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Abstract

This is the vignette of the Bioconductor add-on package IPPD which implements
automatic isotopic pattern extraction from a raw protein mass spectrum. Basically, the
user only has to provide mass/charge channels and corresponding intensities, which are
automatically decomposed into a list of monoisotopic peaks. IPPD can handle several
charge states as well as overlaps of peak patterns.

1 Aims and scope of IPPD

A crucial challenge in the analysis of protein mass spectrometry data is to automatically
process the raw spectrum to a list of peptide masses. IPPD is tailored to spectra where pep-
tides emerge in the form of isotope patterns, i.e. one observes several peaks for each peptide
mass at a given charge state due to the natural abundance of heavy isotopes. Datasets
with a size of up to 100,000 mass/charge channels and the presence of isotope patterns
at multiple charge states frequently exhibiting overlap make the manual annotation of a
raw spectrum a tedious task. IPPD provides functionality to perform this task in a fully
automatic, transparent and user-customizable way. Basically, one feeds the raw spectrum
into one single function to obtain a list of monoisotopic peaks described by a mass/charge
channel, a charge and an intensity. What makes our approach particularly user-friendly
is its dependence on only a small set of easily interpretable parameters. We also offer a
method to display the decomposition of the spectrum graphically, thereby facilitating a
manual validation of the output.

2 Methodology

2.1 Template model

In the context of this package, a protein mass spectrum is understood as a sequence of pairs
{xi, yi}ni=1, where xi = mi/zi is a mass (mi) per charge (zi) value (measured in Thomson)
and yi is the intensity, i.e. the abundance of a particular mass (modulo charge state),
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Figure 1: Illustration of the template construction as described in the text. The left panel
depicts different templates of different charge states (1 to 4). The right panel zooms at the
charge two template ϕ2.

observed at xi, i = 1, . . . , n, which are assumed to be in an increasing order. The yi are
modeled as a linear combination of template functions representing prior knowledge about
peak shapes and the composition of isotopic patterns. If our model were exact, we could
write

y = Φβ∗, y = (y1, . . . , yn)>, (1)

where Φ is a matrix template functions and β∗ a vector of weights for each template. Only
a small fraction of all templates are needed to fit the signal, i.e. β∗ is highly sparse. Since
y ≥ 0, where ’≥’ is understood componentwise, all template functions are nonnegative and
accordingly β∗ ≥ 0. Model (1) can equivalently be written as

y =
[

Φ1 . . . ΦC

]  β∗1
...
β∗C

 =

C∑
c=1

Φcβ
∗
c , (2)

where Φc,β
∗
c denote the matrix of template functions and weight vector to fit isotopic

patterns of a particular charge state c, c = 1, . . . , C. Each submatrix Φc can in turn
be divided into columns ϕc,1, . . . ,ϕc,pc , where the entries of each column vector store the
evaluations of a template ϕcj , j = 1, . . . , pc, at the xi, i = 1, . . . , n. Each template ϕc,j
depends on parameter mc,j describing the m/z position at which ϕc,j is placed. A template
ϕc,j is used to fit an isotopic pattern of peaks composed of several single peaks, which is
modeled as

ϕc,j =
∑
k∈Zc,j

ac,j,k ψc,j,k,θc,j , Zc,j ⊂ Z (3)

where the ψc,j,k are functions representing a peak of a single isotope within an isotopic
pattern. They depend on mc,j and a parameter vector θc,j . The nonnegative weights
ac,j,k reflect the relative abundance of the isotope indexed by k. The ac,j,k are computed
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according to the averagine model (Senko et al. [1995]) and hence are fixed in advance. Each
ψc,j,k is linked to a locationmc,j,k at which it attains its maximum. Themc,j,k are calculated
from mc,j as mc,j,k = mc,j + κkc , where κ equals 1 Dalton (≈ 1.003). The rationale behind
Eq. (3) and the definitions that follow is the fact that the location of the most intense
isotope is taken as characteristic location of the template, i.e. we set mc,j,0 = mc,j so that
the remaining mc,j,k, k 6= 0, are computed by shifting mc,j in both directions on the m/z
axis. By ’most intense isotope’, we mean that ac,j,0 = maxk ac,j,k = 1. The set Zc,j is a
subset of the integers which depends on the averagine model and a pre-specified tolerance,
i.e. we truncate summation in Eq. (3) if the weights drop below that tolerance. Figure 1
illustrates the construction scheme and visualizes our notation.

