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Abstract

This vignette presents an analysis of a typical two-color miRNA microarray experi-
ment. Covered topics include visualization, normalization, quality checking, differential
expression, cluster analysis, miRNA target identification, and gene set enrichment anal-
ysis. Many of these tools carry-over from the analysis of mRNA microarrays, but with
some notable differences that require special attention.

1 Introduction

In this vignette, we present the analysis of a two-color miRNA microarray experiment. The
MmPalate MiRNA package is a compendium [I], 2], which encapsulates the primary data,
supporting software and statistical analysis, and document text. The data were obtained
from mouse embryos during the development of the secondary palate [3], and are freely
available as part of the compendium package. The analysis presented here follows closely to
what was presented in [3], though with a few differences. Although the analysis is specific
to the Miltenyi Biotech miRXplore platform EL the general steps outlined here can easily be
extended to other platforms as well.

Example code is provided for the complete analysis including preprocessing of arrays,
normalization, identification of differentially expressed miRNAs, clustering, miRNA target
identification, and gene-set enrichment analysis. Aspects of miRNA analysis which require
special attention are highlighted. In particular, miRNA arrays typically have far fewer genes
that are spotted on the array compared to mRNA arrays, and require careful consideration
of the assumptions behind array pre-processing methods prior to their application. Several
recent publications have compared various normalization methods for microRNA microarray
data [4, B, 6], while others have developed novel methods specifically for miRNA data
[7, [8, @, 10]. Though certain methods were found to outperform others in each case, in
general there is still no consensus on the best normalization method. In this vignette
we illustrate how to assess whether a normalization method is appropriate for a given
data set, using the diagnostic plots discussed in [9]. A second unique aspect of miRNA
analysis relative to mRNA analysis is that differentially expressed miRNAs are subsequently
evaluated for potential gene targets that are regulated by the miRNAs. A number of
databases can be used for this purpopse, and many of these have been ported to R in the
form of Bioconductor packages. It is these putative regulatory targets that are typically
evaluated for biological and molecular functionality, e.g. by gene set enrichment analysis.

2 miRNA Palate Data

The microRNA microarray data in this compendium were obtained as previously described
in [3], and the data are publicly available from GEO DataSets[?] (accession number GPL10179).
Briefly, mouse embryonic tissue was obtained on gestational days (GD) 12, 13, and 14, which
represents the critical period of palate development in the mouse. Total RNA (containing
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miRNAs) was isolated using standard RNA extraction protocols. RNA samples (1 ug) iso-
lated from mouse embryonic orofacial tissues (GD-12 - GD-14) as well as the miRXplore
Universal Reference (control) were fluorescently labeled with Hy5 (red) or Hy3 (green),
respectively, and hybridized to miRXplore Microarrays (Miltenyi Biotec) using the a-Hyb
Hybridization Station (Miltenyi Biotec). For each gestational day, three distinct pools of
RNA were independently processed and applied to microarray chips. Probes for a total of
1336 mature miRNAs (from human, mouse, rat and virus), including positive control and
calibration probes, were spotted in quadruplicate on each microarray. Each array included
probes for 588 murine miRNAs. The miRXplore Universal Reference (UR) controls, pro-
vided by Miltenyi, represent a defined pool of synthetic miRNAs for comparison of multiple
samples. Fluorescence signals of the hybridized miRXplore Microarrays were detected using
a laser scanner from Agilent Technologies. Mean and median signal and local background
intensities for the Hy3 and Hyb channels were obtained for each probe on each of the nine
microarray images using the ImaGene software (BioDiscovery, Inc., El Segundo, CA).

The raw data are available in the package as PalateData, and are loaded below. Ad-
ditional meta-information concerning the type of probe (probe.type) and name of the
miRNA (Name and Name.stem) are available in the PalateData$genes data frame. See the
help page for details. The data are in the format of an RGList, and requires the limma
package.

R> library("MmPalateMiRNA")
R> data(PalateData)

3 Preprocessing

3.1 Outlying Arrays

Sarkar et al. [9] describe several diagnostic plots for miRNA data that can be used to evaluate
the need and effectiveness of normalization procedures. These plots can also serve as aids
to determine outlying arrays and batch effects. One such plot is the kernel density estimate
for each array, for different types of probes. Figure [I| plots the density estimates of the log,
intensity values in the control channel for the unnormalized data, separated into “MMU
miRNAs”, “Other miRNAs”, and “Control” probes (other probes were non-informative).
The plot requires use of the lattice package, and the MmPalateMiRNA package contains
methods to produce plots for RGList objects based on the generic functions in lattice.

N g
R> ## Densities of log2 intensities in reference (green) channel

R> ## organize according to different types of probes

R> ## different lines correspond to different arrays

R> #HH R R R R AR AR R R R R R RRR AR AR AR AR R GG
R>

R> ## separate into mouse, non-mouse, blank, control probes

R> ## panels = probe type AND normalization type

R> ## groups = arrays



R> ## y
R> ## x
R>
R> ## Use ~ x1 + x2 | y fomula for multiple x's ..
R> ## Done within the S4 method for class 'RGList' for demsityplot
R> ## Code so that each day is different color, but each replicate is different line type
R>
R> #library("lattice")
R>
R> res <- densityplot(PalateData, channel="G", group="probe.type",
subset = c("Other miRNAs", "MMU miRNAs", "Control"),
col=rep(1:3, each=3), 1lty=rep(1:3, 3),
key = list(lines=list(col=rep(1:3, each=3), lty=rep(1:3, 3)),
text=1ist (colnames (PalateData)), columns=3))

density
log2 values

R> print(res)

R>

R> ## looks like 3 outlying arrays (021, 033, 029)

R> ## 12-1, 14-3, 13-2 ...

