
KEGGgraph: a graph approach to KEGG PATHWAY in R

and Bioconductor

Jitao David Zhang and Stefan Wiemann

October 13, 2015

Abstract

We demonstrate the capabilities of the KEGGgraph package, an interface between
KEGG pathways and graph model in R as well as a collection of tools for these graphs.
Superior to preceding approaches, KEGGgraph maintains the pathway topology and
allows further analysis or dissection of pathway graphs. It parses the regularly up-
dated KGML (KEGG XML) files into graph models maintaining all essential pathway
attributes.

1 Introduction

Since its first introduction in 1995, KEGG PATHWAY has been widely used as a reference
knowledge base for understanding biological pathways and functions of cellular processes.
The knowledge from KEGG has proven of great value by numerous work in a wide range
of fields [Kanehisa et al., 2008].

Pathways are stored and presented as graphs on the KEGG server side, where nodes are
molecules (protein, compound, etc) and edges represent relation types between the nodes,
e.g. activation or phosphorylation. The graph nature raised our interest to investigate them
with powerful graph tools implemented in R and Bioconductor [Gentleman et al., 2004],
including graph, RBGL and Rgraphviz [Carey et al., 2005]. While it is barely possible to
query the graph characteristics by manual parsing, a native and straightforward client-side
tool is currently missing to parse pathways and analyze them consequently with tools for
graph in R.

To address this problem, we developed the open-source software package KEGGgraph,
an interface between KEGG pathway and graph object as well as a collection of tools to
analyze, dissect and visualize these graphs.

The package requires KGML (KEGG XML) files, which can be downloaded from KEGG
FTP site (ftp://ftp.genome.jp/pub/kegg/xml) without license permission for academic
purposes. To demonstrate the functionality, in ’extdata/’ sub-directory of KEGGgraph we
have pre-installed several KGML files.

1

ftp://ftp.genome.jp/pub/kegg/xml

2 Software features

KEGGgraph offers the following functionalities:
Parsing : It should be noted that one ’node’ in KEGG pathway does not necessarily

map to merely one gene product, for example the node ’ERK’ in the human TGF-Beta
signaling pathway contains two homologues, MAPK1 and MAPK3. Therefore, among
several parsing options, user can set whether to expand these nodes topologically. Beyond
facilitating the interpretation of pathways in a gene-oriented manner, the approach also
entitles unique identifiers to nodes, enabling merging graphs from different pathways.

Graph operations: Two common operations on graphs are subset and merge. A sub-
graph of selected nodes and the edges in between are returned when subsetting, while
merging produces a new graph that contains nodes and edges of individual ones. Both are
implemented in KEGGgraph.

Visualization: KEGGgraph provides functions to visualize KEGG graphs with custom
style. Nevertheless users are not restricted by them, alternatively they are free to render
the graph with other tools like the ones in Rgraphviz .

Besides the functionalities described above, KEGGgraph also has tools for remote
KGML file retrieval, graph feature study and other related tasks. We will demonstrate
them later in this vignette.

3 Case studies

We load the KEGGgraph by typing or pasting the following codes in R command line:

> library(KEGGgraph)

3.1 Get KGML files

There are at least two possibilities to get KGML (KEGG XML) files:

� Manual download from KEGG FTP site at ftp://ftp.genome.jp/pub/kegg/xml/.

� Automatic retrieval from KEGG FTP site with the function retrieveKGML.

To retrieve KGML file automatically from KEGG FTP site, one has to know the path-
way identifier (in the form of [a-z]3[0-9]5, where the three-alphabet code represent the
organism and the five digits represent pathway). One method to find the mapping between
pathway name and identifier is use KEGGPATHNAME2ID environment in KEGG.db. For ex-
ample, the following codes retrieve p53 signaling pathway of C.elegans from KEGG FTP
site.

