, which offers
semantic interoperability and security control in addition to classical web service
capabilities. RProteomics focuses on proteomics data analysis.

The Comprehensive R-based Microarray Analysis web service (CARMAweb) [20]
contains a J2EE front end and an Rserve back end. It provides a web interface
and a web service interface. For a typical service request in CARMAweb, the
method being invoked and tuning parameters are specified as primary data types
(e.g. character, integer). Input data sets are provided by files. The J2EE front
end organizes input information into a ITEX document, and transfers it to R
via Rserve. Data analysis in R is wrapped by Sweave, so that Sweave extracts R
commands from IWTEX and packs results back to a document (IWTEX, converted
to PDF). Results are returned as PDF files, and targeted for human interpre-
tation. This is in contrast to typical web services where service responses are
expected to be interpreted by other applications.

Finally, it is worth mentioning efforts to expose R functionality through a
web interface. This approach allows end users to take advantage of the statisti-
cal computing power of R without tedious command line programming. Perl is
often used as a bridge between R and the web. Examples include MIDAW [21]



(MIcroarray Data Analysis Web tool), RACE [22] (Remote Analysis Computa-
tion for gene Expression data), and webbioc [23].

3.1 Statistical data exchange formats

Statistical computations use specialized concepts (e.g., NA, corresponding to
‘missing’ data observations) that do not exist in general-purpose programming
languages. Bridging R with other web or grid services requires either that these
data structures be described in a way that facilitates data exchange, or the
services exposed by R make use of general purpose data representations that
allow interoperability without sacrificing too much expressivity.

There are three efforts that propose data exchange formats for statistical
data: StatDataML [24], CDFML [25] and StatML. All of these formats are XML-
based markup languages aiming to facilitate the exchange of statistical data
across platforms. They have been used in communication between R and other
systems such as MATLAB and Java. McConnell [15] provides a review of these
data exchange formats.

There are several limitations to employing a formalized data exchange model
such as those outlined in the previous paragraph. First, effective interoperabil-
ity requires implementation of serialization mechanisms in each target language.
Second, data exchange formats require integration into web or grid service stan-
dards like SOAP or WSDL. Third, no clear consensus on data exchange format is
available, leaving little hope for interoperability amongst services implementing
a single data model. Finally, from the perspective of communication between R
and the web- or grid-services front end, the ‘shared library’ approach is much
less dependent on formalized serialization models than is the ‘message stream’
approach.

The limitations sketched in the previous paragraph point toward use of light
weight and ad hoc data structures that capture key features of the statistical
domain, without requiring complex serialization mechanisms or data structures
in non-statistical languages. This approach provides a short-term solution that
enables exchange of statistical data amongst a diversity of programming lan-
guages, while sacrificing the expressivity of a carefully structured exchange for-
mat and the long-term benefits of interoperability such formats provide. This
approach does not preclude the implementation of structured exchange formats
once patterns of usage become well-established.

References

[1] D. Booth, H. Haas, F. McCabe, E. Newcommer, M. Champion, C. Ferris,
and D. Orchard. Web Services Architecture. W3C Working Group Note,
2004.

2] E. Cerami. Web Services Essentials, Distributed Applications with XML-
RPC, SOAP, UDDI & WSDL. OReilly Media, 1st edition, 2002.



[3]
[4]

[5]

[13]

[14]

[15]

Java Technology and Web Services. http://java.sun.com/webservices/

R. Irani, S. Basha. AXIS: Next Generation Java SOAP. Peer Information,
1st edition, 2002.

R. Ray and P. Kulchenko. Programming Web Services with Perl. OReiHy
Media, 1st edition, 2002.

I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, J. Von
Reich. The Open Grid Services Architecture, Version 1.0.

I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of Supercomputer
Applications, 15(3):200-222, 2001.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
Globus Project, 2002. http://www.globus.org/research/papers/ogsa.
pdf

J. Treadwell. Open Grid Services Architecture Glossary of Terms.
Global Grid Forum OGSA-WG. GFD-1.044, 2005. http://www.ggf.org/
documents/GWD-I-E/GFD-I.044.pdf

K. Czajkowski, F. D. Ferguson, 1. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. The WS-REsource Framework,
Version 1.0. 2004.

I. Foster. Globus Tookkit Version 4: Software for Service-Oriented Sys-
tems. IFIP International Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779:2-13, 2005.

WSRF::Lite - An Implementation of the Web Services Resource Frame-
work.

M. Humphrey and G. Wasson. Architecture Foundations of WSRF.NET.
International Journal of Web Services Research, 2(2):83-97, 2005.

Python Globus (pyGlobus). http://dsd.1lbl.gov/gtg/projects/
pyGlobus/

P. McConnell, R. Haney, S. Mungal, M. Peedin, and S. Lin. Open Statistical
Services. caBIG Documentation, 2005.

S. Urbanek. Rserve-A fast Way to Provide R Functionality to Applications.
In Proc. of the 3rd International Workshop on Distributed Statistical Com-
puting (DSC 2003), 2003. ISSN 1609-395X, Eds.: K. Hornik, F. Leisch,
and A. Zeileis.


http://java.sun.com/webservices/
http://www.globus.org/research/papers/ogsa.pdf
http://www.globus.org/research/papers/ogsa.pdf
http://www.ggf.org/documents/GWD-I-E/GFD-I.044.pdf
http://www.ggf.org/documents/GWD-I-E/GFD-I.044.pdf
http://dsd.lbl.gov/gtg/projects/pyGlobus/
http://dsd.lbl.gov/gtg/projects/pyGlobus/

[17] D. Temple Lang. The Omegahat environment: New possibilities for statis-
tical computing. JCGS, 9(3), 2000.

[18] V. Carey. arji - another R-Java interface.

[19] M. Helbig, S. Urbanek, M. Theus. JGR, A unified interface to R. useR/,
2004.

[20] J. Rainer, F. Sanchez-Cabo, G. Stocker, A. Sturn, and Z. Trajanoski. CAR~
MAweb: comprehensive R- and bioconductor- based web service for mi-
croarray data analysis. Nucleic Acids Research, 43:W498-W503, 2006.

[21] C. Romualdi, N. Vitulo, M. D. Favero, and G. Lanfranchi. MIDAW: a web
tool for statistical analysis of microarray data. Nucleic Acids Research,
33:W644-W649, 2005.

[22] M. Psarros, S. Heber, M. Sick, G. Thoppae, K. Harshman, and B. Sick.
RACE: Remote Analysis Computation for gene Expression data. Nucleic
Acids Research, 33:W638-W643, 2005.

[23] C. Smith. Textual Description of webbioc. http://www.bioconductor.
org/packages/1.8/bioc/vignettes/webbioc/inst/doc/webbioc.pdf.

[24] StatDataML http://www.omegahat.org/StatDataML/

[25] CDFML http://cdf.gsfc.nasa.gov/html/cdf _xml.html


http://www.bioconductor.org/packages/1.8/bioc/vignettes/webbioc/inst/doc/webbioc.pdf
http://www.bioconductor.org/packages/1.8/bioc/vignettes/webbioc/inst/doc/webbioc.pdf
http://www.omegahat.org/StatDataML/
http://cdf.gsfc.nasa.gov/html/cdf_xml.html

	Introduction
	Bridging R and Java
	The message stream approach
	The shared library approach

	Bridging R and web or grid services
	Statistical data exchange formats