R> ## 12-1, 12-2, 12-3, 13-1, 13-2, 13-3, 14-1, 14-2, 14-3
R> ## 021, 022, 023, 024, 033, 034, 035, 036, 029
R>

Figure [I] indicates three possible outlying arrays, GD 12-1, 13-2, and 14-3. A second
figure (Figure [2) can be constructed based on the pairwise “distance” between arrays, as
measured by the median of the absolute differences in log, expression for miRNAs in the
green channel [9]. The plot is created using the levelplot method for RGList objects
included in the package. Here we separate the plots according to the type of probe, and the
arrays are reordered so that the outlying arrays are grouped together. The three arrays are
clearly outliers based on the control probes, but to a lesser extent based on the other types
of probes.

N i
R> ## Plot of pairwise '"distance" between arrays
R> ## distance defined as median absolute difference between arrays for MMU miRNAs
R> ## use log2 of green channel
e o
R>
R> ## levelplot using S4 method for class 'RGList'
R> ## reorder so that outlying arrays are grouped together
R> res <- levelplot(PalateDatal[, c(1,5,9,2:4,6:8)],
channel="G", group="probe.type",
subset=c ("MMU miRNAs", "Other miRNAs", "Control", "Empty"),
scales = list(rot=c(45, 45)))
R> print(res)
R>
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Figure 1: Estimated density of reference channel in unnormalized data, for various types of
probes.
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Figure 2: Distance between arrays, as measured by the median absolute distance of reference
channel intensity measurements, separate by type of probe.



Figures|[l]and [2] demonstrate the potential need for normalization or removal of several of
the arrays. In Section {4 we will evaluate the effectiveness of several normalization methods
in correcting these systematic differences between the arrays.

3.2 Outlying Values

In addition to checking for outlying arrays, it is important to check for outlying values on
individual probes. To accomplish this, we evlauted for each probe whether there were any
extreme values (greater than 2.665 standard deviations above the mean). The checkOut-
liers function checks this for each of the red and green channels in an RGList object, and
returns the indices of array probes with extreme values.

R> outliers <- checkOutliers(PalateData)

The probes with outlying arrays can be visualized using boxplots, e.g. using the code
below.

R> boxplot (as.data.frame (t(PalateData$R[outliers$Rout,])))

The figure is omitted but clearly shows that the identified outlying values are nearly
two orders of magnitude above the rest of the intensity values. Rather than omitting these
values, we exploit the replicated design of the arrays and substitute the mean of the other
replicates on the array for the extreme values (the fixOutliers function).

R> PalateData$R <- fixOutliers(PalateData$R, outliers$Rout, PalateData$genes$Gene)
R> PalateData$G <- fixOutliers(PalateData$G, outliers$Gout, PalateData$genes$Gene)
R>

3.3 Missing Values

In addition to checking for outlying values, we also check for any missing values in the two
channels (the checkMVs function). Here, we only find two probes on the array with missing
values in the background channels, so we again impute these values using the means of the
backgrounds from the other three replicates on the chip (the £ixMVs function).

R> mvs <- checkMVs (PalateData)

R> PalateData$Rb <- fixMVs(PalateData$Rb, mvs$Rb.na, PalateData$genes$Gene)
R> PalateData$Gb <- fixMVs(PalateData$Gb, mvs$Gb.na, PalateData$genes$Gene)
R> ## Three spots with missing backgrounds

R> ## 39875 (1 Rb and 1 Gb)

R> ## 38232 (2 Rb and 2 Gb)

R> ## 40139 (3 Rb and 3 Gb)

R>



3.4 Filtering Probes

Prior to running the normalization methods, we filter the probes and keep only those which
correspond to miRNAs and calibration probes. Additionally, probes that are not sufficiently
above the background intensity level may be unreliable and represent noise that can interfere
with subsequent analysis, including normalization [9]. Prefiltering also reduces the number
of statistical comparisons being performed and improves overall power [I1]. Here, we filter
probes whose foreground intensity values are below 1.1 times their background intensity
level. To allow for probes which may be expressed for a particular experimental condition
(here, gestational day), we keep all probes which have at least 3 samples above the filtering
threshold. Lastly, only those genes with all four replicates passing the filtering step are
retained. After all pre-processing steps, a total of 956 probes, corresponding to 175 mouse
miRNAs, 42 other miRNAs, and 22 calibration probes each replicated 4 times, remains.

R> reducedSet <- filterArray(PalateData, keep=c("MIR", "LET", "POSCON", "CALIB"),
frac=1.1, number=3, reps=4)
R>

4 Normalization

Based on the literature [4, [5 [6, O], we evaluated several normalization procedures on the
filtered data, including none, median, loess, quantile, VSN, and spike-in VSN. The limma
package includes various options for both within (normalizeWithinArrays) and between
(normalizeBetweenArrays) array normalization, and the vsn package has functions for per-
forming VSN and spike-in VSN. In all cases, a simple background correction was performed
by subtracting background from the foreground intensities.