2.2 Peak shape

In an idealized setting, the ψc,j,k are delta functions at specific locations. In practice,
however, the shape of a peak equals that of a bump which may exhibit some skewness. In
the case of no to moderate skewness, we model peaks by Gaussian functions:

ψc,j,k(x) = exp

(
−

(x−mc,j,k)
2

σc,j

)
. (4)

The parameter to be determined is θc,j = σc,j > 0. In the case of considerable skewness,
peaks are modeled by exponentially modified Gaussian (EMG) functions, see for instance
Grushka [1972], Marco and Bombi [2001], and Schulz-Trieglaff et al. [2007] in the context
of protein mass spectrometry:

ψc,j,k(x) =
1

αc,j
exp

(
σ2c,j

2α2
c,j

+
µc,j − (x−mc,j,k)

αc,j

)(
1− F

(
σc,j
αc,j

+
µc,j − (x−mc,j,k)

σc,j

))
,

F (t) =

∫ t

−∞

1√
2π

exp

(
−u

2

2

)
du.

(5)

The EMG function involves a vector of three parameters θc,j = (αc,j , σc,j , µc,j)
> ∈ R+ ×

R+×R. The parameter αc,j controls the additional length of the right tail as compared to
a Gaussian. For αc,j ↓ 0, the EMG function becomes a Gaussian. For our fitting approach
as outlined in Section 2.3, it is crucial to estimate the θc,j , which are usually unknown,
from the data as good as possible. To this end, we model each component θl of θ as a
linear combination of known functions gl,m of x = m/z and an error component εl, i.e.

θl(x) =

Ml∑
m=1

νl,mgl,m(x) + εl(x). (6)

In the case of no prior knowledge about the gl,m, we model θl as a constant independent
of x. In most cases, it is sensible to assume a linear trend, i.e. θl(x) = νl,1 + νl,2x. In order
to fit a model of the form (6), we have to collect information from the data {xi, yi}ni=1. To
be precise, we proceed according to the following steps.

1. We apply a simple peak detection algorithm to the spectrum to identify disjoint
regions Rr ⊂ {1, . . . , n}, r = 1, . . . , R, of well-resolved peaks.

3



2. For each region r, we fit the chosen peak shape to the data {xi, yi}i∈Rr using nonlinear
least squares:

min
θ

∑
i∈Rr

(yi − ψθ(xi))
2, (7)

yielding an estimate θ̂r(x̂r), where x̂r denotes an estimation for the mode of the peak
in region Rr.

3. The sequence {x̂r, θ̂r}Rr=1 is then used as input for the estimation of the parameters
νl,m in model (6).

Step 2. is easily solved by the general purpose nonnegative least squares routine nls in
R:::stats for a Gaussian peak shape. For the EMG, we have to perform a grid search over
all three parameters to find a suitable starting value, which is then passed to the general
purpose optimization routine optim in R:::stats with the option method = "BFGS" and
a specification of a closed form expression of the gradient via the argument gr. For step
3., we use least absolute deviation regression because of the presence of outliers arising
from less well-resolved, wiggly or overlapping peaks. The whole procedure is performed by
the function fitModelParameters as demonstrated below. After loading the package, we
access the real world dataset myo500 and extract m/z channels (x) and the corresponding
intensities (y). For computational convenience and since they contain very few relevant
information, we discard all channels above 2500.

