
NetPathMiner Vignette

Ahmed Mohamed ∗

October 13, 2015

Contents
1 Introduction 2
2 Installation Instructions 2

2.1 System Prerequisites . 2
2.1.1 Prerequisites for Unix users (Linux and Mac OS) . . . 2
2.1.2 Prerequisites for Windows users 3

2.2 R Package dependencies . 4
2.3 NetPathMiner Installation . 5

2.3.1 From Bioconductor: 5
2.3.2 From GitHub using devtools: 5

3 Getting Started 6
4 Database Extraction 6
5 Handling Annotation Attributes 8
6 Network Processing 11
7 Weighting Network 12
8 Path Ranking 14
9 Clustering and classification of paths 15
10 Plotting 17
11 Additional functions 19

11.1 Genesets and geneset subnetworks 19
11.2 Integration with graph package 19

∗Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan. Email: mohamed@kuicr.kyoto-u.ac.jp

1

1 Introduction

NetPathMiner implements a flexible module-based process flow for network
path mining and visualization, which can be fully integrated with user-
customized functions. It supports construction of various types of genome
scale networks from three different pathway file formats, enabling its utility
to most common pathway databases. In addition, NetPathMiner provides
different visualization techniques to facilitate the analysis of even thousands
of output paths.

This document provides a general overview of the functionalities presented
in NetPathMiner (NPM) package . Below, we provide a step-by-step tutorial
starting by installation instructions followed by a guide on how to use the
package functions perform different network analyses.

To report bugs and arising issues, please visit https://github.com/ahmohamed/
NetPathMiner

2 Installation Instructions

2.1 System Prerequisites

NPM depends on libxml2 and libSBML to process pathway files.Installation
or running certain functions MIGHT fail if these prerequisite libraries are
not available. Please read through the following instructions.

2.1.1 Prerequisites for Unix users (Linux and Mac OS)

Installing libxml2 Make sure your system has library libxml2 installed.
In Mac OSX 10.6 or later, libxml2 are built in. For Linux users also, this
is almost always the case, however, developing headers may be missing. To
install libxml2 and the headers:

sudo apt-get install libxml2

sudo apt-get install libxml2-dev

Installing libSBML Installing libSBML for Unix users is optional. How-
ever, NPM will not be able to process SBML files. If you will not use SBML
functions, you can skip this part.

From the website of libSBML http://sbml.org/Software/libSBML, you
can directly download the binaries suitable for your system from “Download

2

https://github.com/ahmohamed/NetPathMiner
https://github.com/ahmohamed/NetPathMiner
http://sbml.org/Software/libSBML

libSBML” link. You can follow the installation instructions on the website.

2.1.2 Prerequisites for Windows users

If you are installing the package through Bioconductor, you don’t have to
install external libraries. However, currently the Bioconductor version for
Windows doesn’t support SBML processing. Alternatively, we have pre-
pared all dependencies in a tar file, downloadable from https://github.

com/ahmohamed/NPM_dependencies . Please download the file and place in
in the home directory of R (type ”R RHOME” in command prompt to locate
it).

Unless you want to use customized libraries, you can skip the rest of this
section. To use customized libraries, you have to compile them and provide
them to R at the time of installation. This is not a trivial task, please be
sure you really need these custom libraries.

Installing libxml2 NetPathMiner expects an enviroment variable LIB_XML
or LIB_XML2 pointing to directory where libxml2 is installed. This directory
should have both the compiled library (DLL file) and the header files.

You can download libxml2.dll from http://sourceforge.net/projects/

gnuwin/files/libxml/ among other sources. Please, place it in a ‘bin‘
folder under the installation directory.

You will need also the header files, which can be obtained from NPM dependecies.tar
file. After extracing it, copy the include directory to the installation direc-
tory.

Finally, set the LIB_XML2 variable to point to the installation directory,
which should now contain dll files inder bin and header files under ‘include‘.

Installing libSBML Since libSBML is a C++ libraries, it needs to be
compiled using GCC compiler. Unforturantely, there is no binary version
for Windows comipled with GCC. To use libSBML, you need to build it
from source.

First, dowload source package from http://sourceforge.net/projects/

sbml/files/libsbml/ , extract it. You will need also MinGW http://www.

mingw.org/ or the 64-bit version http://mingw-w64.sourceforge.net/

depending on your system. Add ‘mingw/bin‘ to your PATH, by editing
eviroment variables.