N i g
R> ## Evaluate different normalization procedures

R> ## 1. none

R> ## 2. median
R> ## 3. loess
R> ## 4. quantile
R> ## 5. VSN

R> ## 6. spike—in VSN

B
R>

R> ## should just require this??

R> library("vsn")

R> ## 1. None

R> ndata.none <- normalizeWithinArrays(reducedSet, method="none")

R> ## 2. Median

R> ndata.median <- normalizeWithinArrays(reducedSet, method="median")
R> ## 3. Loess

R> ndata.loess <- normalizeWithinArrays(reducedSet, method="loess")



R> ## 4. (uantile

R> ndata.quantile <- normalizeBetweenArrays(reducedSet, method="quantile")
R> ## 5. VSN

R> ndata.vsn.limma <- normalizeVSN(reducedSet)

R> ## NOTE: can also get the above with the following code:

R> ## ndata.vsn <- justvsn(reducedSet, backgroundsubtract=TRUE)

R> ## However, 'ndata.vsn' is an NChannelSet while

R> ## 'ndata.vsn.limma' is an MAList

R>

R> ## 6. Spike—in VSN

R> idx.control <- which(reducedSet$genes$probe.type=="Control")

R> spikein.fit <- vsn2(reducedSet[idx.control,], 1lts.quantile=1, backgroundsubtract=TRUE)
R> ndata.spikein.vsn <- predict(spikein.fit, newdata=reducedSet)

R>

4.1 Diagnostic Plots

Several diagnostic plots can be used to contrast the effectiveness of each normalization pro-
cedure, as suggested by [9]. The MmPalateMiRNA package contains several methods to
produce these plots for lists of class MAList or NChannelSet objects, based on functions in
the lattice package. Figure |3 rows one through five, plots the intensity distribution for the
reference channels after each of the normalization procedures (use of the useQuterStrips
function requires the lattice Extra package). The quantile normalization procedure is clearly
the most successful in removing the intensity bias that was apparent for three of the arrays
(12-1, 13-2, and 14-3), while loess and median normalization appear to be the least success-
ful. Notably, normalization based on the spike-in probes was unsuccessful, perhaps since
these probes were shifted differently in the reference channel relative to the other probe

types.

R> #H#HAHH AR H AR H AR RN R R R A A
R> ## 1. Evaluation using Sarkar et al. 2009 density plots
R> ## Use RG.MA to convert back to RG values for MALists
R> ## Use density plot - S4 method for class 'list'
O B B i i 3
R>
R> ndata.all <- list(ndata.none, ndata.median, ndata.loess,
ndata.quantile, ndata.vsn.limma,
ndata.spikein.vsn)
R> names(ndata.all) <- c("None", "Median", "Loess", "Quantile", "VSN", "Spike-in VSN")
R> dplot <- densityplot(ndata.all, channel="G", group="probe.type",
subset = c("Other miRNAs", "MMU miRNAs", "Control"),
col=rep(1:3, each=3), lty=rep(1:3, 3),
par.strip.text=1ist(cex=0.75),
key = list(lines=list(col=rep(1:3, each=3), lty=rep(1:3, 3)),
text=list (colnames (ndata.none)), columns=3))
R> if (require("latticeExtra")) {
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Figure 3: Estimated density of reference channel before (“None”) and after normalization
by various normalization procedures, subsetted by type of probe.

dplot <- useOuterStrips(dplot)

}
R> plot(dplot)

An additional plot based on the median absolute difference between probes in the ref-
erence channel can be used to compare relative success of the normalization procedures in
removing the array effect (Figure [4). Here again, quantile normalization appears to be the
best, while loess and median normalization are the least effective.

R> #H#HHHH AR HA U R AU AU BB R BB R R BB AR R AR BB R R R R R R AR
R> ## 2. Sarkar 'Distance' Plot

R> ## Green channel, all probes

R> #H#HAHH AR H B R RN R RN AR AR R R RS AR AR R R A
R>

R> ## levelplot using S4 method for class 'list'

R> res <- levelplot(ndata.all, channel="G", order=c(1,5,9,2:4,6:8),

10
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Figure 4: Distance between arrays, as measured by the median absolute distance of reference
channel intensity measurements, after application of several normalization procedures.

scales = list(rot=c(45, 45)))
R> print(res)
R>
R>

To investigate the effect of the normalization procedure on the experimental channel,
plots of the spread (median absolute deviation) versus the location (median) of all probes
can be used. Plots of this type can be produced using the MADvsMedianPlot function in
the package. Probes of different types are highlighted, with particular focus on the spike-in
probes, which should have low variability across all the arrays. In Figure |5 spike-in VSN
has the lowest variability among the spike-in probes, compared to the other normalization
methods. However, spike-in VSN has also dramatically decreased the variation among all
the probes in the experimental channel, making the normalization procedure questionable
in this case. Quantile normalization has resulted in large variations for some of the probes
with lower intensity values.
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R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

R>
R>
R>
R>
R>

e B e e e i
## 3. Spread (MAD) vs. location (median) of all probes,

## highlight spike-ins

RUARH AR H AR H AR R BB AR R ARR AR AR R AR R BB AR R ARG AR AR R AR R BB A RR ARG AR AR H AR

## Previously did MAD vs median of expression-ratios (M values) across all arrays
## Now doing MAD vs median for RED channel
## Either plot may be interesting ...