> library(KEGG.db)

> tmp <- tempfile()

2

ftp://ftp.genome.jp/pub/kegg/xml/

> pName <- "p53 signaling pathway"

> pId <- mget(pName, KEGGPATHNAME2ID)[[1]]

> retrieveKGML(pId, organism="cel", destfile=tmp, method="wget", quiet=TRUE)

Note: retrieveKGML uses a try-download mechanism (since the KEGGgraph version
1.1.2) to retrieve the KGML file from remote KEGG FTP server. Since August 2009 the
KGML files are stored separately in different subdirectories depending on whether they
record metabolic or non-metabolic pathways. Since from the KEGG pathway accession ID
alone (e.g. hsa00010) alone it is not possible to determine its content, the retrieveKGML

first tries to download the file from the non-metabolic subdirectory, and tries the metabolic
directory in case no file was found in the non-metabolic category (the try step). In case the
corresponding file is found, it is downloaded (the download step). Even if the file is found
in the first try round, it still needs to be downloaded in the download step. However, this
does not actually need to the network overhead, since thanks to the common cache system
the file is only downloaded once.

3.2 Parsing and graph feature query

First we read in KGML file for human MAPK signaling pathway (with KEGG ID hsa04010):

> mapkKGML <- system.file("extdata/hsa04010.xml",

+ package="KEGGgraph")

Once the file is ready, we can either parse them into an object of KEGGPathway or an
object of graph. KEGGPathway object maintains the information of the pathway (title,
link, organism, etc), while graph objects are more natural approach and can be directly
plugged in many other tools. To convert the pathway into graph, we use

> mapkG <- parseKGML2Graph(mapkKGML,expandGenes=TRUE)

> mapkG

A graphNEL graph with directed edges

Number of Nodes = 265

Number of Edges = 876

Alternatively we can parse the KGML file first into an object of KEGGpathway , which can
be later converted into the graph object, as the following lines show:

> mapkpathway <- parseKGML(mapkKGML)

> mapkpathway

KEGG Pathway

[Title]: MAPK signaling pathway

3

[Name]: path:hsa04010

[Organism]: hsa

[Number] :04010

[Image] :http://www.genome.jp/kegg/pathway/hsa/hsa04010.gif

[Link] :http://www.genome.jp/dbget-bin/show_pathway?hsa04010

--

Statistics:

136 node(s)

171 edge(s)

0 reaction(s)

--

> mapkG2 <- KEGGpathway2Graph(mapkpathway, expandGenes=TRUE)

> mapkG2

A graphNEL graph with directed edges

Number of Nodes = 265

Number of Edges = 876

There is no difference between graph objects derived from two approaches.
The option ’expandGenes’ in parsing controls whether the nodes of paralogues in path-

ways should be expanded or not. Since one ’node’ in KEGG pathway does not necessarily
map to only one gene/gene product (e.g. ’ERK’ maps to MAPK1 and MAPK3), the option
allows expanding these nodes and takes care of copying existing edges.

Another option users may find useful is ’genesOnly’, when set to TRUE, the nodes
of other types than ’gene’ (compounds, for example) are neglected and the result graph
consists only gene products. This is especially desired when we want to query network
characteristics of gene products. Its value is set to ’TRUE’ by default.

The following commands extract node and edge information:

> mapkNodes <- nodes(mapkG)

> nodes(mapkG)[1:3]

[1] "hsa:5923" "hsa:5924" "hsa:11072"

> mapkEdges <- edges(mapkG)

> edges(mapkG)[1]

$`hsa:5923`

[1] "hsa:22800" "hsa:22808" "hsa:3265" "hsa:3845" "hsa:4893" "hsa:6237"

Edges in KEGG pathways are directional, that is, an edge starting at node A pointing
to node B does not guarantee a reverse relation, although reciprocal edges are also allowed.

4

When listing edges, a list indexed with node names is returned. Each item in the list
records the nodes pointed to.

We can also extract the node attributes specified by KEGG with getKEGGnodeData:

> mapkGnodedata <- getKEGGnodeData(mapkG)

> mapkGnodedata[[2]]

KEGG Node (Entry 'hsa:5924'):

--

[displayName]: RASGRF1, GRF1...