Second, you need CMake http://www.cmake.org/ . You can follow the in-
structions at http://sbml.org/Software/libSBML/docs/java-api/libsbml-installation.

3

https://github.com/ahmohamed/NPM_dependencies
https://github.com/ahmohamed/NPM_dependencies
http://sourceforge.net/projects/gnuwin/files/libxml/
http://sourceforge.net/projects/gnuwin/files/libxml/
http://sourceforge.net/projects/sbml/files/libsbml/
http://sourceforge.net/projects/sbml/files/libsbml/
http://www.mingw.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net/
http://www.cmake.org/
http://sbml.org/Software/libSBML/docs/java-api/libsbml-installation.html#windows-configuring

html#windows-configuring , however, choose ”MinGW Makefiles” instead
of ”Visual Studio 10”.

After finishing the CMake step, use the MinGW’s make.exe to compile lib-
SBML. Copy the dependencies you used during the compilation to the ‘bin‘
directory. Set the enviroment variable LIB_SBML to point the installation di-
rectory, which should now contain dll files inder ‘bin‘ and header files under
‘include‘

2.2 R Package dependencies

NPM depends on package igraph to represent network objects. Installing
igraph is required for the package to work. You will also need devtools pack-
age to install directly from github. NPM suggests package rBiopaxParser
to process BioPAX files, RCurl to download annotations from the web, and
RCytoscape to visualise networks in Cytoscape. NPM can still work with-
out installing the suggested packages, but you will not be able to use the
aforementioned functionalities.

igraph Package igraph is available at CRAN. To install it call:

install.packages("igraph")

RCurl For Unix users, make sure your Linux has library libcurl installed.
Check out:

locate libcurl

locate curl-config

If these are not found (usually the developer version is missing), most Linux
users will be able to fix this by running:

sudo apt-get install libcurl4-openssl-dev

You will now be able to install R package RCurl. In R console:

install.packages("RCurl")

If you encounter other problems check out http://www.omegahat.org/RCurl/
FAQ.html

4

http://sbml.org/Software/libSBML/docs/java-api/libsbml-installation.html#windows-configuring
http://www.omegahat.org/RCurl/FAQ.html
http://www.omegahat.org/RCurl/FAQ.html

rBiopaxParser Package rBiopaxParser is available on Bioconductor. For
installation instructions check out http://www.bioconductor.org/packages/
release/bioc/html/rBiopaxParser.html or call:

source("http://bioconductor.org/biocLite.R")

biocLite("rBiopaxParser")

to install it right away.

RCytoscape Package RCytoscapeis available on Bioconductor. For in-
stallation instructions check out http://www.bioconductor.org/packages/
release/bioc/html/RCytoscape.html. Please note that RCytoscape re-
quires Cytoscape 2.8 installed with XMLRPC plugin. Cytoscape 3 is not
yet supported. After installing Cytoscape, call:

source("http://bioconductor.org/biocLite.R")

biocLite("RCytoscape")

to install it right away.

2.3 NetPathMiner Installation

If everything went well you will be able to install the NetPathMiner package.

2.3.1 From Bioconductor:

In R console, type:

source("http://bioconductor.org/biocLite.R")

biocLite("NetPathMiner")

2.3.2 From GitHub using devtools:

To install the package from Github, you need devtools R package.

devtools Package devtools is available at CRAN. For Windows this seems
to depend on having Rtools for Windows installed. You can download and
install this from: http://cran.r-project.org/bin/windows/Rtools/

To install R package devtools call:

5

http://www.bioconductor.org/packages/release/bioc/html/rBiopaxParser.html
http://www.bioconductor.org/packages/release/bioc/html/rBiopaxParser.html
http://www.bioconductor.org/packages/release/bioc/html/RCytoscape.html
http://www.bioconductor.org/packages/release/bioc/html/RCytoscape.html
http://cran.r-project.org/bin/windows/Rtools/

install.packages("devtools")

Finally, in R console:

library(devtools)

install_github(repo="NetPathMiner", username="ahmohamed")

3 Getting Started

First, let’s load the library and the example data set.

> library(NetPathMiner)

4 Database Extraction

Here we create a network from a pathway file. Pathway files can be down-
loaded from a verity of databases, like KEGG, Reactome, Pathway Interac-
tion Database (PID) and BioModels.