## Now using S4 method MADvsMedianPlot ...

res <- MADvsMedianPlot(ndata.all, channel="R", group="probe.type",
subset=c ("MMU miRNAs", "Other miRNAs", "Control"))

print (res)

## Here, maybe quantile looks a little suspect??

## VSN, quantile, and loess are close

## spike-in VSN very little variation and is suspect

Plots of the log, expression ratios (M values) versus the mean log, expression values (A

values) for each probe can be used to evaluate whether their is a bias associated with overall
intenstity level for each array. This so-called “MA” plot is illustrated in Figure[6] for quantile
normalization. MA plots for the other normalization methods are not shown, though code
to produce the plots is available in the R script for the vignette. Quantile normalization has
removed any association between the M and A values, while for VSN normalization there is
still a trend which is similar to the unnormalized data The MA plot for spike-in VSN shows
a dramatic effect on the intensity ratios.

R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>
R>

B
## MA Plots for

## 1. quantile normalization

## 2. VSN

## 3. unnormalized data

## 4. spike-in VSN
i

## (Quantile

res <- MAplot(ndata.quantile)
print (res)

As a final evaluation, we inspection heatmaps along with hierarchical clustering of the

arrays. Figure [7] displays the heatmap after quantile normalization, and reveals that the
previously identified outlying arrays (samples 12-1, 13-2, and 14-3) still do not cluster with
the other replicates for that day.

R>
R>

B
## Heatmaps

12
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Figure 6: Log, intensity ratios plotted against average log, intensity values for each probe,
for each array after quantile normalization. Red lines are loess smoothed regression lines
for each M versus A comparison.
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Figure 7: Heatmap of log, intensity ratios after quantile normalization. Arrays and probes
are clustered by hierarchical clustering. Arrays 12-1, 13-2, and 14-3 do not cluster with the
other replicates for the corresponding gestational day.

R> #HAARUHHARB R AR BB AR BB AR B UE R AR B U R AR BB R R AR BB R AR BB R AR B R R AR B UER R R B R R RS
R> ## Clusters both rows and columns

R> heatmap (ndata.quantile$M, col=cm.colors(256), labRow=FALSE)

R>

Table [1| gives the correlations between each pair of arrays, based on the log, intensity
ratios. Since the other two replicates for each day were highly correlated (r > 0.95), we
decided to use only those two replicates from each day for subsequent statistical analysis.
Normalization was redone omitting the arrays 12-1, 13-2, and 14-3, using quantile normal-
ization.

F D B i v
R> ## Redo, omiting 021, 033, and 029 (12-1, 13-2, 14-3)

R> ## keep two replicates for each day

R> ## Removal before normalization

15



12-1  12-2 12-3 13-1 13-2 13-3 14-1 14-2 14-3
12-1 1.00 086 0.86 0.85 086 0.84 0.83 0.84 0.89
12-2 0.86 1.00 098 097 087 096 093 094 0.89
12-3 0.86 098 1.00 096 085 095 0.92 093 0.88
13-1 085 097 096 1.00 087 095 094 094 091
13-2 086 087 0.85 087 100 0.8 0.84 084 091
13-3 0.84 096 095 095 086 1.00 095 095 0.88
14-1 083 093 092 094 084 095 1.00 096 091
14-2 0.84 094 093 094 084 095 096 1.00 0.89
14-3 0.89 089 0.8 091 091 0.88 091 0.89 1.00

Table 1: Correlation between arrays after quantile normalization

B
R>

R> ## Need to take out "MIRCONTROL" samples now as well

R> ## NOTE: Keeping these in improves correlation between samples on same day
R> ## Remove prior to calculating whether gene is expressed and DE
R>

B
R> ## 1. Quantile between, no within

R> ## 2. VSN

O i o
R>

R> ## Background correction = 'subtract' by default (all methods)

R> omit <- which(colnames(reducedSet)7injc("12-1", "13-2", "14-3"))

R> ndata <- normalizeBetweenArrays(reducedSet[,-omit], method="quantile")

4.2 Imputation

Sixteen probes from the six arrays exhibited negative intensities after the background pro-
cedure, and resulted in missing values for subsequent calculation of the log, intensity ratios.
A significant percentage of missing values can have a substantial impact on downstream
analysis of array data [I2], and in such cases choice of a imputation procedure should be
carefully considered. Here, with a relatlively small percentage of missing values, the impact
on data analysis will be relatively minimal, and we select the K-nearest neighbor imputa-
tion scheme [I3] as a fast and effective approach (the imputeKNN function is included in the
package).

R> ndata$M <- imputeKNN(as.matrix(ndata$M), dist="cor")
R> ndata$A <- imputeKNN(as.matrix(ndata$d), dist="cor")

5 Determining Differentially Expressed miRNAs

To test for differential expression of miRNAs between different gestational days (GD-12,
13, and 14), the limma package [14] was used. Use of the limma package requires the user
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to create a design matrix, which defines the possible levels for each experimental factor,
and is used to construct a model matrix and contrasts to test for differential expression
between factor levels. The model matrix consists of indicator variables for the levels of each
experimental factor in our design, which in our case corresponds to each of the gestational
days.

R> ## Construct the design matrix

R> design <- data.frame(grp=c(1,1,2,2,3,3),rep=c(1,2,1,2,1,2))

R> design$grp <- factor(design$grp, labels=c("Day12", "Day13", "Day14"))
R> mmat <- model.matrix( ~ 0 + design$grp)

R> colnames(mmat) <- c("Day12", "Day13", "Day14")

The contrasts defined here estimate the differences in mean log, expression between each
gestational day. The makeContrasts function in limma will generate these for you.

