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1 Introduction

ChIP-Seq has rapidly become the dominant experimental technique to determine the location of
transcription factor binding sites and histone modifications. Typically, computational peak finders,
such as Macs [Zhang et al., 2008], are used to identify potential candidate regions, i.e. regions with
significantly enriched read coverage compared to some background. In the following, we will simply
call these regions peaks and will assume that their genomic coordinates are provided. Going beyond
this basic analysis, it is often of interest to detect a subset of peaks where significant changes of
read coverage occur in a treatment experiment relative to a control (see Figure 1). Statistical
analysis of ChIP-Seq data however remains challenging, due to the highly structured nature of the
data and the paucity of replicates. Current approaches to detect differentially bound regions are
mainly borrowed from RNA-Seq data analysis, thus focusing on total counts of fragments mapped
to a region, ignoring any information encoded in the shape of the peak profile.

Higher order features of ChIP-Seq peak enrichment profiles carry important and often comple-
mentary information to total counts, and hence are potentially important in assessing differential
binding. We therefore incorporate higher order information into testing for differential binding by
adapting recently proposed kernel-based statistical tests to ChIP-Seq data.

2 Analysis pipeline

Suppose we have performed an experiment to study the binding of a certain transcription factor or
the occurrence of a certain histone modification. We obtained nggmpres1 ChIP-Seq data sets for a
control group and ngampres2 ChIP-Seq data sets for a treatment group. On each of the sets we have
run a peak finder, e.g. Macs [Zhang et al., 2008], to determine the regions of read enrichment, i.e.
binding sites. Eventually, we came up with a set of npe.rs regions, which we will examine across
all data sets. The task now will be to determine the set of peaks that have significantly changed
read coverage between the control group and the treatment group. A change in this context may
correspond to a difference in overall binding (i.e. a change in the total number of reads mapping



to the region after normalisation) and/or to a change that affects the shape of the peak. The first
kind of changes can be detected with packages like DiffBind [Stark and Brown, 2011, Ross-Innes
et al., 2012]. Here, we will be most interested in the second type of changes. However, this package
is compatible with DiffBind and results can easily be compared.

As an example we use data from Clouaire et al. [2012]. It examines the role of CxxC finger
protein 1 (Cfpl) in the establishment of Trimethylation of histone H3 Lys 4 (H3K4me3). The
experiment consists of H3K4me3 ChIP-Seq measurements from three different cell lines: (1) a
wild-type mouse embryonic stem cell line (WT), (2) a mutant line lacking the protein Cfpl (Null)
and (3) a rescue cell line where Cfpl was re-inserted into the genome (Resc). Cfpl is known to
be a conserved DNA-binding subunit of the H3K4 histone methyltransferase Setl complex. It
is therefore expected that H3K4me3 is reduced in the Null cells. However, as the H3K4 histone
methyltransferase activity is redundantly encoded in at least six different complexes in mammals,
the precise target regions of Cfpl are unknown. In addition, under the assumption that the different
enzymes potentially act cooperatively at the same target regions, it is to be expected that binding
is not completely abolished at these regions but rather reduced, potentially leading to altered
H3K4me3 peak profiles. In the rescue cell line 'normal’ H3K4me3 levels should be observed and it
will therefore be treated as a replicate of the WT cell lines.

We have aligned the short reads from the ChIP-Seq experiments using BWA [Li and Durbin,
2009], creating bam files. Subsequently, we run Macs [Zhang et al., 2008], on each bam file creating
Peak lists containing the coordinates of enriched regions. The complete bam files are available
as part of ArrayExpress Experiment E-ERAD-79. To run the following examples, we provide
subsets of the BAM files with reads mapping to chr1:3000000...75000000 in the data package
MMDiffBamSubset. Due to space limitation these files include only one replicate for each cell line
(WT, Resc, Null) as well as a control input sample. The package MMDiffBamSubset also contains
a corresponding subset of the called peaks. In analogy to DiffBind, information on the experiment
is stored in a csv sample sheet. In the case of our example, it is called Cfpl.csv (Table 1) and it is
also available with the provided data package. Among other information the sample sheet contains
for each sample the path to the sample bam files and to the peak files.

Table 1: Cfpl dataset sample sheet (Cfpl.csv).