NPM supports processing KGML, SBML and BioPAX. Different databases
export pathway information in different formats. Depending on the format
you are using, you can choose the corresponding NPM function.

> graph <- KGML2igraph(filename = file)

> graph <- SBML2igraph(filename = file)

Note that SBML2igraph will not work unless you had libSBML during in-
stallation. For BioPAX format, rBiopaxParser package is needed.

> require(rBiopaxParser)

> biopax = readBiopax(file)

> graph <- BioPAX2igraph(biopax = biopax)

If you want to create a genome-scale network, you may want to process
multiple files into a single network. To do that, you can either provide a list
of files.

> graph <- KGML2igraph(filename = c(file1, file2))

6

http://www.kegg.jp/kegg/pathway.html
http://www.reactome.org/
http://pid.nci.nih.gov/
http://pid.nci.nih.gov/
http://www.ebi.ac.uk/biomodels-main/

or input the directory containing the files.

> graph <- KGML2igraph(filename = ".")

If you are processing SBML or BioPAX files, you can specify which annota-
tion attributes to extract.

> # Extract all MIRIAM identifiers from an SBML file.

> graph <- SBML2igraph(filename = file, miriam = "all")

> # Extract all MIRIAM identifiers from an SBML file.

> graph <- BioPAX2igraph(biopax = biopax, miriam = "go")

The above command gives us a bipartite metabolic network. You may be
interested in protein-protein interaction, and you would like to get a network
in which genes are vertices, and edges represent relationships. In NPM, you
can do that by:

> graph <- KGML2igraph(filename = file, parse.as = "signaling")

> graph <- KGML2igraph(filename = file, parse.as = "signaling",

+ expand.complexes = TRUE)

For this tutorial, we will use an An example metabolic network of Carbohy-
drate metabolism extracted from SBML file from Reactome database.

> data("ex_sbml")

> graph <- ex_sbml

> graph

IGRAPH DN-- 432 662 --

+ attr: source (g/c), type (g/c), name (v/c), attr (v/x), reactions

| (v/l), shape (v/c), color (v/c), stoichiometry (e/n)

+ edges (vertex names):

[1] reaction_71850 ->species_113592 reaction_71850 ->species_29728

[3] reaction_71496 ->species_75970 reaction_71496 ->species_29578

[5] reaction_2046222->species_2046166 reaction_2046222->species_742343

[7] reaction_2162229->species_2162232 reaction_2162229->species_2162231

[9] reaction_2162226->species_1678868 reaction_2162226->species_1678743

[11] reaction_70403 ->species_70113 reaction_2162227->species_1678868

[13] reaction_2162227->species_2162223 reaction_2162225->species_1678743

+ ... omitted several edges

7

5 Handling Annotation Attributes

Once we have our network, we can use igraph functions to explore it. First,
we view vertices and edges using V() and E() functions respectively.

Network vertices:

> head(V(graph))

+ 6/432 vertices, named:

[1] reaction_71850 reaction_71496 reaction_2046222 reaction_2162229

[5] reaction_2162226 reaction_70403

Edge Vertices

> head(E(graph))

+ 6/662 edges (vertex names):

[1] reaction_71850 ->species_113592 reaction_71850 ->species_29728

[3] reaction_71496 ->species_75970 reaction_71496 ->species_29578

[5] reaction_2046222->species_2046166 reaction_2046222->species_742343

Reaction vertices only:

> head(V(graph)[reactions])

+ 6/432 vertices, named:

[1] reaction_71850 reaction_71496 reaction_2046222 reaction_2162229

[5] reaction_2162226 reaction_70403

All vertex annotation attributes are stored in ”attr” attribute. To view the
annotation for a certain vertex, you can index it by name.

> V(graph)["reaction_71850"]$attr

[[1]]

[[1]]$name

[1] "1,3-bisphospho-D-glycerate + ADP <=> 3-phospho-D-glycerate + ADP"

[[1]]$reversible

[1] FALSE

8

[[1]]$reactants

[1] "species_29800" "species_29370"

[[1]]$reactant.stoichiometry

[1] 1 1

[[1]]$products

[1] "species_29728" "species_113592"

[[1]]$product.stoichiometry

[1] 1 1

[[1]]$kinetics

named list()

[[1]]$genes

[1] "phosphoglycerate kinase 1 complex [cytosol]"

[[1]]$compartment

[1] "compartment_70101"