R> contrast.matrix <- makeContrasts(Day13-Dayl12, Dayl4-Dayl2, Dayl14-Day13,
levels=mmat)

Some advantages of using limma over other methods include the ability to incorporate
probe quality weights and to handle duplicate probes for each miRNA on the chip via
the duplicateCorrelation function. These advantages are particularly evident in small
sample sizes, as in this experiment. To make use of the duplicated probes, we first order
the normalized data so that replicated probes are adjacent to each other. The probe quality
weights are incorporated in the calculation of the correlation matrix for the duplicated
probes.

R> ## Order data by probes

R> idx <- order(ndata$genes$Gene)

R> ndata <- ndata[idx,]

R> idx.rm <- which(ndata$genes$probe.type=="Control")

R> ndata <- ndata[-idx.rm,]

R> ## compute correlations between same probes on each chip

R> corfit <- duplicateCorrelation(ndata, mmat, ndups=4,
weights=ndata$weights)

R>

Next, the 1mFit function is used to fit the hierarchical linear model, and the con-
trasts.fit function used to get contrast estimates. The eBayes function generates the
moderated (empirical Bayesian) t-statistics corresponding to each of the contrast estimates.

R> fit <- I1mFit(ndata, mmat, ndups=4,

correlation=corfit$consensus)
R> fitc <- contrasts.fit(fit, contrast.matrix)
R> fitc <- eBayes(fitc)

The topTable function calculates and reports fold change, moderated t-statistics, un-
adjusted and adjusted p-values for the comparison of interest. Code below shows the calcu-
lation for the comparison between gestational days 13 and 12, and the results are given in
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Table [2] Results for comparisons between the other gestational days are omitted but code

to calculate them is inclued in the R script for the vignette.

R> ## First contrast

R> top13vi2 <- topTable(fitc, coef=1, number=nrow(ndata)/4, adjust="fdr",
sort.by="P")

R> top13v12$FC <- 2~ (top13v12$1logFC)

R> sig13v12 <- top13vi2[top13vi2$adj.P.Val<.05,]

R> colNames <- c('"Name.stem", "probe.type", "FC", "t'", "adj.P.Val")

R>

R>

res <- xtable(sigl3v12[,colNames],
digits=c(0,0,0,2,2,3),

caption="Significantly differentially expressed miRNAs

for GD 13 versus 12",

label="tab:contrast13v12", caption.placement = "top")

print(res, include.rownames=FALSE)

Name.stem probe.type FC t adj.P.Val
LET-7B MMU miRNAs 1.78 7.71 0.000
MIR-193A-3P MMU miRNAs 2.94 6.84 0.000
LET-7C MMU miRNAs 1.50 5.73 0.001
MIR-140-5P MMU miRNAs 146 5.31 0.001
MIR-342 Other miRNAs 0.56 -5.17 0.001
MIR-31 MMU miRNAs 1.56 4.98 0.002
MIR-193B MMU miRNAs 1.66 4.86 0.002
MIR-301 Other miRNAs 0.78 -4.44 0.005
MIR-20B Other miRNAs 0.75 -4.36 0.006
MIR-543-3P MMU miRNAs 0.69 -3.90 0.016
MIR-342-3P MMU miRNAs 0.58 -3.82 0.016
MIR-301B Other miRNAs 0.71 -3.82 0.016
MIR-22 MMU miRNAs 1.34 3.78 0.016
MIR-152 MMU miRNAs 1.25 3.74 0.016
LET-71 MMU miRNAs 1.35 3.74 0.016
MIR-298 MMU miRNAs 0.77 -3.44 0.030
MIR-148A MMU miRNAs 1.34 341 0.031
MIR-210 MMU miRNAs 1.33 3.39 0.031
MIR-422A Other miRNAs 1.67 3.34 0.033
MIR-23A MMU miRNAs 1.29 3.32 0.033
MIR-20A MMU miRNAs 0.79 -3.29 0.033
MIR-347 Other miRNAs 1.19 3.18 0.042

Table 2: Significantly differentially expressed miRNAs for GD 13 versus 12
A nice summary of the results for the comparisons between gestational days is a Venn

diagram, which gives the number of up- and down-regulated genes for each comparison,
along with the number in the intersection of these sets (Figure .
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Figure 8: Venn diagram illustrating the number of up- and down-regulated genes for each
comparison between gestational days, along with the number in the intersection of these
sets.

R> res <- decideTests(fitc)
R> vennDiagram(res, include=c("up", "down"),
counts.col=c("red", "green"), cex=1.25)

Although we have focused on the calculation of test statistics corresponding to pairwise
comparisons between gestational days, it is easy to obtain estimates for other contrasts of in-
terests between the experimental conditions. For example, the the contr.poly function will
provide contrasts to test for linear and quadratic trends, and the contr.helmert function
gives the Helmert contrasts. Additionally, the analysis of variance (ANOVA) F-statistics
for testing for differential expression between all three gestational days are in fitc$F, with
corresponding p-values in fitc$F.p.value.

To illustrate, we first calculate adjsuted p-values for the F-statistics in fitc$F, using
the multtest package.
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R> if (require("multtest")) {
rawp <- fitc$F.p.value
BH <- mt.rawp2adjp(rawp, proc = "BH")
sum (BH$adjp[, "BH"] < 0.05)

}

(1] 79

The same statistics can be obtained by combining two orthogonal contrasts, e.g. using
the contr.helmert function.

