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1 Citation

We have developed an R package able to analyze the variability in a set of candidate transcription factor binding sites
(TFBSs) obtained by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). The goal of
this document is to introduce ChIP-seq data analysis by means of functional principal component analysis (FPCA). An
application of the package for Arabidopsis datasets is described in:

Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P
and Coupland G (2015). Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define
distinct modes of flowering regulation in Arabidopsis. Genome Biology 16: 31. http://doi.org/10.1186/s13059-015-
0597-1.
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2 Introduction and motivation

Next-generation sequencing enables the scientific community to go a step further in the understanding of molecular mech-
anisms controlling transcriptional regulation. Comprehensive ChIP-seq data analyses are carried out by many software
tools [1]. Some of these bioinformatic tools [3, 7, 11] are used to detect TFBSs in ChIP-seq data. Data analysis is usually
based on peak-search criteria of the local maxima over the read-enriched candidate regions, but other approaches do exist
[1]. For computation purposes, several assumptions are made regarding the distribution of sample and control reads [1].
Although most sites reported by peak finders could be narrowed down to 100-400bp using merely visual inspection, this
reduction is not typically reflected by the regions provided by current methods, therefore degrading the resolution [9].

Here we present the R package NarrowPeaks, able process data in WIG format (one of the most popular standard formats
for visualisation of next-generation sequencing data is the wiggle track (WIG), and its indexed version bigWig) data, and
analyze it based on statistics of Functional Principal Component Analysis (FPCA) [8]. Instructions on how to generate
WIG/bigWig coverage tracks can be found in ’Text S1’ in [1]. The aim of this novel approach is to extract the most
significant regions of ChIP-seq peaks according to their primary modes of variation in the (binding score) profiles. It allows
to charaterise the ChIP-seq peak using shape-based information, and could allow the user of this package to discriminate
between binding regions in close proximity and shorten the length of the transcription factor binding sites preserving the
information present in the the dataset at a user-defined level of variance. Without the trimming mode (see below), it also
serves to describe peak shapes using a set of statistics (FPCA scores) directly liked to the principal components of the
dataset, which is useful for post-processing ChIP-seq peaks after generic peak calling, and to analyze differential binding
of transcription factors across several conditions or treatments [5, 1].

3 Methodology

The functional version of PCA establishes a method for estimating orthogonal basis functions (principal components or
eigenfunctions) from functional data [8], in order to capture as much of the variation as possible in as few components
as possible. We can highlight the genomic locations contributing to maximum variation (measured by an aproximation
of the variance-covariance function) from a list of peaks of a ChIP-seq experiment. We have presented the basics of this
methodology in Madrigal and Krajewski (2015) [4].

The algorithm first converts a continuous signal of enrichment from a WIG file, and extracts signal profiles of candidate
TFBSs. Secondly, it characterises the binding signals using a B-spline basis functions expansion. Finally, FPCA is
performed in order to measure the variation of the ChIP-seq signal profiles under study. The output consists of a score-
ranked list of sites according to their contribution to the total variation. A more detailed description of the method and
its application to TF ChIP-seq data can be found below.

3.1 Post-processing, splitting or trimming ChIP-seq peaks

Consider a situation in which a number of peaks have been called in a ChIP-seq experiment. The (read) enrichment signals
(peaks) in n candidate TF binding sites of arbitrary length and shape are denoted by the functions xi(t), i = 1, . . . , N ,
centered in a common interval (1, L), and a profile x0(t) ≡ 0, representing the null enrichment. These are considered as
a family of curves χ = {xi(t); t ∈ (1, L); i ∈ (0, N)}, approximated by linear combinations of K B-spline basis functions
φk(t) with coefficients cik, i = 0, . . . , n; k = 1, . . . ,K, as

xi(t) =

K∑
k=1

cikφk(t). (1)

The coefficients can be estimated by either least squares or penalized residual sum of squares criterion (for further details
see [8]). The input list of sites defined in χ may include also low-enriched regions (weak peaks). For example, using the

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://genome.ucsc.edu/FAQ/FAQformat
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Bioconductor package CSAR [6], candidate binding sites can be selected as those broad regions separated by a maximum
allowed gap of g bp, and profile values higher than r. Alternatively, other initial set of candidate regions, such as those
obtained using general peak-calling tools [1], is also allowed as an input file in BED format.