[[1]]$compartment.name

[1] "cytosol"

[[1]]$pathway

[1] "Metabolism of carbohydrates"

[[1]]$miriam.obo.go

[1] "GO:0004618"

[[1]]$miriam.reactome

[1] "REACT_1186" "REACT_5354"

[[1]]$miriam.ec

[1] "2.7.2.3"

[[1]]$miriam.uniprot

[1] "P00558"

[[1]]$miriam.obo.chebi

[1] "CHEBI:18420"

[[1]]$miriam.kegg.compound

9

[1] "C00305"

[[1]]$compartment.miriam.obo.go

[1] "GO:0005829"

Here, our reaction vertex annotations describing the chemical transition.
You can also notice annotations starting with ”miriam” key word. MIRIAM
is a standard format for writing biological identifiers. You can explore the
details of this annotation system on http://www.ebi.ac.uk/miriam/main/

collections. To list all vertex attributes:

> getAttrNames(graph)

[1] "name" "reversible"

[3] "reactants" "reactant.stoichiometry"

[5] "products" "product.stoichiometry"

[7] "kinetics" "genes"

[9] "compartment" "compartment.name"

[11] "pathway" "miriam.obo.go"

[13] "miriam.reactome" "miriam.ec"

[15] "miriam.uniprot" "miriam.obo.chebi"

[17] "miriam.kegg.compound" "compartment.miriam.obo.go"

Since annotations tend to be incomplete, NPM provides a function to check
the coverage of each attribute. The function also list the number of ver-
tices having multiple attribute values. For example, vertices with multiple
miriam.kegg.genes annotations can be view as protein complexes.

> getAttrStatus(graph, pattern = "^miriam.")

missing single complex coverage.pct

miriam.obo.go 269 163 0 38

miriam.reactome 0 269 163 100

miriam.ec 294 138 0 32

miriam.uniprot 184 131 117 57

miriam.obo.chebi 230 188 14 47

miriam.kegg.compound 289 134 9 33

NPM also implements an Attribute Fetcher, where you can convert one an-
notation to another. The Attribute Fetcher requires RCurl installed, because
it uses the online web service of BridgeDb http://www.bridgedb.org/.

10

http://www.ebi.ac.uk/miriam/main/collections
http://www.ebi.ac.uk/miriam/main/collections
http://www.bridgedb.org/

> require("RCurl")

> # Fetch uniprot annotation

> graph <- fetchAttribute(graph, organism = "Homo sapiens",

+ target.attr = "miriam.ncbigene" , source.attr = "miriam.uniprot")

> # Fetch ChEBI annotation.

> graph <- fetchAttribute(graph, target.attr = "miriam.chebi",

+ source.attr = "miriam.kegg.compound")

You can also use the Attribute Fetcher to obtain Affymetrix annotation
needed for microarray analysis.

6 Network Processing

NetPathMiner can convert between different network representations. Given
a bipartite metabolic network, reaction network is created by removing
metabolite vertices and keeping them as edge attributes. This is useful
to get adjacent vertices (now reactions) to have gene annotations needed for
gene expression mapping.

> rgraph <- makeReactionNetwork(graph, simplify=FALSE)

> rgraph

IGRAPH DN-- 180 303 --

+ attr: source (g/c), type (g/c), name (v/c), attr (v/x), compound

| (e/x), attr (e/x)

+ edges (vertex names):

[1] reaction_71850->reaction_70420 reaction_71850->reaction_450088

[3] reaction_71850->reaction_71541 reaction_71850->reaction_70467

[5] reaction_71850->reaction_70486 reaction_71850->reaction_163773

[7] reaction_71850->reaction_70333 reaction_71850->reaction_71654

[9] reaction_71850->reaction_73580 reaction_71850->reaction_453337

[11] reaction_71850->reaction_70355 reaction_71850->reaction_174392

[13] reaction_71850->reaction_70349 reaction_71850->reaction_174389

+ ... omitted several edges

Since gene annotations are rarely complete, we can further remove reaction
vertices that are missing gene annotations. This is particularly meaningful
when reactions are translocation or spontaneous reactions, which are not
catalysed by genes. We can then remove such reactions by:

> rgraph <- simplifyReactionNetwork(rgraph)

> rgraph <- makeReactionNetwork(graph, simplify=TRUE)

11

Some reaction vertices will be catalysed by more than one enzyme. We can
“expand” these vertices to get the gene network.