R> ## Helmert contrasts, from contr.helmert ...
R> contr.helmert (3)

(1] [,2]
1 -1 -1
2 RS |
3 0 2

R> contrast.helmert <- makeContrasts(Dayl3-Dayl12, Day14-0.5+%Day12-0.5%Dayl3,
levels=mmat)
R> fitc.helmert <- contrasts.fit(fit, contrast.helmert)
R> fitc.helmert <- eBayes(fitc.helmert)
R> Fstats <- topTable(fitc.helmert, coef=c(1, 2), number=nrow(ndata)/4, adjust="fdr",
sort.by="F")
R> sum(Fstats$adj.P.Val < 0.05)

(1] 79

Next, the miRNAs with significant F-statistics (adjusted p < 0.05) are identified for
follow-up examination, e.g. by clustering. The duplicates are averaged prior to further
analysis.

R> ## average probes for plotting

R> avedata <- avedups(ndata, ndups=4, spacing=1)

R> sigFgenes <- Fstats$Gene.ID[which(Fstats$adj.P.Val < 0.05)]

R> ## ssgenes <- unique(c(sigl13v12$Gene, sigl4v12$Gene, sigl4v13$Gene))

R> ## sum(sigFgenesjinjjssgenes) ## all 79 show up in individual lists

R> mat <- as.matrix(avedatal[match(sigFgenes, avedata$genes$Gene), ])

R> colnames (mat) <- c("GD-12-1", "GD-12-2","GD-13-1", "GD-13-2",
"GD-14-1", "GD-14-2")

R> rownames (mat) <- sigFgenes

6 Clustering Expression Profiles

After identifying the differentially expressed miRNAs, clustering analysis can be performed
to group genes with similar trends over time. A common difficultly is deciding which
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clustering algorithm to use, and how many clusters to create. Cluster validation measures,
as contained in the R package clValid [I5], can help in this regard. Below, the clValid
function is used to evaluate hierarchical clustering, SOTA, DIANA, and K-means clustering
algorithms, for a range of one to six clusters in each case. The expression values for each
day are averaged over the two replicates prior to clustering (object aveExpr). The internal
validation measures (connectivity, Dunn Index, and Silhouette Width) are used with a
correlation metric. A summary of the result indicates that hierarchical clustering with six
clusters provides the optimal connectivity and Dunn Index measures, while DIANA with
six clusters gives the optimal Silhouette Width.

R> if (require("clValid")) {
## This creates averages over replicates for each day
aveExpr <- t(apply(mat, 1, function(x) tapply(x, c(1,1,2,2,3,3), mean)))
clRes <- clValid(aveExpr, 6, clMethod=c("hierarchical", "diana", "sota", "kmeans"),
validation=c("internal"), metric="correlation")
summary (c1Res)

}

Clustering Methods:
hierarchical diana sota kmeans

Cluster sizes:
6

Validation Measures:

hierarchical Connectivity  18.2833

Dunn 0.0027
Silhouette 0.7607
diana Connectivity  21.0147
Dunn 0.0033
Silhouette 0.7708
sota Connectivity 182.8651
Dunn 0.0000
Silhouette -0.7568
kmeans Connectivity 178.8687
Dunn 0.0000
Silhouette -0.2833

Optimal Scores:

Score Method Clusters
Connectivity 18.2833 hierarchical 6
Dunn 0.0033 diana 6
Silhouette 0.7708 diana 6
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R>

The results from hierarchical clustering with six clusters was subsequently selected for

visually displaying the data, using the clustPlot function available in this package. The
expression values for each miRNA are scaled to mean zero and standard deviation one
for ease of visualization. The display is given in Figure )] The two predominant clusters
are cluster one and cluster two, which correspond to those miRNAs which exhibit a linear
upward and downward trend over the time course, respectively.

R>

7

if (exists("clRes")) {

clusters <- cutree(clRes@clusterUObjs$hierarchical, 6)
## Scales the average expression values

aveExpr <- t(scale(t(aveExpr)))

colnames (aveExpr) <- c("GD-12", "GD-13", "GD-14")
clustPlot(clusters, aveExpr, 3, 2)

Determining miRNA Target Genes

To follow-up the results from the differentially expression and clustering analysis, the next
step is to determine putative regulatory targets of the differentially expressed miRNAs.
To illustrate, we identify the putative targets of the miRNAs contained in the first clus-
ter in Figure [0 The miRNAs in the first cluster are evaluated for putative targets using
the databases TargetScan E] (package targetscan.Mm.eg.db) and miRBase E] (package mi-
croRNA). The mouse specific miRNA names are first extracted and then converted to the
standard nomenclature using the function miRNames, which is included in the accompanying
R script.