R> library(IPPD)

R> data(myo500)

R> x <- myo500[,"mz"]

R> y <- myo500[,"intensities"]

R> y <- y[x <= 2500]

R> x <- x[x <= 2500]

To have a look at the data, we plot the first 1000 (x,y) pairs:

R> layout(matrix(c(1,2), 1, 2))

R> plot(x[1:1000], y[1:1000], xlab = expression(x[1]~~ldots~~x[1000]),

cex.lab = 1.5, cex.axis = 1.25, ylab = expression(y))

R> plot(x[x >= 804 & x <= 807], y[x >= 804 & x <= 807],

xlab = "x: 804 <= x <= 807",

cex.lab = 1.5, cex.axis = 1.25, ylab = expression(y), type = "b")

R> layout(matrix(1))

R>
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In the plot, one identifies a prominent peak pattern beginning at about 804, which is
zoomed at in the right panel.
We now apply fitModelParameters to fit model (6) for the width parameter σ of a Gaus-
sian function (4). For simplicity, we take g1(x) = 1, g2(x) = x. The model is specified by
using an R formula interface.

R> fitGauss <- fitModelParameters(mz = x, intensities = y,

model = "Gaussian", fitting = "model", formula.sigma = formula(~mz),

control = list(window = 6, threshold = 200))

An analogous command for the EMG (5) with the model formulae α(x) = ν1,1 + ν1,2x,
σ(x) = ν2,1 + ν2,2x, µ(x) = ν3,1 is given by

R> fitEMG <- fitModelParameters(mz = x, intensities = y,

model = "EMG", fitting = "model",

formula.alpha = formula(~mz),

formula.sigma = formula(~mz),

formula.mu = formula(~1),

control = list(window = 6, threshold = 200))

Inspecting the results, we find that R = 55 peak regions are used to fit an EMG pa-
rameter model. Moreover, it turns out that the EMG model is a more appropriate peak
model for the data when visually comparing the list of mean residual sums of squares of
the EMG fits and the Gauss fits extracted from slot(fitEMG, "peakfitresults") and
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slot(fitGauss, "peakfitresults"), respectively. The figure shows an example where
the EMG shape comes relatively close to the observed data. A long right tail indicates
that a Gaussian would yield a rather poor fit here.

R> show(fitEMG)

Peak model 'EMG' fitted as fuction of m/z

number of peaks used: 55

R> mse.EMG <- data.frame(mse = slot(fitEMG,"peakfitresults")[,"rss"]

/ slot(fitEMG,"peakfitresults")[,"datapoints"],

peakshape = rep("EMG", nrow( slot(fitEMG,"peakfitresults"))))

R> mse.Gauss <- data.frame(mse = slot(fitGauss,"peakfitresults")[,"rss"]

/ slot(fitGauss,"peakfitresults")[,"datapoints"],

peakshape = rep("Gaussian", nrow( slot(fitGauss,"peakfitresults"))))

R> mses <- rbind(mse.EMG, mse.Gauss)

R> with(mses, boxplot(mse ~ peakshape, cex.axis = 1.5, cex.lab = 1.5, ylab = "MSE"))

R>
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R> visualize(fitEMG, type = "peak", cex.lab = 1.5, cex.axis = 1.25)
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To assess the fit of the two linear models for the EMG parameters α and σ, we use again
the function visualize as follows:

R> visualize(fitEMG, type = "model", modelfit = TRUE,

parameters = c("sigma", "alpha"),

cex.lab = 1.5, cex.axis = 1.25)

R>
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While the fit for σ seems to be reasonable except for some extreme outliers, the fit for α
is not fully convincing. Nevertheless, in the absence of further knowledge, the fit produces
good results in the template matching step detailed in the next section.