[Name]: hsa:5924

[Type]: gene

[Link]: http://www.genome.jp/dbget-bin/www_bget?hsa+5923+5924

--

An alternative to use gettKEGGnodeData is

> getKEGGnodeData(mapkG, 'hsa:5924')

, returning identical results.
Similarly the getKEGGedgeData is able to extract edge information:

> mapkGedgedata <- getKEGGedgeData(mapkG)

> mapkGedgedata[[4]]

KEGG Edge (Type: PPrel):

--

[Entry 1 ID]: hsa:5923

[Entry 2 ID]: hsa:3845

[Subtype]:

[Subtype name]: activation

[Subtype value]: -->

--

Alternatively the query above can be written as:

> getKEGGedgeData(mapkG,'hsa:627~hsa:4915')

For KEGGNode and KEGGEdge objects, methods are implemented to fetch their attributes,
for example getName, getType and getDisplayName. Guides to use these methods as well
as examples can be found in help pages.

This case study finishes with querying the degree attributes of the nodes in the graph.
We ask the question which nodes have the highest out- or in-degrees. Roughly speaking
the out-degree (number of out-going edges) reflects the regulatory role, while the in-degree
(number of in-going edges) suggests the subjectability of the protein to intermolecular
regulations.

5

> mapkGoutdegrees <- sapply(edges(mapkG), length)

> mapkGindegrees <- sapply(inEdges(mapkG), length)

> topouts <- sort(mapkGoutdegrees, decreasing=T)

> topins <- sort(mapkGindegrees, decreasing=T)

> topouts[1:3]

hsa:5594 hsa:5595 hsa:1432

26 26 13

> topins[1:3]

hsa:5923 hsa:5924 hsa:10125

26 26 26

3.3 Graph subset and merge

We demonstrate the subsetting of the graph with 25 randomly chosen nodes of MAPK
pathway graph:

> library(Rgraphviz)

> set.seed(123)

> randomNodes <- sample(nodes(mapkG), 25)

> mapkGsub <- subGraph(randomNodes, mapkG)

> mapkGsub

A graphNEL graph with directed edges

Number of Nodes = 25

Number of Edges = 9

The subgraph is visualized in figure 1, where nodes with in-degree or out-degree in red
and others in grey.1. And in the example we also demonstrate how to convert KEGG ID
into other other identifiers via the Entrez GeneID. More details on the conversion of IDs
can be found on page 13.

Another common operation on graphs is merging, that is, combining different graphs
together. It is inspired by the fact that many KEGG pathways embed other pathway, for
example MAPK signaling pathway embeds 6 pathways including Wnt signaling pathway.
mergeGraphs provides the possibility to merge them into one graph for further analysis.
Next we merge MAPK and Wnt signaling pathway into one graph. The graphs to be merged
should be organized into a list, and it is commandary to use ’expandGenes=TRUE’ option
when parsing to make sure the nodes are unique and indexed by KEGGID.

1The makeAttr function is used to assign nodes with rendering attributes, whose code can be found in
the Rnw file.

6

> outs <- sapply(edges(mapkGsub), length) > 0

> ins <- sapply(inEdges(mapkGsub), length) > 0

> ios <- outs | ins

> ## translate the KEGG IDs into Gene Symbol

> if(require(org.Hs.eg.db)) {

+ ioGeneID <- translateKEGGID2GeneID(names(ios))

+ nodesNames <- sapply(mget(ioGeneID, org.Hs.egSYMBOL, ifnotfound=NA), "[[",1)

+ } else {

+ nodesNames <- names(ios)

+ }

> names(nodesNames) <- names(ios)

> nAttrs <- list();

> nAttrs$fillcolor <- makeAttr(mapkGsub, "lightgrey", list(orange=names(ios)[ios]))

> nAttrs$label <- nodesNames

> plot(mapkGsub, "neato", nodeAttrs=nAttrs,

+ attrs=list(node=list(fillcolor="lightgreen",

+ width="0.75", shape="ellipse"),

+ edge=list(arrowsize="0.7")))

GNA12

IL1B

CACNB4

MECOM
PPP3R1

DUSP8

FGF16 ARRB2

BDNFFGF1

PPP3CB

PDGFB

TAOK3

MAPK7

PLA2G2A

MAPK9

PRKY

DUSP7

PDGFRB
HSPA1L

MAP3K2

AKT1

DDIT3

NFATC2

ELK1

Figure 1: A random subgraph of MAPK signaling pathway

7

> wntKGML <- system.file("extdata/hsa04310.xml",package="KEGGgraph")

> wntG <- parseKGML2Graph(wntKGML)

> graphs <- list(mapk=mapkG, wnt=wntG)

> merged <- mergeGraphs(graphs)

> merged

A graphNEL graph with directed edges

Number of Nodes = 386

Number of Edges = 1628

We observe that the node number in the merged graph (386) is less than the sum of two
graphs (265 and 148 for MAPK and Wnt pathway respectively), reflecting the crosstalk
between the pathways by sharing nodes.