Subsequently, FPCA is run to estimate J ≤ K mutually orthogonal and normalized eigenfunctions ξj(t), j = 1, . . . , J
capturing as much of the variation as possible in χ, thus finding the subintervals in which the data present the highest
variability. This is done solving the equation: ∫

v(s, t)ξj(t)dt = δjξj(s) (2)

for the appropriate eigenvalues δj . The covariance function v(s, t), is defined as

v(s, t) =
1

N

N∑
i=0

xi(s)xi(t). (3)

For each element of χ the FPCA scores are computed as sij =
∫
γij(t)dt, where γij(t) = ξj(t)[xi(t)− x(t)], with x(t)

being the average ChIP-seq read-enriched profile, defined as:

x(t) =
1

N

N∑
i=0

xi(t). (4)

Then, an overall binding score is obtained for each peak as:

f2i =

J∑
j=1

(sij − s0j)2 =

J∑
j=1

(∫
γij(t)dt−

∫
γ0j(t)dt

)2

, (5)

that is, as the squared distance of a site from the null enrichment profile in the FPC space. The null profile included in χ
serves to introduce a reference in the FPC space representing non-enrichment (zero mapped tags). The higher the value
of f2i , the higher the contribution of the site i to the total variability among the shapes of the functions in χ. Candidate
peaks are then ordered according to the value of f2i , which allows selecting the subset of those presenting the majority
of variation in the data. After that, a modified score f̃2ih can be optionally computed for each subpeak h = 1, . . . ,H of
a candidate site i by means of eq.(5), using instead of γij(t) its trimmed version

γ̃ij(t) =

{
γij(t) if t ∈ (Aih, Bih),

0 otherwise,
(6)

where (Aih, Bih) are the intervals in which

γi(t) =

P∑
j=1

[
γij(t)

]2 ≥ βT , (7)

βT =
( T

100

)
× max

t,i=1,...,n

{
γi(t)

}
, (8)

where the narrowing threshold T ∈ [0, 100], and P is the number of principal components accounting for at least α% of
the total variation. In practice, the subpeaks are split and trimmed peaks from the initial list defined in χ. Note that if
narrowing threshold T = 0 the input list is not modified, whereas if T = 100 just a single punctate source of variation
would be reported. Using T = 0 is also useful, as shape-based analyses reported by NarrowPeaks can be combined with
results obtained with other peak calling tools, thus providing additional evidence of the peak calls [5], that can increase
true positive rate [10].

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
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3.2 Differential transcription factor binding analysis

Once confident and reproducible estimates of ChIP-seq peaks are determined for a set of samples, the next question of
interest in ChIP-seq data analysis is determining whether the peak regions are bound by other TF, or by the same TF
across w distinct time-, stress-, or tissue-specific conditions, in z1, z2, . . . , zw sequenced samples (that have technical or
biological replications) [1]. In order to determine those regions of divergent (”variant”) binding for multiple treatments, we
take as input a consensus list of aggregated peak regions, coming from independent peak calls at each condition, and then
apply FPCA for the normalized read-enrichment signal of those regions across experiments. First, each genomic region
for a sample is represented as a linear combination of B-spline basis functions, then FPCA is performed independently
for each site across samples as in Equations (1-5) but discarding the reference null profile, i.e.:

f2i =

J∑
j=1

s2ij =

J∑
j=1

(∫
γij(t)dt

)2

(9)

In order to detect pairwise differences between conditions, NarrowPeaks uses Hotelling’s T2 tests in the FPC space, with
the number of components chosen to encapsulate at least α% of variation. The chi-square approximation can be used
in the Hotelling’s T2 test to relax the assumption of data normality (test=”chi” in HotellingsT2, R package ICSNP).
To control for multiple testing, p-values are corrected using the Benjamini-Hochberg adjustment. The number of tested
samples must be larger than the number of functional principal components considered (z > j). If there is no significant
difference (at a p-value cut-off) between the scores, then a chromosomal location is declared as being an ”invariant
binding event” in terms of measured variability across conditions; if significant differences between the FPC scores are
detected, then the site is declared as a ”variant binding event” (see [5] for an application of this method).

