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Abstract

This vignette introduces the use of PROPER (PROspective Power Evaluation for RNAseq), which

is designed to provide power–sample size assessment in di↵erential expression detection from RNA-seq

data.
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1 Introduction

RNA-seq has become a routine technique in quantifying and comparing gene expressions, and is widely

used in di↵erential expression (DE) detection. The determination of sample sizes is an important question

in RNA-seq experimental design, and required in many grant applications. Due to the complex nature of

RNA-seq data and the analysis techniques, traditional methods for evaluating power vs. sample size is not

applicable. The main di�culty in the problem lie in following aspects:

• Multiple-testing problem. Since the DE test is performed simultaneously for many genes, the type

I error is often controlled by false discovery rate (FDR), which poses di�culty in traditional power

calculation.

• Coverage depth. Unlike gene expression microarrays, the statistical power of the DE test from RNA-

seq data is greatly a↵ected by the expression level (or the sequence counts). Genes with higher counts

(such as longer genes) will be easier to detect even when the e↵ect sizes are the same as the low-count

genes (shorter genes).

• DE detection procedure. Many existing RNA-seq DE methods implement di↵erent type of “shrinkage”

procedures to stabilize the estimation of within group variations. This makes the power calculation an

intractable problem.

Due to these di�culties, we argue that the power calculation for RNA-seq can not be solve analytically.

We develop R package PROPER (stands for PROspective Power Evaluation for RNAseq), which provides

simulation-based method to compute power-sample size relationship. The software package contain following

three modules:

1. Data generation. The RNA-seq count data are simulated from a negative binomial model based on

user specified model parameters.

2. DE detection. The DE detection is performed using existing software package.

3. Power assessment. The DE detection results are assessed to generate power–sample size relationship.

Various power-related quantities are computed, including marginal and stratified power, FDR, number

of true/false discoveries, false discovery cost, type I error. These quantities will help investigators to

determine desirable sample sizes.

2 Using PROPER

To assess the power-sample size relationship using PROPER, one needs to follow the simple steps below.

1. Set up a simulation scenario and select a method for detecting DE.

2. Run simulation and DE detection.

3. Evaluate the power–sample size relationship.
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2.1 Set up a simulation scenario

To set up a simulation scenario, call the RNAseq.SimOptions.2grp function. Users have the option to set

up number of genes, percentage of genes with DE, sequencing depth (total number of read counts), baseline

expression level, biological variations, and magnitude of DE (e↵ect sizes). These factors all a↵ect the power

of detecting DE, yet making assumptions on these is not a trivial task. We provide options to make use of

parameters estimated from real RNAseq data sets:

• Cheung data: expressions of lymphoblastoid cell lines from 41 CEU individuals in International

HapMap Project. The data are from unrelated individuals, so the expressions show large biological

variations overall.

• Gilad data: human liver sample comparisons between male and female. The biological variations are

smaller than those from Cheung data.

• Bottomly data: include 21 samples from two stains of inbreed mice. Since the data are from inbreed

animal models, the biological variations among replicates are much smaller.

• MAQC data: these are the benchmark datasets generate by FDA to test the sequencing technology.

The replicates are technical replicates so there’s essentially no dispersion.

These data sets are chosen for they represent di↵erent levels of dispersion distributions, which DE de-

tection results can be sensitive to. Most of the real RNA-seq data should have dispersions in between of

these.

The following command sets up simulation options with 20,000 genes, 5% genes being DE, baseline

expression and dispersion based on Cheung data:

> library(PROPER)

> sim.opts.Cheung = RNAseq.SimOptions.2grp(ngenes = 20000, p.DE=0.05,

+ lOD="Cheung", lBaselineExpr="Cheung")

To make simulation options based on Bottomly data, do:

> sim.opts.Bottomly = RNAseq.SimOptions.2grp(ngenes = 20000, p.DE=0.05,

+ lOD="Bottomly", lBaselineExpr="Bottomly")

To set up meaningful e↵ect size between two groups is non-trivial. The package allows for both parametric

setting for the log fold change as well as resampling based simulation if the user wishes to use some pilot

data. The default is a mixture of 0 for non-DE genes and N(0, 1.52) for DE genes.

2.2 Run simulation and DE detection

With the simulation settings ready, one can call runSims function to generate count data and perform DE

detection. Since the main goal of the function is to evaluate power and sample size relationship, users specify

the sample sizes (number of replicates in each group) for which they want to evaluate power. By default,

we evaluate power when there are 3, 5, 7, and 10 samples in each treatment group. We found through

preliminary results that 10 samples in each group provides adequate power when the dispersions are small
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(similar to those from Bottomly data). If the dispersions are large, we suggest users increase sample sizes,

but it will take more computational time.