3.4 Using other graph tools

In R and Bioconductor there’are powerful tools for graph algorithms and operations, includ-
ing graph, Rgraphviz and RBGL. The KEGG graphs can be analyzed with their functional-
ities to describe characterisitcs of the pathway and to answer biological relevant questions.

Here we demonstrate the use of other graph tools with asking the question which
nodes are of the highest importance in MAPK signalling pathway. To this end we turn
to relative betweenness centrality [Aittokallio and Schwikowski, 2006, Carey et al., 2005].
Betweenness is a centrality measure of a node within a graph. Nodes that occur on many
shortest paths between other vertices have higher betweenness than those that do not. It
is scaled by the factor of (n-1)(n-2)/2 to get relative betweenness centrality, where n is the
number of nodes in the graph. Both measurements estimate the importance or the role of
the node in the graph.

With the function implemented in RBGL, our aim is to identify most important nodes
in MAPK signalling pathway.

> library(RBGL)

> bcc <- brandes.betweenness.centrality(mapkG)

> rbccs <- bcc$relative.betweenness.centrality.vertices[1L,]

> toprbccs <- sort(rbccs,decreasing=TRUE)[1:4]

> toprbccs

hsa:4214 hsa:2885 hsa:5605 hsa:5604

0.2685233 0.2467144 0.2366450 0.2366450

We identify the top 4 important nodes judged by betweenness centrality as MAP3K1
(hsa:4214), GRB2 (hsa:2885), MAP2K2 (hsa:5605) and MAP2K1 (hsa:5604) (the mapping
between KEGG ID and gene symbol is done using biomaRt , see page 14). In figure 2 we
illustrate them as well as their interacting partners in MAPK pathway.

8

> toprbccName <- names(toprbccs)

> toprin <- sapply(toprbccName, function(x) inEdges(mapkG)[x])

> toprout <- sapply(toprbccName, function(x) edges(mapkG)[x])

> toprSubnodes <- unique(unname(c(unlist(toprin), unlist(toprout), toprbccName)))

> toprSub <- subGraph(toprSubnodes, mapkG)

> nAttrs <- list()

> tops <- c("MAPK3K1","GRB2","MAP2K2","MAP2K1")

> topLabels <- lapply(toprbccName, function(x) x); names(topLabels) <- tops

> nAttrs$label <- makeAttr(toprSub, "", topLabels)

> nAttrs$fillcolor <- makeAttr(toprSub, "lightblue", list(orange=toprbccName))

> nAttrs$width <- makeAttr(toprSub,"",list("0.8"=toprbccName))

> plot(toprSub, "twopi", nodeAttrs=nAttrs, attrs=list(graph=list(start=2)))

MAPK3K1
MAP2K1

MAP2K2

GRB2

Figure 2: Nodes with the highest relative betweenness centrality in MAPK pathway (in
orange) and their interacting partners (in blue).

9

4 Other funtionalities

Besides the ability to parse and operate on KEGG PATHWAY graph objects, the KEGG-
graph package also provides functionalities to complement tasks related to deal with KEGG
pathways. We introduce some of them here, for a full list of functions please see the package
help file:

> help(package=KEGGgraph)

4.1 Parsing chemical compound reaction network

KEGG PATHWAY captures two kinds of network:the protein network and the chemical
network. The protein network consists relations (edges) between gene products, while
the chemical network illustrate the reactions between chemical compounds. Since the
metabolic pathway can be viewed both as a network of proteins (enzymes) and as a network
of chemical compounds, metabolic pathways can be viewed as both protein networks and
chemical networks, whereas regulatory pathways are always viewed as protein networks
only.KEGGPathway provides methods to access this network.

We show the example of Glycine, serine and threonine metabolism pathway.