4 Example

We will use the example data set included in the NarrowPeaks package for this demonstration. The data represents a
small subset of a WIG file storing continuous value scores based on a Poisson test [6] for the chromosome 1 of Arabidopsis
thaliana [2].

First, we load the NarrowPeaks package and the data NarrowPeaks-dataset, which contains a subsample of first 49515
lines of the original WIG file for the full experiment. Using the function wig2CSARScore a set of binary files is constructed
storing the enrichment-score profiles.

R> library(NarrowPeaks)

R> data("NarrowPeaks-dataset")

R> head(wigfile_test)

[1] "track type=wiggle_0 autoScale=on name=\"CSAR track\" description=\"CSAR track\""

[2] "variableStep chrom=Chr1 span=1"

[3] "18732\t3.4"

[4] "18733\t3.4"

[5] "18734\t3.4"

[6] "18735\t3.4"

R> writeLines(wigfile_test, con="wigfile.wig")

R> wigScores <- wig2CSARScore(wigfilename="wigfile.wig", nbchr = 1, chrle=c(30427671))

READING [ wigfile.wig ] : done

-NB_Chr = 1

-Summary :

| Chr1 | 1 | 30427671 |

CREATING BINARY FILES [CSAR Bioconductor pkg format] :

- Chr1 : done

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
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R> print(wigScores$infoscores$filenames)

[1] "Chr1_ChIPseq.CSARScore"

Next, the candidate binding site regions are extracted using the Bioconductor package CSAR [6]. CSAR predictions
are contiguous genomic regions separated by a maximum allowed of g base pairs, and score enrichment values greater
than t. Candidate regions are stored in a GRanges object (see Bioconductor package GenomicRanges). Alternatively,
ChIP-seq peaks obtained using other peak-callers can be provided building an analogous GRanges object. In this case,
the metadata ’score’ must represent a numeric value directly proportional to the confidence of the peak (p-value) or the
strength of the binding (fold-change).

R> library(CSAR)

R> candidates <- sigWin(experiment=wigScores$infoscores, t=1.0, g=30)

R> head(candidates)

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | posPeak score

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] Chr1 [18732, 19486] * | 19046 38

[2] Chr1 [20117, 21252] * | 20691 50

[3] Chr1 [26477, 26580] * | 26544 4

[4] Chr1 [27881, 27890] * | 27881 3

[5] Chr1 [52613, 52620] * | 52613 3

[6] Chr1 [52659, 52665] * | 52659 3

-------

seqinfo: 1 sequence from an unspecified genome

If CSAR [6] is used first to analyze ChIP-seq data, from the results we can obtain the false discovery rate (FDR) for a
given threshold. For example, for the complete experiment described in [2], t = 10.81 corresponds to FDR = 0.01 and
t = 6.78 corresponds to FDR = 0.1.

Now we could narrow down the candidate sites with the function narrowpeaks to obtain shortened peaks, representing
each candidate signal as a linear combination of nbf B-spline basis functions with no derivative penalization [8]. We can
specify the amount of miminum variance pv we want to describe in form of npcomp principal components, and establish
a cutoff pmaxscor for trimming of scoring functions of the candidate sites.

We will run the function for three different values of the cutoff: pmaxscor = 0 (no cutoff), pmaxscor = 3 (cutoff is at
3% level of the maximum value relative to the scoring PCA functions) and pmaxscor = 100 (cutoff is at the maximum
value relative to the scoring PCA functions).