R>
R>

}

R>
R>

## Pull out the MMU specific names

if (exists("clusters")) {

idsl <- names(clusters[which(clusters==1)])

else {

idsl <- c("35816", "35861", "35886", "35817", "39256", "38722", "39370",
"38559", "40185", "35849", "35884", "40069", "39153", "39157",
"39361", "39299", "35863", "39294", "38316", "39211", "40190",
"38319", "38995", "35855", "38796", "35899", "39212", "38508",
"39178", "35889", "38849", "39209")

miRs1 <- miRNames(idsl, avedata$genes$Name, avedata$genes$'Gene ID')

Targetscan targets are obtained using the code below. The objects in the targetscan. Mm.eg.db

package are Bimap objects, which are mappings from one set of keys (the left keys or Lkeys)

3TargetScanHuman 5.1, http://www.targetscan.org/
*MicroCosm Targets, http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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Figure 9: Plot of clustering results for all differentially expressed miRNAs, based on hier-
archical clustering with six clusters.
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to another (the right keys or Rkeys). We start by mapping the miRBase identifiers to
their miRNA family names, then map the miRNA families to Entrez Gene identifiers of
the targets in the TargetScan database. Several of the miRNAs of interest required slight
modifications to their names prior to their mapping.

R>

}

if (require("targetscan.Mm.eg.db")) {

## These are 'miRNAAnnDbBimap' - Bi-mappings

res01 <- miRs1)injls(targetscan.Mm.egMIRNA) ## only two false
miRs1[!res01] ## "mmu-miR-126" "mmu-let-7b*"

miRs1[!res01] <- c("mmu-miR-126-3p", "mmu-let-7b")

miRs1 <- unique(miRs1) ## have "mmu-let-7b" twice

miRs1.list <- mget(miRsl, targetscan.Mm.egMIRNA)
miRs1.fams <- mget(miRsl, targetscan.Mm.egMIRBASE2FAMILY)

miRs1.targets <- mget(as.character(miRs1.fams), revmap(targetscan.Mm.egTARGETS))

targets.tscan <- unique(unlist(miRs1.targets))
length(targets. tscan)

[1] 4640

R>

The TargetScan database identifies 4640 unique Entrez Gene identifiers as putative tar-

gets.

Mouse miRNA targets in the miRBase database are in the data frame mmTargets within

the microRNA package, and can be obtained using the code below. The targets are stored
as Ensembl gene identifiers.

R>
R>
R>
R>
R>

HUBR R AR BRI R
## microRNA package
i i i g 3

if (require("microRNA")) {

## Try identifying targets for miRNAs in cluster one ...
data(mmTargets)

targets.miRB <- mmTargets$target [which(mmTargets$name/in/miRs1)]
targets.miRB <- unique(targets.miRB)

length(targets.miRB)

## target ensembl IDs

## head(targets.miRB) ## Ensembl IDs

## head(targets.tscan) ## Entrez gene idenifiers
## Convert to common naming for use with GSEA, use Entrez Gene IDs
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[1] 13126
R>
A total of 13126 Ensembl transcripts are identified as putative targets by miRBase.

Lastly, we take the intersection of the targets from TargetScan and miRBase as our set
of putative targets. Ensembl gene identifiers are firstly converted to Entrez Gene identifiers
using the org.Mm.eg.db Bioconductor package.

R> if (require("org.Mm.eg.db")) {
## org.Mm.egENSEMBLTRANS Map Ensembl transcript acession numbers with
## Entrez Gene identifiers
idx.miRB <- as.character(targets.miRB)Jin}1s(revmap (org.Mm.egENSEMBLTRANS))
targets.miRB.1list <- as.character(targets.miRB) [idx.miRB]
targets.miRB.entrez <- unlist(mget (targets.miRB.list, revmap(org.Mm.egENSEMBLTRANS)))
targets.intsect <- intersect(targets.tscan, targets.miRB.entrez)
length(targets.intsect)

}

[1] 2068
R>

The final list contains 2068 Entrez Gene identifiers.

8 Gene Set Analysis

As a final step in our analysis, we take the putative miRNA targets from the intersection of
the TargetScan and miRBase databases and perform gene set enrichment analysis on them,
using the hypergeometric test from the GOstats package [16]. Terms in the GO hierarchy
are analyzed for over-reprensetation of genes from our miRNA target list, relative to the
total number from the mouse genome having that annotation. A GOHyperGParams object
is created which contains the list of targets (selectedEntrezIds), the gene “universe”
(entrezUniverse), the annotation database to use, the GO ontology, and direction and
significance level of the test.

R> ## Steps:
R> ## 1. Define gene universe (a vector of Entrez Gene IDs).
R> ## 2. Select a list of interesting genes (a vector of Entrez Gene ID).
R> ## 3. Create a GOHyperGParams object.
R> ## 4. Outputs and summary.
R>
R> if (require("GOstats")) {
selectedEntrezlds <- targets.intsect
## Universe = all entrez gene ids
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entrezUniverse <- unlist(1ls(org.Mm.egENSEMBLTRANS))

hgCutoff <- 0.001
GOparams <- new("GOHyperGParams",
genelds=selectedEntrezIds,
universeGenelds=entrezUniverse,
annotation="org.Mm.eg", ## may need to install org.Mm.eg.db ...
ontology="BP",
pvalueCutoff=0.001,
conditional=TRUE,
testDirection="over")

R>

After the GOHyperGParams object has been created, the test can be conducted using the
hyperGTest function. An html file summarizing the results can be created using the html-
Report function (regeneration of the report is suppressed here due to time considerations).
Particular categories of interest include GO:0060021 (palate development), G0O:0048008
(platelet-derived growth factor receptor signaling pathway), GO:0060429 (epithelium devel-
opment), GO:0030855 (epithelial cell differentiation), GO:0016331 (morphogenesis of em-
bryonic epithelium), GO:0016055 (Wnt receptor signaling pathway), GO:0060828 (regula-
tion of canonical Wnt receptor signaling pathway), GO:0008277 (regulation of G-protein
coupled receptor protein signaling pathway), and GO:0007179 (transforming growth factor
beta receptor signaling pathway).