> # Expand complexes of gene network.

> ggraph <- expandComplexes(rgraph, v.attr = "miriam.uniprot",

+ keep.parent.attr= c("^pathway", "^compartment"))

> # Convert reaction network to gene network.

> ggraph <- makeGeneNetwork(rgraph)

expandComplexes offers manipulation of network vertices by their attributes,
that includes handling missing annotations and annotation inheritance. Re-
fer to the manual for for details.

7 Weighting Network

Now that we have our network, we can use gene expression data to weight
the network edges. For this example we use an subset of data provided by
“ALL” data package. The data consist of microarrays from 128 different
individuals with acute lymphoblastic leukemia (ALL).

The gene expression is present as Affymetrix IDs. Since we don’t have these
annotations in out network, we can use Attribute Fetcher to get them.

> data(ex_microarray)

>

> # Assign weights to edges.

> if(require("RCurl") && url.exists(NPMdefaults("bridge.web")))

+ rgraph <- fetchAttribute(rgraph, organism = "Homo sapiens",

+ target.attr = "miriam.affy.probeset",

+ source.attr = "miriam.uniprot")

Now that we checked that we have affy.probeset annotations, we can use
the weight function. The default weight function assigns edge weights based
on Pearson’s correlation of expression profiles of adjacent genes. You can
also provide you own function as a “weight.method”. You can refer to the
manual of this function for details.

We can also provide sample categories as “y” labels. In that case, edge
weights are computed for each label separately. Here we use Leukaemia
molecular subtypes as categories.

12

> library(ALL)

> data(ALL)

> rgraph <- assignEdgeWeights(microarray = exprs(ALL), graph = rgraph,

+ weight.method = "cor", use.attr="miriam.affy.probeset", y=ALL$mol.bio, bootstrap = FALSE)

> data(ex_microarray)

> rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,

+ weight.method = "cor", use.attr="miriam.uniprot", y=colnames(ex_microarray), bootstrap = FALSE)

100 genes were present in the microarray, but not represented in the network.

55 genes were couldn't be found in microarray.

Assigning edge weights for label ALL1/AF4

Assigning edge weights for label BCR/ABL

Assigning edge weights for label E2A/PBX1

Assigning edge weights for label NEG

> rgraph$y.labels

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG"

> head(E(rgraph)$edge.weights)

[[1]]

[1] 0.48975367 0.15652908 0.48692055 0.03109587

[[2]]

[1] 0.07300260 0.08559941 0.08657545 0.05117537

[[3]]

[1] 0.2137908 0.7902335 0.7329898 0.3139489

[[4]]

[1] 0.6218986 0.5860552 0.2311897 0.1017890

[[5]]

[1] 0.07300260 0.08559941 0.08657545 0.05117537

[[6]]

[1] 0.40936252 0.32598614 -0.52609992 0.05701338

13

8 Path Ranking

Edges are now weighted by the correlation of connected genes. We can find
highly correlated paths within the network by maximising the edge weight.

NetPathMiner provides two methods to accomplish that. First, “proba-
bilistic.shortest.path” formulates the problem as finding shortest paths in a
network by transforming edge weights by their empirical cumulative distri-
bution function (ECDF). Finding the shortest path is equivalent to finding
the least probable path given this empirical distribution. The code below
gets the 100-shortest paths.

> ranked.p <- pathRanker(rgraph, method = "prob.shortest.path",

+ K = 25, minPathSize = 6)

Second, “value” method finds paths where the sum of edge weights are sig-
nificantly higher than random paths of similar length. The distribution of
random path scores can be estimated by“samplePaths”which uses Metropo-
lis sampling technique. The path sample can be then provided to the path
ranking function. If path sample is not provided, random edge sampling is
used to estimate the distribution.

> pathsample <- samplePaths(rgraph, max.path.length = vcount(rgraph),

+ num.samples = 1000, num.warmup = 10)

> ranked.p <- pathRanker(rgraph, method = "pvalue",

+ sampledpaths = pathsample ,alpha=0.1)

We can get our path set as lists of edge IDs instead.

> # Get paths as edge IDs.

> eids <- getPathsAsEIDs(paths = ranked.p, graph = rgraph)

We can also get paths as edge IDs on another network representation. In
this example, we extracted paths from a reaction network. We can get the
equivalent paths on the gene network by supplying the corresponding igraph
object.