R> shortpeaksP0 <- narrowpeaks(inputReg=candidates, scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=0.0, ms=0)

R> head(shortpeaksP0$broadPeaks)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average fpcaScore

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] Chr1 [18732, 19486] * | 38 15.71 255256.46

[2] Chr1 [20117, 21252] * | 50 15.91 421981.16

[3] Chr1 [26477, 26580] * | 4 2.4 255.68

[4] Chr1 [27881, 27890] * | 3 3 3.46

[5] Chr1 [52613, 52620] * | 3 3 2.21

[6] Chr1 [52659, 52665] * | 3 3 1.69

-------

seqinfo: 1 sequence from an unspecified genome

R> head(shortpeaksP0$narrowPeaks)

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
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GRanges object with 6 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 [18732, 19486] * | 1.1 493.65 100% FALSE

[2] Chr1 [20117, 21252] * | 2.1 646.27 100% FALSE

[3] Chr1 [26477, 26580] * | 3.1 13.41 100% FALSE

[4] Chr1 [27881, 27890] * | 4.1 0.32 100% FALSE

[5] Chr1 [52613, 52620] * | 5.1 0.21 100% FALSE

[6] Chr1 [52659, 52665] * | 6.1 0.16 100% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

R> shortpeaksP3 <- narrowpeaks(inputReg=candidates, scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=3.0, ms=0)

R> head(shortpeaksP3$broadPeaks)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average fpcaScore

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] Chr1 [18732, 19486] * | 38 15.71 255256.46

[2] Chr1 [20117, 21252] * | 50 15.91 421981.16

[3] Chr1 [26477, 26580] * | 4 2.4 255.68

[4] Chr1 [27881, 27890] * | 3 3 3.46

[5] Chr1 [52613, 52620] * | 3 3 2.21

[6] Chr1 [52659, 52665] * | 3 3 1.69

-------

seqinfo: 1 sequence from an unspecified genome

R> head(shortpeaksP3$narrowPeaks)

GRanges object with 6 ranges and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 [ 18996, 19142] * | 1.1 249.61 19.47% FALSE

[2] Chr1 [ 20590, 20787] * | 2.1 422.45 17.43% FALSE

[3] Chr1 [ 78229, 78300] * | 20.1 98.98 9.47% FALSE

[4] Chr1 [188854, 189165] * | 35.1 602.76 22.27% FALSE

[5] Chr1 [200838, 200964] * | 40.1 202.38 25.87% FALSE

[6] Chr1 [300275, 300450] * | 56.1 272.69 28.25% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

R> shortpeaksP100 <- narrowpeaks(inputReg=candidates, scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=100, ms=0)

R> head(shortpeaksP100$broadPeaks)

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | max average fpcaScore

<Rle> <IRanges> <Rle> | <integer> <numeric> <numeric>

[1] Chr1 [18732, 19486] * | 38 15.71 255256.46

[2] Chr1 [20117, 21252] * | 50 15.91 421981.16

[3] Chr1 [26477, 26580] * | 4 2.4 255.68

[4] Chr1 [27881, 27890] * | 3 3 3.46

[5] Chr1 [52613, 52620] * | 3 3 2.21

[6] Chr1 [52659, 52665] * | 3 3 1.69

-------

seqinfo: 1 sequence from an unspecified genome

R> head(shortpeaksP100$narrowPeaks)

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
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GRanges object with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 [725297, 725297] * | 158.1 6.17 0.16% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

As one can see, there is no difference between broadPeaks and narrowPeaks for pmaxscor = 0, whereas for pmaxscor
= 100 just one punctual source of variation is reported. The number of components (reqcomp) required, as well as the
variance (pvar) achieved, are the same for all three cases (pmaxscor of 0, 3 and 100). As our goal was to combine
evidence ([1, 10]) of peak calls provided by MACS [12] and NarrowPeaks, we used pmaxscor = 0 in [5].