SamplelD | Tissue Factor Condition | Replicate bamReads bamControl Peaks PeakCaller
WT.AB2 WT H3K4me3 1 2 reads/WT_2.bam | reads/Input.bam | peaks/WT_2_Macs.xls macs
Null. AB2 Null H3K4me3 2 2 reads/Null 2.bam | reads/Input.bam | peaks/Null 2_Macs.xls macs
Resc.AB2 Resc H3K4me3 1 2 reads/Resc_2.bam | reads/Input.bam | peaks/Resc_2_Macs.xls macs

Our analysis pipeline consists of 5 steps, which will be described in more detail in the following
subsections.

1. Building histograms
2. Outlier detection and normalisation

3. Computing of distances between histograms
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Figure 1: Example Peak: H3K4me3 read enrichment profiles at chromosome 1 :36124037-36133089.
The Null sample shows strong signal depletion between 36126000 and 36128000 when compared
to the WT and Rescue samples.



4. Determination of p values

5. Analysis of results

2.1 Step 1: Building histograms

The experiment details along with the provided peak sets detected by Macs are read in using the
following DiffBind function:

> library('MMDiff"')

> library('MMDiffBamSubset')

> oldwd <- setwd(system.file("extdata", package="MMDiffBamSubset"))
> Cfpl <- dba(sampleSheet="Cfpl.csv", minOverlap=3)

As a result, an S3 object (class DBA) is created. This class is defined in the DiffBindpackage and
additional information can be found in the DiffBindvignette. An overview over methods for this
class can be viewed by typing ?summary.DBA. This DBA object will form the basic data structure
for the following analysis. However, we will extend the original DBA object by an element called
MD (see below). Note, that we called dba() such that a consensus peak set is created consisting
of regions which occur in at least minOverlap=3 samples. Therefore out of a total of 7370 peaks
2466 regions are selected:

> Cfp1

3 Samples, 2466 sites in matrix (7370 total):
ID Tissue Factor Condition Replicate Caller Intervals

1 WT.AB2 WT H3K4me3 1 2 macs 4976
2 Null.AB2 Null H3K4me3 2 2 macs 4976
3 Resc.AB2 Resc H3K4me3 1 2 macs 4976

Next, we will specify the regions of interest, i.e. the peaks, with a "GRanges” Object. For this
example we will examine the first 1000 consensus peaks:

> Peaks <- dba.peakset(Cfpl,bRetrieve=TRUE)
> Peaks <- Peaks[1:1000]

Note, that we don’t have to use the consensus peaks but we could chose an arbitrary set of regions,
for example, these 200 100bp consecutive regions on chromosome 1:

> Peaks.2 <- GRanges (seqnames = Rle('chrl'),
+ ranges = IRanges (start=seq(3200000,3219900,100), width=100))



We now want to create read count profiles across each peak for each sample. To do so, we call the
MMDiff function getPeakProfiles(), which uses Rsamtools to collect reads mapping to a certain
region in a bam file. Additionally, strand shifts between forward and reverse strand are determined
and corrected for and reads in each region are binned (default bin.length = 20bp). As a result,
histograms are obtained for each sample and peak.

To correct for the strand shift, only peaks are selected whose total number of reads mapping
to each strand is in the 9th decile. If draw.on=TRUE, a plot is generated for each bam file (all
bamRead and bamControl files), showing smoothscatter plots of total number of reads mapping
to the peaks on forward vs reverse strand, see Figure 2. This can be used as a quality control
(Points should lie on the diagonal). The peaks used to determine the strand shift are shown in
red. For each of the selected peaks the shift between forward and reverse strand is determined
using the cross-correlation function ccf. If draw.on=TRUE, histograms are plotted for each bam
file, showing the distribution of shifts (Figure 3). The median is used to correct all reads mapping

to any peak in the respective bam file. (Note, the shifts can vary between samples i.e. different
bam files.)

> CfplProfiles <- getPeakProfiles(Cfpl, Peaks,
+ bin.length=50, save.files=FALSE,run.parallel=FALSE)
> setwd(oldwd)

This object is available for loading using data(Cfp1Profiles). The original DBA object has
been extended by an element called MD, which is a list containing elements such as RawTotalCounts
and PeakRawHists:

> names (Cfp1Profiles$MD)
[1] "PeakRawHists" "RawTotalCounts"

RawTotalCounts is a simple matrix (Ngampies X Mpeaks) containing the total number of reads found
in the corresponding bam file mapping to a given peak.

PeakRawHists is a list with one element per peak. The name of the elements are the peak
coordinates.