> # Convert paths to other networks.

> eids <- getPathsAsEIDs(paths = ranked.p, graph = ggraph)

14

9 Clustering and classification of paths

The size of the ranked path can be very large, making their analysis chal-
lenging. NetPathMiner offers clustering functions to group the ranked path
list into few path clusters that can be investigated easily.

> # Clustering.

> ybinpaths <- pathsToBinary(ranked.p)

> p.cluster <- pathCluster(ybinpaths, M = 2)

> plotClusters(ybinpaths, p.cluster)

P
at

hs

re
ac

tio
n_

42
75

55
re

ac
tio

n_
70

48
2

re
ac

tio
n_

71
49

5
re

ac
tio

n_
71

49
6

re
ac

tio
n_

16
37

51
re

ac
tio

n_
16

37
64

re
ac

tio
n_

16
37

41
re

ac
tio

n_
11

12
15

re
ac

tio
n_

70
44

9
re

ac
tio

n_
71

85
0

re
ac

tio
n_

70
46

7
re

ac
tio

n_
70

47
9

re
ac

tio
n_

18
90

62
re

ac
tio

n_
70

40
3

re
ac

tio
n_

70
42

0
re

ac
tio

n_
70

47
1

re
ac

tio
n_

18
90

69
re

ac
tio

n_
18

89
85

re
ac

tio
n_

71
51

5
re

ac
tio

n_
70

28
6

re
ac

tio
n_

70
29

0
re

ac
tio

n_
71

60
2

re
ac

tio
n_

71
61

0
re

ac
tio

n_
71

57
4

re
ac

tio
n_

20
24

08
4

re
ac

tio
n_

16
67

00
5

re
ac

tio
n_

16
78

71
6

re
ac

tio
n_

16
78

70
8

re
ac

tio
n_

16
78

66
0

re
ac

tio
n_

16
78

74
2

re
ac

tio
n_

21
62

22
9

re
ac

tio
n_

71
32

4
re

ac
tio

n_
17

77
84

re
ac

tio
n_

71
30

6
re

ac
tio

n_
17

43
89

re
ac

tio
n_

74
14

49
re

ac
tio

n_
20

76
41

9
re

ac
tio

n_
20

18
68

2
re

ac
tio

n_
20

18
65

9
re

ac
tio

n_
20

22
06

3
re

ac
tio

n_
19

71
48

2
re

ac
tio

n_
19

71
49

1
re

ac
tio

n_
19

71
48

7
re

ac
tio

n_
19

71
48

3
re

ac
tio

n_
20

22
05

2
re

ac
tio

n_
20

22
06

1
re

ac
tio

n_
71

33
4

re
ac

tio
n_

17
43

92
re

ac
tio

n_
20

76
38

3
re

ac
tio

n_
20

76
37

1
re

ac
tio

n_
71

55
2

re
ac

tio
n_

71
59

3
re

ac
tio

n_
18

92
22

re
ac

tio
n_

70
33

3
re

ac
tio

n_
20

76
61

1
re

ac
tio

n_
20

76
50

8
re

ac
tio

n_
19

11
14

re
ac

tio
n_

18
91

02
re

ac
tio

n_
18

89
79

re
ac

tio
n_

18
90

53
re

ac
tio

n_
19

11
01

re
ac

tio
n_

19
11

16

ALL1/AF4

BCR/ABL

E2A/PBX1

NEG

0.0 0.4 0.8

20
40

60
80

10
0

P(M|X)

P
at

hs

M1
M2

We can also identify a set of paths that best classify a sample category (as
a form of biomarker for example). The code below creates a classifier for
“BCR/ABL” subtype. Since our network is very small, we are not able to
create an accurate classifier.