R> print(shortpeaksP0$reqcomp)

[1] 1

R> print(shortpeaksP0$pvar)

[1] 80.3107

Now, we can do the same for pmaxscor = 90 and the result consists of 3 peaks very close to each other. We can tune
the parameter ms to merge the sites into a unique peak:

R> shortpeaksP90 <- narrowpeaks(inputReg=candidates,scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0, nderiv=0, npcomp=2, pv=80, pmaxscor=90, ms=0)

R> shortpeaksP90ms20 <- narrowpeaks(inputReg=candidates,scoresInfo=wigScores$infoscores, lmin=0, nbf=25,

rpenalty=0,nderiv=0, npcomp=2, pv=80, pmaxscor=90, ms=20)

We could make use of the class GRangesLists in the package GenomicRanges to create a list:

R> library(GenomicRanges)

R> exampleMerge <- GRangesList("narrowpeaksP90"=shortpeaksP90$narrowPeaks,

"narrowpeaksP90ms20"=shortpeaksP90ms20$narrowPeaks);

R> exampleMerge

GRangesList object of length 2:

$narrowpeaksP90

GRanges object with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

<Rle> <IRanges> <Rle> | <character> <numeric> <character> <logical>

[1] Chr1 [725260, 725327] * | 158.1 413.67 10.76% FALSE

$narrowpeaksP90ms20

GRanges object with 1 range and 4 metadata columns:

seqnames ranges strand | broadPeak.subpeak trimmedScore narrowedDownTo merged

[1] Chr1 [725260, 725327] * | 158.1 413.67 10.76% FALSE

-------

seqinfo: 1 sequence from an unspecified genome

Finally, we can export GRanges objects or GRangesLists into WIG, bedGraph, bigWig or other format files using the
package rtracklayer . For example:

R> library(GenomicRanges)

R> names(elementMetadata(shortpeaksP3$broadPeaks))[3] <- "score"

R> names(elementMetadata(shortpeaksP3$narrowPeaks))[2] <- "score"

R> library(rtracklayer)

R> export.bedGraph(object=candidates, con="CSAR.bed")

R> export.bedGraph(object=shortpeaksP3$broadPeaks, con="broadPeaks.bed")

R> export.bedGraph(object=shortpeaksP3$narrowPeaks, con="narrowpeaks.bed")

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
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5 Details

This document was written using:

R> sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 splines stats graphics grDevices utils datasets methods

[10] base

other attached packages:

[1] rtracklayer_1.30.0 CSAR_1.22.0 GenomicRanges_1.22.0 GenomeInfoDb_1.6.0

[5] IRanges_2.4.0 S4Vectors_0.8.0 BiocGenerics_0.16.0 NarrowPeaks_1.14.0

loaded via a namespace (and not attached):

[1] survey_3.30-3 XVector_0.10.0 GenomicAlignments_1.6.0

[4] ICS_1.2-5 zlibbioc_1.16.0 BiocParallel_1.4.0

[7] lattice_0.20-33 fda_2.4.4 tools_3.2.2

[10] SummarizedExperiment_1.0.0 grid_3.2.2 Biobase_2.30.0

[13] ICSNP_1.1-0 lambda.r_1.1.7 futile.logger_1.4.1

[16] Matrix_1.2-2 futile.options_1.0.0 bitops_1.0-6

[19] RCurl_1.95-4.7 Biostrings_2.38.0 Rsamtools_1.22.0

[22] XML_3.98-1.3 BiocStyle_1.8.0 mvtnorm_1.0-3

6 Acknowledgements

This work was supported by the EU Marie Curie Initial Training Network SYSFLO (agreement number 237909).

http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html

	1 Citation
	2 Introduction and motivation
	3 Methodology
	3.1 Post-processing, splitting or trimming ChIP-seq peaks
	3.2 Differential transcription factor binding analysis

	4 Example
	5 Details
	6 Acknowledgements