> PeakRawHists <- CfplProfiles$MD$PeakRawHists
> names (PeakRawHists) [1:10]

[1] "chr1:3140628-3141907" "chrl:3334413-3335494" "chrl:3659128-3663465"
[4] "chrl:3842066-3843358" "chrl:3945970-3946781" "chril:3970025-3973719"
[7] "chr1:3976887-3978372" "chrl:3984014-3985682" "chrl:4074813-4076118"
[10] "chr1:4139636-4141895"

For each peak, a matrix can be accessed which contains histograms for each sample, e.g. for peak
5 ("chr1:3842066-3843373"), this is a 4 by 24 matrix, containing counts on 24 bins for 4 samples
(WT, Resc, Null, Input):
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Figure 2: Smooth scatter plot of total number of reads mapping to the peaks on forward vs reverse
strand. The red circles indicate peaks used to determine the strand shift.
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Figure 3: Histogram of determined strand shifts. Red line indicates the median which is used for
correction.



> peak.id <- 5
> dim(PeakRawHists[[peak.id]])
[1] 4 24

The column names of the matrix correspond to histogram mid points (genomic coordinates), and
the row names signify the bam file from which the histogram was generated. Note that histogram

length can vary between different peaks, as the peaks are not necessary of the same length.

> colnames (PeakRawHists[[peak.id]])

[1] "3945795" "3945845" "3945895" "3945945" "3945995" "3946045" "3946095"
[8] "3946145" "3946195" "3946245" "3946295" '"3946345" "3946395" "3946445"
[15] "3946495" "3946545" "3946595" '"3946645" "3946695" "3946745" "3946795"
[22] "3946845" "3946895" '"3946945"

> rownames (PeakRawHists [ [peak.id]])

[1] "WT_2" "Null_2" "Resc_2" "Input"

Profiles for a given peak (e.g. peak 33) can be plotted like this:

> Peak.id <- 33
> Sample.ids <- c("WT.AB2", "Null.AB2", "Resc.AB2")
> plotPeak(CfplProfiles, Peak.id, Sample.ids, NormMethod=NULL)

Note, additional information can be kept if getPeakProfiles() is called with the parameter
keep.extra = TRUE. In this case an extra element RawHists is appended to the list MD, which
contains a list for each bam file:

For instance:

oldwd <- setwd(system.file("extdata", package="MMDiffBamSubset"))

CfplProfiles2 <- getPeakProfiles(Cfpl, Peaks, bin.length=50,
save.files=FALSE, keep.extra=TRUE)

names (CfplProfiles2$MD$RawHists$WT_2)

setwd (oldwd)

vV VvV + Vv VvV

where "Counts” contains the histogram counts, "Mids” the histogram mid points, "Counts.p” and
"Counts.n” histograms for the forward and reverse strand histograms, respectively. "Meta” contains
meta information such as the applied shift and bin length.



2.2 Step 2: Normalisation

So far we have looked at raw read counts. However, each sample may have been sequenced to a
different depth and in order to make samples comparable, they have to be normalised. Different
normalisation strategies have been suggested, here we use the method proposed by Anders and
Huber [2010]: Briefly, a size factor estimate for data set s is computed as the median of the ratios
of the s-th data set’s counts to those of a pseudo-reference obtained by taking the geometric mean
across data sets. Note, that under certain situations only a subset of samples should be normalised
with respect to each other (e.g. when groups of the samples have different signal-to-noise ratios,
one might want to analyse the groups independently.). In this case we can specify which samples
should be used. It is also possible to specify a subset of peaks that are used to determine the
normalisation factors. For example, it might be necessary to determine outliers with extreme total
counts to be excluded. The function findOutliers can be used for this task (see the example in
the man page).

> SampleIDs <- c("WT.AB2", "Null.AB2", "Resc.AB2")
> CfpiNorm <- getNormFactors(CfplProfiles, method = "DESeq", SampleIDs=SampleIDs)

[1] "WT.AB2" "Null.AB2" "Resc.AB2"
$ WT.AB2,Null.AB2,Resc.AB2"

WT_2 Null_2 Resc_2
0.9439729 0.8899213 1.1986945

The estimated factors can be accessed as:
> CfpiNorm$MD$NormFactors$DESeq

$ WT.AB2,Null.AB2,Resc.AB2"
WT_2 Null_2 Resc_2
0.9439729 0.8899213 1.1986945

Additionally, NormTotalCounts is appended which contains normalised total counts (RawTotal-
Counts/NormFactors) for all specified samples (all others are set to 0).

Note, that histograms (e.g. PeakRawHists) are not normalised and normalisation factors have to
be specified in the subsequent steps.