This is the most computational intensive part of the software. The computational performance depends on

the DE detection software and the scale of the simulation. For a simulation with 50,000 genes, four di↵erent

sample sizes, and using edgeR for DE detection, each simulation takes around 10 seconds on a Macbook Pro

laptop with 2.7Ghz i7 CPU and 16G RAM, which translates to 17 minutes for 100 simulations.

The number of simulations need to be specified. We recommend to run at least 20 simulations in order

to get stable results. The simulation results should be saved for the next step power evaluation.

The built-in DE detection method inlcude edgeR, DESeq and DSS. These Bioconductor packages need to

be installed in order to use them.

To run simulation and DE detection using edgeR, do:

> simres = runSims(Nreps = c(3, 5, 7, 10), sim.opts=sim.opts.Cheung,

+ DEmethod="edgeR", nsims=20)

2.3 Evaluate the powers

With the simulation results from runSims, one can use comparePower function to evaluate powers in di↵erent

ways. comparePower is a rather comprehensive function with many options. Users have the ability to specify:

• Method to control type I error (by raw p-values or FDR), and the desired type I error threshold for

calling DE.

• Method to stratify genes (by baseline expression level or dispersion) and the strata, since the function

will provide stratified power-related quantities.

• Method to define “biologically interesting genes”. There could be many true DE genes with small

changes, which can be di�cult to detect. Including these gene in the “true DE” set will hurt the power.

We advocate to estimate the “targeted” power, which is defined as the power to detect biologically

interesting genes, or genes with at least moderate expression changes. We argue that the targered

power are of more interests for investigators. This function provide options for defining biologically

interesting genes, by either log fold change or standardize log fold change (log fold change divided by

square root of dispersion).

It is important to point out that this power evaluation step is independent of the previous simulation/DE

dection step (using runSims). With the same results from runSims, one can evaluate the powers using

di↵erent criteria in comparePower.

The following command evaluate the powers with following criteria: (1) genes with FDR<0.1 are deemed

DE; (2) stratification is done by baseline expression level; (3) biologically interesting genes are defined as

those with log fold change greater than 0.5:

> powers = comparePower(simres, alpha.type="fdr", alpha.nominal=0.1,

+ stratify.by="expr", delta=0.5)

Users can summarize or visualize the results from comparePower function. For example, the result

can be nicely summarized by calling summaryPower function, which genreates following table for marginal

power-related quantities.

4



> summaryPower(powers)

Sample size Nominal FDR Actual FDR Marginal power Avg # of TD Avg # of FD FDC

3 0.10 0.44 0.27 106.42 86.00 0.81

5 0.10 0.27 0.41 165.79 62.53 0.38

7 0.10 0.19 0.49 205.13 49.21 0.24

10 0.10 0.14 0.58 245.15 38.64 0.16

The table summarizes marginal power-related results under each sample size, including marginal power, true

discovery (TD), false discovery (FD), and false discovery cost (FDC, defined as the number of FD divided

by the number of TD).

To visualize the power results, there are a list of functions generating di↵erent figures for visualization.

Specifically:

• To plot the stratified power, do

> plotPower(powers)

Each line in the figure represents the stratified power under a certain sample size. In the figure below,

the powers are calculated stratitifed by the average counts of genes. It shows that when the counts

are very low (between 0 and 10), the powers are very low. For genes with more than 10 reads, powers

increase significantly. Moreover, it shows when there are 10 samples in each group, the powers are

close to the canonically desired level of 0.8 for genes with reasonably large counts.
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Figure 1: Stratified target power

• To plot the number of true discoveries, do

> plotPowerTD(powers)

Again, each line represents results from one sample size. The numbers of true discoveries from each

stratum are plotted.
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Figure 2: Stratified number of true discoveries

• To plot the stratified false discovery cost, do

> plotFDcost(powers)
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Figure 3: Stratified false discovery cost

• Or one can call plotAll to generate all plots in a single figure:

> plotAll(powers)

2.4 Additional functionalities

2.4.1 Power and sequencing depth

In RNAseq experiments, the design stage involves decisions beyond sample size. One may face a choice

between fewer samples sequenced deeper versus more samples sequenced shallower. The sequencing depth

and sample size relationship can be assessed using power.seqDepth function:
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Figure 4: Visualization of stratified power-related quantities
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> power.seqDepth(simres, powers)

This generates the following table.