> p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 2)

> plotClassifierROC(p.class)

15

ROC Curve For Each HME3M Component

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 0.2 0.4 0.6 0.8 1

0
0.
2

0.
4

0.
6

0.
8

1

False Positive Rate

M = 1(AUC =0.535)
M = 2(AUC =0.434)
M = 3(AUC =0.535)
M = 4(AUC =0.548)
M = 5(AUC =0.485)
Complete(AUC =0.533)

0 20 40 60 80 100

-3
60

Likelihood Convergence

EM Iteration

C
on
di
tio
na
l

Lo
g-
Li
ke
lih
oo
d

> plotClusters(ybinpaths, p.class)

16

P
at

hs

re
ac

tio
n_

42
75

55
re

ac
tio

n_
70

48
2

re
ac

tio
n_

71
49

5
re

ac
tio

n_
71

49
6

re
ac

tio
n_

16
37

51
re

ac
tio

n_
16

37
64

re
ac

tio
n_

16
37

41
re

ac
tio

n_
11

12
15

re
ac

tio
n_

70
44

9
re

ac
tio

n_
71

85
0

re
ac

tio
n_

70
46

7
re

ac
tio

n_
70

47
9

re
ac

tio
n_

18
90

62
re

ac
tio

n_
70

40
3

re
ac

tio
n_

70
42

0
re

ac
tio

n_
70

47
1

re
ac

tio
n_

18
90

69
re

ac
tio

n_
18

89
85

re
ac

tio
n_

71
51

5
re

ac
tio

n_
70

28
6

re
ac

tio
n_

70
29

0
re

ac
tio

n_
71

60
2

re
ac

tio
n_

71
61

0
re

ac
tio

n_
71

57
4

re
ac

tio
n_

20
24

08
4

re
ac

tio
n_

16
67

00
5

re
ac

tio
n_

16
78

71
6

re
ac

tio
n_

16
78

70
8

re
ac

tio
n_

16
78

66
0

re
ac

tio
n_

16
78

74
2

re
ac

tio
n_

21
62

22
9

re
ac

tio
n_

71
32

4
re

ac
tio

n_
17

77
84

re
ac

tio
n_

71
30

6
re

ac
tio

n_
17

43
89

re
ac

tio
n_

74
14

49
re

ac
tio

n_
20

76
41

9
re

ac
tio

n_
20

18
68

2
re

ac
tio

n_
20

18
65

9
re

ac
tio

n_
20

22
06

3
re

ac
tio

n_
19

71
48

2
re

ac
tio

n_
19

71
49

1
re

ac
tio

n_
19

71
48

7
re

ac
tio

n_
19

71
48

3
re

ac
tio

n_
20

22
05

2
re

ac
tio

n_
20

22
06

1
re

ac
tio

n_
71

33
4

re
ac

tio
n_

17
43

92
re

ac
tio

n_
20

76
38

3
re

ac
tio

n_
20

76
37

1
re

ac
tio

n_
71

55
2

re
ac

tio
n_

71
59

3
re

ac
tio

n_
18

92
22

re
ac

tio
n_

70
33

3
re

ac
tio

n_
20

76
61

1
re

ac
tio

n_
20

76
50

8
re

ac
tio

n_
19

11
14

re
ac

tio
n_

18
91

02
re

ac
tio

n_
18

89
79

re
ac

tio
n_

18
90

53
re

ac
tio

n_
19

11
01

re
ac

tio
n_

19
11

16 y=
1

ALL1/AF4

BCR/ABL

E2A/PBX1

NEG

0.0 0.4 0.8

20
40

60
80

10
0

P(M|X)

P
at

hs

M1
M2

10 Plotting

NetPathMiner offers several plotting options for networks and ranked paths.
First, we can plot our network colouring vertices by their cellular compart-
ment.

> plotNetwork(rgraph, vertex.color="compartment.name")

NetPathMiner’s plotPaths function can be used to view ranked paths on the
network structure. Cluster information can also be provided, so that paths
belonging to the same cluster will have the same colour.

> plotPaths(ranked.p, rgraph)

> # With clusters

> plotPaths(ranked.p, graph, path.clusters=p.class)

To view paths on different network representations, you can pass the net-
works as parameters to plotPaths, and it will do the job.

17

> plotAllNetworks(ranked.p, metabolic.net = graph, reaction.net = rgraph,

+ path.clusters=p.class, vertex.label = "", vertex.size = 4)