To plot normalised peaks, e.g. peak 33, use:

> Peak.id <- 33
> Sample.ids <- c("WT.AB2", "Null.AB2", "Resc.AB2")
> plotPeak(CfplNorm, Peak.id, Sample.ids, NormMethod='DESeq')



2.3 Step 3: Determine distances between histograms

Next, we want to determine a distance measure for each peak comparing WT, Resc, and Null, i.e.
for each peak we need the three pairwise distances: "W'T vs Null’, "WT vs Resc’ and 'Resc vs Null’.

When running the MMDifffunction compHistDists (), we can specify which ’distance measure’
we want to compute. We recommend the default method "MMD’ [Gretton et al., 2012], which
computes the maximum mean discrepancy between pairs of histograms [Gretton et al., 2012].
Alternatively, method=GMD (Generalized Minimum Distances) [Zhao et al., 2011] can be used, which
we will use here, because it is faster:

> CfplDists <- compHistDists(CfplNorm, method='GMD',
+ overWrite=FALSE, NormMethod='DESeq')

We could also specify the comparisons directly, for example:

> SampleIDs <- CfplNorm$samples$SampleID

> ID <- which(upper.tri(matrix(1, length(SampleIDs), length(SampleIDs)),
+ diag = F), arr.ind=T)

> CompIDs <- rbind(SampleIDs[ID[,1]], SampleIDs[ID[,2]])

> CompIDs

[,1] [,2] (,3]
[1,] "WT.AB2"  "WT.AB2"  "Null.AB2"
[2,] "Null.AB2" "Resc.AB2" "Resc.AB2"

and run the function compHistDists:

> CfplDists <- compHistDists(CfplNorm, method='GMD', CompIDs=CompIDs,
+ overWrite=FALSE, NormMethod='DESeq')

As a result, Cfp1$MD is appended with a new element called DISTS. In DISTS$GMD you will find
a matrix of dimension (7 peaks X Neomps) containing all pairwise distances for each peak:

> Cfp1Dists$MD$DISTS$GMD[1:10,]

WT.AB2 vs Null.AB2 WT.AB2 vs Resc.AB2 Null.AB2 vs Resc.AB2

chr1:3140628-3141907 3.4013630 0.5440379 3.3779956
chr1:3334413-3335494 0.8647619 0.5857143 0.5904762
chr1:3659128-3663465 5.9160605 1.7950362 5.1298997
chr1:3842066-3843358 1.4085859 0.5855556 1.1090909
chr1:3945970-3946781 1.3552036 1.1712912 1.0892598
chr1:3970025-3973719 2.5547082 3.7979556 2.535656312
chrl1:3976887-3978372 0.7562044 1.5630954 1.2100154
chr1:3984014-3985682 1.5121951 0.8061350 1.5109981
chr1:4074813-4076118 1.1166755 1.2309383 0.6931514
chr1:4139636-4141895 2.1014550 1.2483766 1.7017797
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We provide Cfp1Dists, which was created running compHistDists three times, once with each
methods.

> data(Cfp1Dists)
> names (Cfp1Dists$MD$DISTS)

(1] "MMD" "GMD" "Pearson"

2.4 Step 4: Determine p-values

Finally we want to detect peaks that are different in a treatment group relative to a control
group. In this example, we only have one replicate for the treatment group (Null. AB2) and we will
use WT.AB2 and Resc.AB2 as replicates for the control group. We compute empirical p-values
pooling peaks with similar mean total counts. The p-values are adjusted for multiple testing with
the method by Benjamini and Hochberg (1995).

> data(CfplDists)

> groupl <- c("WT.AB2","Resc.AB2")

> group2 <- c("Null.AB2")

> CfplPvals <- detPeakPvals(CfplDists, groupl=groupl, group2=group2,
+ namel='Wt/Resc', name2='Null', method='MMD')

0% 5% 10% 15} 20% 25} 30% 35% 40% 45% 50% 55% 60% 65% 70% 75%
32 78 96 110 124 139 155 169 191 210 236 264 297 335 385 453
80% 85% 90% 95% 100%
520 639 828 1176 3699

> CfplPvals <- detPeakPvals(CfplPvals, groupl=groupl, group2=group2,
+ namel='Wt/Resc', name2='Null', method='GMD')

0% 5% 10% 15} 20% 25} 30% 35% 40% 45% 50% ©55% 60% 65% 70% 75%
32 78 96 110 124 139 155 169 191 210 236 264 297 335 385 453
80% 85% 90% 95% 100%
520 639 828 1176 3699

> CfplPvals <- detPeakPvals(CfplPvals, groupl=groupl, group2=group2,
+ namel='Wt/Resc', name2='Null', method='Pearson')