3 reps 5 reps 7 reps 10 reps

0.2 0.21 0.33 0.41 0.50

0.5 0.24 0.37 0.46 0.55

1 0.27 0.41 0.49 0.58

2 0.30 0.44 0.53 0.62

5 0.34 0.48 0.57 0.66

10 0.36 0.51 0.60 0.69

This table reads as the following: Using 5 replicates in each group with average coverage similar to that

from the Cheung data (or whatever you used in your simulation set up), the marginal power is 0.41. Doubling

the depth would increase the power to 0.44, yet doubling the sample size at the same depth would increase

the power to 0.58. Thus for this example, using more replicates is more helpful than sequencing deeper.

2.5 To filter or not to filter

Di↵erential expression is particularly di�cult to detect in genes with very low counts. This is because the

Poisson counting error is comparable or even greater than the biological variation. Thus it is di�cult to

identify true DE from noise in these genes and it is often desirable to filter out some genes before performing

DE test. Filtering decreases the number of total tests and thus reduced the burden for multiple testing

adjustment. Though we forego the possibility of detecting DE for the genes filtered out, we do not pay the

price in false positives either. This may lead to better power, but the tradeo↵ is not apparent and the cuto↵

for filtering is not obvious.

For the example described in Section 2, if we want to evalute power when we filter out genes within the

first strata of expression (average counts in 0-10), we specify the options filter.by and strata.filtered:

> powers = comparePower(simres, alpha.type="fdr", alpha.nominal=0.1,

+ strata = c(0, 10, 2^(1:7)*10, Inf), filter.by="expr",

+ strata.filtered=1, stratify.by="expr", delta=0.5)

2.6 Interpret the result

The major application of PROPER is to help choose proper sample size, especially for grant applications. The

results from PROPER can be interpreted and written as the following in a grant application (with proper

modification):

“Assume the transcriptome mean and variation profiles are similar to those from mouse striatum cells in

previous studies, and the magnitude of true di↵erential expression is similar to the level observed between

two strains of mice. If we expect to identify 80% of DE genes whose log fold change is beyond 0.5, when the

sequencing depth is at 5-million and FDR is controlled at 0.2, we need to have at least 5 samples in each

treatment group.”
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3 Advanced options

3.1 setting the e↵ect size by resampling from pilot or public data

Sometimes the user may not want to make a parametric assumption for the e↵ect size, but can feel comfortable

expecting the overall DE is similar to that observed in another experiment. In this case we may use resampling

based simulation. We include an example data frame of mean expression measures (in log scale) in PBMC

samples under various conditions. The data can be access by data(pbmc).

3.2 setting the target of interest by standardized e↵ect size

There is no general agreement on what makes an interesting or relevant amount of di↵erential expression.

Many researchers use fold change as a unit of e↵ect size, as this is a unit less measure relative to reference

expression level. Other argue that the relevant e↵ect size may depend on a gene’s natural biological coe�cient

of variation (BCV). If the user wishes to define targets of interest as genes with DE relative to BCV, one

may change set the option target.by to effectsize (the default is lfc for log fold change).

The following command evaluate the powers with following criteria: (1) genes with estimated fdr<0.1

are declared DE; (2) stratification is done by dispersion level; (3) biologically interesting genes are defined

as those with standardized log fold change greater than 1:

> powers = comparePower(simres, alpha.type="fdr", alpha.nominal=0.1,

+ stratify.by="dispersion", target.by="effectsize", delta=1)

3.3 Choosing raw p-value instead of FDR

As one inspects the DE detection in simulation, a user may notice that the actual false discovery proportion

di↵ers from the nominal FDR reported from the DE detection method. One may decide to use unadjusted

raw p-values to define DE gene in such situations (though typically much lower than 0.05 to account for

multiple testing).

The following command evaluate the powers with following criteria: (1) genes with pvalue<0.001 are

deemed DE; (2) stratification is done by dispersion level; (3) biologically interesting genes are defined as

those with standardized log fold change greater than 1:

> powers = comparePower(simres, alpha.type="pval", alpha.nominal=0.001,

+ stratify.by="dispersion", target.by="effectsize", delta=1)

4 Conclusion

PROPER provides methods to assess the power–sample size relationship for DE detection from RNA-seq data.

A comprehensive evaluation of statistical power, as well as actual type I error, over a range of sample sizes,

are obtained based on simulation studies.

5 Session Info

> sessionInfo()
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R version 3.1.0 (2014-04-10)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] tools_3.1.0
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