2.3 Template fitting

Once all necessary parameters have been determined, the positions at which the templates
are placed have to be fixed. In general, one has to choose positions from the interval
[x1, xn]. We instead restrict us to a suitable subset of the finite set {xi}ni=1. The deviations
from the true positions is then at least in the order of the sampling rate, but this can
be improved by means of a postprocessing step described in 2.4. Using the whole set
{xi}ni=1 may be computationally infeasible if n is large. Such an approach would be at
least computationally wasteful, since ’genuine’ peaks patterns occur very sparsely in the
spectrum. Therefore, we apply a pre-selection step on the basis of what we term ’local noise
level’ (LNL). The LNL is defined as a quantile (typically the median) of the intensities yi
falling into a sliding window of fixed width around a specific position. Given the LNL,
we place templates on an xi (one for each charge state) if and only if the corresponding
yi exceeds the LNL at xi by a factor factor.place, which typically equals three or four
and has to be specified by the user. Given the positions of the templates, we compute the
matrix Φ according to Eqs. (1) and (3). It then remains to estimate the coefficient vector
β∗ on the basis of two structural assumptions, sparsity and nonnegativity of all quantities
involved. Related approaches in the literature (Du and Angeletti [2006], Renard et al.
[2008]) account for sparsity of β∗ by using `1-regularized regression (Tibshirani [1996]).
We here argue empirically that `1 regularization is not the best to do, since it entails the
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selection of a tuning parameter which is difficult to choose in our setting, and secondly the
structural constraints concerning nonnegativity turn out to be so strong that sparsity is
more conveniently achieved by fitting followed by hard thresholding. We first determine

β̂ ∈ argmin
β
‖y −Φβ‖qq , q = 1 or q = 2,

subject to β ≥ 0.
(8)

The optimization problem (8) is a quadratic (q = 2) or linear (q = 1) program and is solved
using standard techniques (Boyd and Vandenberghe [2004]); we omit further details here.
We remark that in the presence of high noise, it is helpful to subtract the LNL from y.
Concerning the choice of q, we point out that q = 1 can cope better with deviations from
model assumptions, i.e. deviations from the averagine model or from the peak model and
thus may lead to a reduction of the number of false positives.

2.4 Postprocessing

Given an estimate β̂, we define Mc = {mc,j : β̂c,j > 0} ⊂ {xi}ni=1, c = 1, . . . , C, as the
set of all template locations where the corresponding coefficient exceeds 0, separately for
each charge. Due to a limited sampling rate, different sources of noise and model misfit,
the locations in the sets {Mc}Cc=1 may still deviate considerably from the set of true peak
pattern locations. Specifically, the sets {Mc}Cc=1 tend to be too large, mainly caused by
what we term ’peak splitting’: for the reasons just mentioned, it frequently occurs that
several templates are used to fit the same peak. This can at least partially be corrected by
means of the following merging procedure.

1. Separately for each c, divide the sets Mc into groups Gc,1, . . . ,Gc,Gc of ’adjacent’
positions. Positions are said to be adjacent if their distance on the m/z scale is
below a certain tolerance as specified via a parts per million (ppm) value.

2. For each c = 1, . . . , C and each group gc = 1, . . . , Gc, we solve the following optimiza-
tion problem.

(m̃c,g, β̃c,g) = min
mc,g ,βc,g

∥∥∥∥∥∥
∑

mc,j∈Gc,g

β̂c,jψmc,j − βc,gψmc,g

∥∥∥∥∥∥
2

L2

(9)

In plain words, we take the fitted function resulting from the functions {ψmc,j} rep-
resenting the most intense peak of each peak pattern in the same group and then
determine a function ψm̃c,g

placed at location m̃c,g and weighted by β̃c,g such that

β̃c,gψm̃c,g
approximates the fit of multiple functions {ψmc,j} best (in a least squares

sense).

3. One ends up with sets M̃c = {m̃c,g}Gc
g=1 and coefficients {β̃c,g}Gc

g=1, c = 1, . . . , C.

The additional benefit of step 2. as compared to the selection of the function with the
largest coefficient as proposed in Renard et al. [2008] is that, in the optimal case, we are
able to determine the peak pattern location even more accurate as predetermined by a lim-
ited sampling rate. The integral in (9) can be solved analytically for a Gaussian function,
and we resort to numeric approximations for the EMG function.
The sets {Mc} tend to be too large in the sense that they still contain noise peak patterns.
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Therefore, we apply hard thresholding to the {β̃c,g}Gc
g=1, c = 1, . . . , C, discarding all posi-

tions where the corresponding coefficients is less than a significance level times the LNL,
where the signficance level has to be specified by the user.