> mapfile <- system.file("extdata/map00260.xml",package="KEGGgraph")

> map <- parseKGML(mapfile)

> map

KEGG Pathway

[Title]: Glycine, serine and threonine metabolism

[Name]: path:map00260

[Organism]: map

[Number] :00260

[Image] :http://www.genome.jp/kegg/pathway/map/map00260.gif

[Link] :http://www.genome.jp/dbget-bin/show_pathway?map00260

--

Statistics:

144 node(s)

371 edge(s)

68 reaction(s)

--

> reactions <- getReactions(map)

> reactions[[1]]

KEGG Reaction(rn:R08211)

--

10

[Name]: rn:R08211

[Type]: irreversible

[Substrate Name]: cpd:C00576

[Product Name]: cpd:C00719

Figure 3 shows how to extract reactions from the pathway and to build a directed graph
with them.

4.2 Expand embedded pathways

Function parseKGMLexpandMaps is a function to handle with pathways embedding other
pathways. For example, pancreatic cancer pathway embeds 9 other pathways including
MAPK and ErbB signaling pathway, cell cycle and apoptosis pathway, etc. To parse them
into one graph, the users only have to download the KGML file and feed the file name
to parseKGMLexpandMaps, the function parses the file, analyze the embedded pathways,
download their files from KEGG FTP site automatically (alternatively a local repository
can be specified for KGML files) and merge the individual pathways into a single graph. For
example, the following single line parses MAPK signaling pathway with all its embedded
pathways

> mapkGembed <- parseKGMLexpandMaps(mapkKGML)

As its name suggests, function subGraphByNodeType subsets the graph by node type,
the nodes to subset are those of the type given by the user. It is useful when the KGML
file was parsed with ’genesOnly=FALSE’ option and later on the user wants only certain
kind of node, ’gene’ for example, remained. The following example shows how to use it.

> mapkGall <- parseKGML2Graph(mapkKGML,genesOnly=FALSE)

> mapkGall

A graphNEL graph with directed edges

Number of Nodes = 277

Number of Edges = 891

> mapkGsub <- subGraphByNodeType(mapkGall, "gene")

> mapkGsub

A graphNEL graph with directed edges

Number of Nodes = 265

Number of Edges = 876

11

> chemicalGraph <- KEGGpathway2reactionGraph(map)

> outDegrees <- sapply(edges(chemicalGraph), length)

> maxout <- names(sort(outDegrees,decreasing=TRUE))[1:3]

> nAttrs <- list()

> maxoutlabel <- as.list(maxout); names(maxoutlabel) <- maxout

> nAttrs$label <- makeAttr(chemicalGraph, "", maxoutlabel)

> nAttrs$fillcolor <- makeAttr(chemicalGraph, "lightblue", list(orange=maxout))

> nAttrs$width <- makeAttr(chemicalGraph,"0.8", list("1.8"=maxout))

> plot(chemicalGraph, nodeAttrs=nAttrs)

●

cpd:C00065

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

cpd:C00037

cpd:C00188

●

●
●

●

●
●●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

Figure 3: Reaction network built of chemical compounds: the orange nodes are the three
compounds with maximum out-degree in this network.

12

4.3 Annotation

translateKEGGID2GeneID translates KEGG identifiers (KEGGID) into Entrez GeneID.
For example, if we want to find the Entrez GeneID of the nodes in MAPK pathway having
the highest relative betweenness centrality, the following codes do the job.

> toprbccKEGGID <- names(toprbccs)

> toprbccKEGGID

[1] "hsa:4214" "hsa:2885" "hsa:5605" "hsa:5604"

> toprbccGeneID <- translateKEGGID2GeneID(toprbccKEGGID)

> toprbccGeneID

[1] "4214" "2885" "5605" "5604"

To convert GeneID to other identifiers, we recommend genome wide annotation pack-
ages, for human it is org.Hs.eg.db and the packages for other organisms can be fount
at http://www.bioconductor.org/packages/release/data/annotation/. To demon-
strate its use, we draw the sub-network in the figure 2 again, whereas nodes are now
labeled with gene symbols.