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65k 70% 75%
32 78 96 110 124 139 155 169 191 210 236 264 297 335 385 453
80% 85% 90% 95% 100%
520 639 828 1176 3699

11



2.5 Step 5: Analysis results

The indices of peaks with a p-value < 0.05 can be obtained, by:
> idxMMD <- which(Cfp1Pvals$MD$Pvals$MMD<0.05)

and similarly for the other methods:

> idxGMD <- which(Cfp1Pvals$MD$Pvals$GMD<0.05)
> idxPearson <- which(Cfpl1Pvals$MD$Pvals$Pearson<0.05)

The coordinates of the peaks can be obtained by:
> rownames (Cfp1Pvals$MD$Pvals$MMD) [idxMMD[1:10]]

[1] "chr1:3140628-3141907" "chrl:3659128-3663465" "chrl:4773572-4777983"
[4] "chr1:4796535-4801155" "chrl:4844171-4852624" "chrl:5072531-5074975"
[7] "chrl:5666675-5668852" "chrl:5905892-5908412" "chrl:6000694-6004040"
[10] "chr1:6906272-6908003"

For sanity checks, computed distances can be plotted as a function of mean total count (Figure 4-

6):

> groupl <- c("WT.AB2", "Resc.AB2")

> group2 <- c("Null.AB2")

> plotHistDists(CfplPvals, groupl=groupl, group2=group2, method='MMD')

> plotHistDists(CfplPvals, groupl=groupl, group2=group2, method='GMD')

> plotHistDists(CfplPvals, groupl=groupl, group2=group2, method='Pearson')

Note, that with MMD, one can observe a number of peaks which have higher distances in the
between group comparison than any of the with-in group distances. If we assume that the within
group-distances give us a good estimate of naturally occurring variation between peaks under the
same condition, these are likely to be peaks that are truly affected when Cfpl is knocked out. In
this example, MMD therefore seems to be best suited to detect target regions of Cfpl.
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Figure 4: MMD based distances as a function of averaged normalised total counts. Shown are
between-group distances (i.e. Wt/Resc vs Null), where each black cross corresponds to a peak. In
addition, within-group distances (i.e. between WT and Resc) are overlayed (blue dots). Differen-
tially called peaks with large enough between-group distances are additionally labelled with red
circles.
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Figure 5: GMD based distances as a function of averaged normalised total counts.
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WT.AB2,Resc.AB2 vs Null.AB2 (nPeaks = 1000)
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4 Setup

This vignette was built on:
> sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8
[3] LC_TIME=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8
[9] LC_ADDRESS=C

[11] LC_MEASUREMENT=en_US.UT

attached base packages:
[1] stats4 parallel
[8] methods base

stat

other attached packages:
[1] MMDiffBamSubset_1.5.0
[3] GMD_0.3.3
[5] RSQLite_1.0.0
[7] locfit_1.5-9.1
[9] Rsamtools_1.22.0
[11] XVector_0.10.0
[13] SummarizedExperiment_1.
[15] GenomicRanges_1.22.0
[17] IRanges_2.4.0
[19] BiocGenerics_0.16.0

loaded via a namespace (and
[1] Rcpp_0.12.1
[4] gtools_3.5.0
[7] BatchJobs_1.6
[10] ggplot2_1.0.1
[13] GenomicFeatures_1.22.0
[16] Matrix_1.2-2
[19] proto_0.3-10
[22] BiocParallel_1.4.0

F-8

S

0.0

not attached):
lattice_0.20-33 G0.db_3.2.2
digest_0.6.8 plyr_1.8.3

futile.options_1.0.0
gplots_2.17.0
annotate_1.48.0
checkmate_1.6.2
GOstats_2.36.0
stringr_1.0.0

LC_NUMERIC=C
LC_COLLATE=C
LC_MESSAGES=en_US.UTF-8
LC_NAME=C
LC_TELEPHONE=C
LC_IDENTIFICATION=C

graphics grDevices utils

MMDiff_1.10.0
DiffBind_1.16.0
DBI_0.3.1
GenomicAlignments_1.6.0
Biostrings_2.38.0
limma_3.26.0
Biobase_2.30.0
GenomeInfoDb_1.6.0
S4Vectors_0.8.0

16

datasets

ShortRead_1.28.0
zlibbioc_1.16.0
gdata_2.17.0
systemPipeR_1.4.0
splines_3.2.2
pheatmap_1.0.7



[25] RCurl_1.95-4.7 biomaRt_2.26.0 munsell_0.4.2
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