R> if (exists("GOparams")) {
hgOver <- hyperGTest (GOparams)
class (hgOver)
summary (hgOver)
## HTML report of results
htmlReport (hgOver, file="hgResult.html")

As a final step, we evaluate the mature miRNA sequences and seed regions of the
miRNAs which target the genes in a particular GO category. To illustrate, the GO category
0007179, transforming growth factor beta receptor signaling pathway, is used. Entrez Gene
IDs belonging to this category are identified, and intersected with the selected Entrez Gene
IDs corresponding to cluster one of Figure [9]

R> ## Look at G0:0007179 (transforming growth factor beta receptor signaling pathway)
R> ## 1. Find genes
R> if (require("org.Mm.eg.db")) {

egldsAll <- get("GO:0007179", org.Mm.egGO2ALLEGS)

eglds <- intersect(egIdsAll, selectedEntrezIds)

length(egIds)
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## eliminates redundancies (genes w/multiple evidence codes)

}
[1] 28
R>

Next, these 28 Entrez Gene IDs are reverse mapped back to the set of miRNAs which
putatively target these genes.

R> if (require("targetscan.Mm.eg.db")) {
## 2. Find miRNAs which target these genes
miRs.BetaR.TS <- mget (eglds, targetscan.Mm.egTARGETS)
miRs.BetaR.fams <- intersect(miRsl1.fams, unlist(miRs.BetaR.TS))
miRs.BetaR.list <- mget(miRs.BetaR.fams, revmap(targetscan.Mm.egMIRBASE2FAMILY))
miRs.BetaR.mmu <- grep("mmu", unlist(miRs.BetaR.list), value=TRUE)
## Now restrict these to just miRs of interest
miRs.BetaR.clustl <- intersect(miRs1, miRs.BetaR.mmu)
length(miRs.BetaR.clustl)

[1] 19
R>

Lastly, the mature sequences and seed regions of these 19 miRNAs are determined, using
the mmSegs database and seedRegions function in package microRNA. These sequences can
be evaluated for any commonalities, to be used in determining potential targets for follow-
up luciferase assays and other functional experiments [17]. In this case, the sequences are
rather heterogeneous, although the seed region “GAGGUA” does show up in four of the 19
identified miRNAs.

R> ## 3. Now look at sequences and seed regions ...
R> if (require("microRNA")) {
data(mmSeqgs)
idx.betaR <- which(names (mmSeqs)7in/miRs.BetaR.clust1)
mmSeqs [idx.betaR]
table (seedRegions (mmSeqs [idx.betaR]))

}
AACACU ACUGGC AGCACC AGCAGC AGCUGC CAGUGC CCCUGA GAGGUA GGAAUG GGCUCA
1 2 1 1 1 1 1 4 1 1
GUAAAC UCAAGU UCCAGU UUGGUC
1 1 1 2
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9 Session Info

R> sessionInfo()

R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[56] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils

[7] datasets methods base

other attached packages:

[1] GOstats_2.36.0 graph_1.48.0
[3] Category_2.36.0 G0.db_3.2.2
[5] Matrix_1.2-2 org.Mm.eg.db_3.2.3
[7] microRNA_1.28.0 targetscan.Mm.eg.db_0.6.1
[9] RSQLite_1.0.0 DBI_0.3.1
[11] AnnotationDbi_1.32.0 IRanges_2.4.0
[13] S4Vectors_0.8.0 clValid_0.6-6
[15] cluster_2.0.3 multtest_2.26.0
[17] latticeExtra_0.6-26 RColorBrewer_1.1-2
[19] MmPalateMiRNA_1.20.0 vsn_3.38.0
[21] lattice_0.20-33 statmod_1.4.21
[23] limma_3.26.0 xtable_1.7-4
[25] Biobase_2.30.0 BiocGenerics_0.16.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.1 XVector_0.10.0
[3] BiocInstaller_1.20.0 plyr_1.8.3
[5] class_7.3-14 tools_3.2.2
[7] zlibbioc_1.16.0 digest_0.6.8
[9] annotate_1.48.0 preprocessCore_1.32.0
[11] gtable_0.1.2 proto_0.3-10
[13] genefilter_1.52.0 stringr_1.0.0
[156] Biostrings_2.38.0 grid_3.2.2
[17] GSEABase_1.32.0 RBGL_1.46.0
[19] XML_3.98-1.3 survival_2.38-3

28



[21]
[23]
[25]
[27]
[29]
[31]

10

ggplot2_1.0.1 reshape2_1.4.1
magrittr_1.5 scales_0.3.0
MASS_7.3-44 splines_3.2.2
AnnotationForge_1.12.0 colorspace_1.2-6
stringi_0.5-5 affy_1.48.0
munsell_0.4.2 affyio_1.40.0

List of abbreviations

DIANA: Divisive Analysis

GD: Gestational Day

GEO: Gene Expression Omnibus

GO:

Gene Ontology

KEGG: Kyoto Encyclopedia of Genes and Genomes

miRNA: microRNA

PAM: Partitioning Around Medoids

SAM: Significant Analysis of Microarrays

SOM: Self-Organizing Maps

SOTA: Self-Organizing Tree Algorithm

UR: Universal Reference

VSN: Variance Stabilizing Normalization
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