Metabolic Network

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

Reaction Network

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

re
ac

tio
n_

42
75

55
re

ac
tio

n_
70

48
2

re
ac

tio
n_

71
49

5
re

ac
tio

n_
71

49
6

re
ac

tio
n_

16
37

51
re

ac
tio

n_
16

37
64

re
ac

tio
n_

16
37

41
re

ac
tio

n_
11

12
15

re
ac

tio
n_

70
44

9
re

ac
tio

n_
71

85
0

re
ac

tio
n_

70
46

7
re

ac
tio

n_
70

47
9

re
ac

tio
n_

18
90

62
re

ac
tio

n_
70

40
3

re
ac

tio
n_

70
42

0
re

ac
tio

n_
70

47
1

re
ac

tio
n_

18
90

69
re

ac
tio

n_
18

89
85

re
ac

tio
n_

71
51

5
re

ac
tio

n_
70

28
6

re
ac

tio
n_

70
29

0
re

ac
tio

n_
71

60
2

re
ac

tio
n_

71
61

0
re

ac
tio

n_
71

57
4

re
ac

tio
n_

20
24

08
4

re
ac

tio
n_

16
67

00
5

re
ac

tio
n_

16
78

71
6

re
ac

tio
n_

16
78

70
8

re
ac

tio
n_

16
78

66
0

re
ac

tio
n_

16
78

74
2

re
ac

tio
n_

21
62

22
9

re
ac

tio
n_

71
32

4
re

ac
tio

n_
17

77
84

re
ac

tio
n_

71
30

6
re

ac
tio

n_
17

43
89

re
ac

tio
n_

74
14

49
re

ac
tio

n_
20

76
41

9
re

ac
tio

n_
20

18
68

2
re

ac
tio

n_
20

18
65

9
re

ac
tio

n_
20

22
06

3
re

ac
tio

n_
19

71
48

2
re

ac
tio

n_
19

71
49

1
re

ac
tio

n_
19

71
48

7
re

ac
tio

n_
19

71
48

3
re

ac
tio

n_
20

22
05

2
re

ac
tio

n_
20

22
06

1
re

ac
tio

n_
71

33
4

re
ac

tio
n_

17
43

92
re

ac
tio

n_
20

76
38

3
re

ac
tio

n_
20

76
37

1
re

ac
tio

n_
71

55
2

re
ac

tio
n_

71
59

3
re

ac
tio

n_
18

92
22

re
ac

tio
n_

70
33

3
re

ac
tio

n_
20

76
61

1
re

ac
tio

n_
20

76
50

8
re

ac
tio

n_
19

11
14

re
ac

tio
n_

18
91

02
re

ac
tio

n_
18

89
79

re
ac

tio
n_

18
90

53
re

ac
tio

n_
19

11
01

re
ac

tio
n_

19
11

16 y=
1

ALL1/AF4

BCR/ABL

E2A/PBX1

NEG

0.0 0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

P(M|X)

P
at

hs

Legend

Y lables
y = 0
y = 1

To make use of the annotation attributes, NetPathMiner can layout vertices
such that those sharing a common attribute value are plotted close to each
other, and using similar colors.

> layout.c <- clusterVertexByAttr(rgraph, "pathway", cluster.strength = 3)

> v.color <- colorVertexByAttr(rgraph, "pathway")

> plotPaths(ranked.p , rgraph, clusters=p.class,

+ layout = layout.c, vertex.color = v.color)

Finally, for interactive visualization using Cytoscape, plotCytoscape requires
RCytoscape installed and configured. Having done that simply type:

> require(RCytoscape)

> cw <- plotCytoscape(graph, "example", layout = layout.c,

+ vertex.size = 5, vertex.color = v.color)

18

11 Additional functions

11.1 Genesets and geneset subnetworks

NetPathMiner provides functions to extract genesets utilizing annotation
attributes in the network. To get genesets as lists of genes for geneset en-
richment analyses:

> getGeneSets(graph, use.attr="compartment", gene.attr="miriam.uniprot")

Alternatively, genesets can be obtained as network structures.

> getGeneSetNetworks(graph, use.attr="compartment")

11.2 Integration with graph package

All networks constructed in NetPathMiner are represented as igraph object.
Users can convert these networks to Bioconductor’s graphNEL object using
“toGraphNEL” function

> graphNEL <- toGraphNEL(graph, export.attr="^miriam.")

19

	Introduction
	Installation Instructions
	System Prerequisites
	Prerequisites for Unix users (Linux and Mac OS)
	Prerequisites for Windows users

	R Package dependencies
	NetPathMiner Installation
	From Bioconductor:
	From GitHub using devtools:

	Getting Started
	Database Extraction
	Handling Annotation Attributes
	Network Processing
	Weighting Network
	Path Ranking
	Clustering and classification of paths
	Plotting
	Additional functions
	Genesets and geneset subnetworks
	Integration with graph package