> if(require(org.Hs.eg.db)) {

+ tnodes <- nodes(toprSub)

+ tgeneids <- translateKEGGID2GeneID(tnodes)

+ tgenesymbols <- sapply(mget(tgeneids, org.Hs.egSYMBOL, ifnotfound=NA), "[[",1)

+ toprSubSymbol <- toprSub

+ nodes(toprSubSymbol) <- tgenesymbols

+ plot(toprSubSymbol, "neato",attrs=list(node=list(font=5, fillcolor="lightblue")))

+ }

13

http://www.bioconductor.org/packages/release/data/annotation/

MAP4K4

TRAF2

CASP3

RAC1

RAC2

RAC3

CDC42
MAPK8IP3

MAP4K3

SOS1

SOS2

LAMTOR3

MOS

RAF1

BRAF

MAP3K1

MAP3K8

MAP3K14

CHUK

IKBKB

IKBKG

MAP2K4

MAP2K1
MAP2K2

NTRK1

NTRK2
EGFR

FGFR1

FGFR3

FGFR2

FGFR4
PDGFRA

PDGFRB

MAPK1
MAPK3

GRB2

Alternatively, users could use R package biomaRt [Durinck et al., 2005, Durinck and Huber, 2008]
for ID conversion, whereas it assumes that the user has an internet connection. The fol-
lowing example shows how to translate the node hits we acquired in the example above
into HGNC symbols:

> library(biomaRt)

> hsapiens <- useMart("ensembl","hsapiens_gene_ensembl")

> filters <- listFilters(hsapiens)

> getBM(attributes=c("entrezgene","hgnc_symbol"),

+ filters="entrezgene",

+ values=toprbccGeneID, mart=hsapiens)

5 Acknowledgement

We thank Vincent Carey, Holger Fröhlich and Wolfgang Huber for comments and sugges-
tions on the package, and the reviewers from the Bioconductor community.

14

6 Conclusion

Before the release of KEGGgraph, several R/Bioconductor packages have been introduced
and proven their usefulness in understanding biological pathways with KEGG. However,
KEGGgraph is the first package able to parse any KEGG pathways from KGML files into
graphs. In comparison, existing tools can not achieve the results we present here. They
either neglects the graph topology (KEGG.db), do not parse pathway networks (keggorth),
or are specialized for certain pathways (cMAP and pathRender).

With KEGGgraph, we contribute a direct and natural approach to KEGG pathways,
and the possibilities to study them in R and Bioconductor.

7 Session Info

The script runs within the following session:

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 grid stats graphics grDevices utils

[8] datasets methods base

other attached packages:

[1] RBGL_1.46.0 org.Hs.eg.db_3.2.3 RSQLite_1.0.0

[4] DBI_0.3.1 AnnotationDbi_1.32.0 IRanges_2.4.0

[7] S4Vectors_0.8.0 Biobase_2.30.0 BiocGenerics_0.16.0

[10] Rgraphviz_2.14.0 graph_1.48.0 KEGGgraph_1.28.0

loaded via a namespace (and not attached):

[1] tools_3.2.2 XML_3.98-1.3

15

References

[Gentleman et al., 2004] Gentleman et al. (2004) Bioconductor: open software develop-
ment for computational biology and bioinformatics, Genome Biology, 5, R80.

[Carey et al., 2005] Carey et al. (2005) Network structures and algorithms in Bioconductor,
Bioinformatics, 21, 135-136.

[Kanehisa et al., 2008] Kanehisa et al. (2008) KEGG for linking genomes to life and the
environment, Nucleic Acids Research, Database issue, 36, 480-484.

[Klukas and Schreiber, 2007] Klukas and Schreiber. (2007) Dynamic exploration and edit-
ing of KEGG pathway diagrams, Bioinformatics, 23, 344-350.

[Aittokallio and Schwikowski, 2006] Aittokallio and Schwikowski (2006) Graph-based
methods for analysing networks in cell biology, Briefings in Bioinformatics, 7, 243-255.

[Durinck et al., 2005] Durinck et al. (2005) BioMart and Bioconductor: a powerful link
between biological databases and microarray data analysis, Bioinformatcs, 21, 3439-
3440.

[Durinck and Huber, 2008] Durinck and Huber (2008) R/Bioconductor package biomaRt,
2008

16

	Introduction
	Software features
	Case studies
	Get KGML files
	Parsing and graph feature query
	Graph subset and merge
	Using other graph tools

	Other funtionalities
	Parsing chemical compound reaction network
	Expand embedded pathways
	Annotation

	Acknowledgement
	Conclusion
	Session Info