3 Case study

We continue the data analysis starting in Section 2.2. The methodology of the Sections 2.3
and 2.4 is implemented in the function getPeaklist. For the computation of the template
functions, we recycle the object fitEMG obtained in Section 2.2.

R> EMGlist <- getPeaklist(mz = x, intensities = y, model = "EMG",

model.parameters = fitEMG,

loss = "L2", trace = FALSE,

control.localnoise = list(factor.place = 2),

control.basis = list(charges = c(1, 2)),

control.postprocessing = list(ppm = 200))

R> show(EMGlist)

An object of class 'peaklist'(with postprocessing)

Loss function used: L2

Peak model used: EMG

number of peaks: 1222

charge states used: 1,2

R>

The argument list can be summarized as follows: we compute EMG templates for charges
1 and 2; templates are placed on all m/z-positions in the spectrum where the intensity is at
least two times the LNL; the fit is least squares (loss = L2); postprocessing is performed
by merging peaks within a tolerance of 200 ppm. Subsequently, only the patterns with
signal-to-noise ratio bigger than three are maintained. The result is of the following form.

R> threshold(EMGlist, threshold = 3, refit = TRUE, trace = FALSE)

loc_init loc_most_intense charge quant amplitude localnoise ratio

[1,] 800.4642 800.4642 1 79.45389 50.281829 9.411770 5.342441

[2,] 808.2414 808.2414 1 80.37673 50.671012 10.196100 4.969646

[3,] 829.2292 829.2292 1 93.78790 58.518172 9.411770 6.217552

[4,] 842.4935 842.4935 1 65.96983 40.891818 8.366010 4.887852

[5,] 864.4065 864.4065 1 142.84891 87.579020 13.333300 6.568443

[6,] 877.0373 877.0373 1 115.99279 70.662696 8.888890 7.949552

[7,] 908.4247 908.4247 1 77.96504 46.750652 8.104580 5.768424

[8,] 908.9339 908.9339 1 57.32357 34.365178 9.411770 3.651298

[9,] 923.4380 923.4380 1 71.88843 42.791001 7.581700 5.643985

[10,] 924.4543 924.4543 1 72.76197 43.288706 8.366010 5.174355

[11,] 927.4746 927.4746 1 109.42451 65.004254 8.888890 7.312978

[12,] 927.9689 927.9689 1 60.26112 35.789856 9.934640 3.602532

[13,] 941.4672 941.4672 1 6892.94440 4066.651292 12.549000 324.061781
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[14,] 941.6761 941.6761 1 136.02533 80.240040 13.594800 5.902260

[15,] 942.4249 942.4249 1 272.44888 160.650358 16.732000 9.601384

[16,] 949.4364 949.4364 1 71.82305 42.204271 7.320260 5.765406

[17,] 952.5318 952.5318 1 76.12937 44.665674 7.843140 5.694871

[18,] 954.4819 954.4819 1 106.30197 62.306880 8.104580 7.687860

[19,] 963.4553 963.4553 1 148.96394 86.918604 6.535950 13.298542

[20,] 967.4826 967.4826 1 145.36799 84.650178 8.104580 10.444733

[21,] 969.4694 969.4694 1 262.70495 152.821229 10.457500 14.613553

[22,] 985.4424 985.4424 1 125.58555 72.468390 7.320260 9.899702

[23,] 991.5025 991.5025 1 143.73336 82.684219 9.411770 8.785193

[24,] 992.0244 992.0244 1 126.08040 72.510535 10.196100 7.111595

[25,] 999.4665 999.4665 1 153.66239 88.037291 7.320260 12.026525

[26,] 1023.4509 1023.4509 1 72.98976 41.206802 6.535950 6.304639

[27,] 1057.4478 1057.4478 1 61.60009 34.042067 7.320260 4.650390

[28,] 1086.5573 1086.5573 1 163.03327 88.434884 6.013070 14.707110

[29,] 1125.5187 1125.5187 1 82.20092 43.611929 6.797390 6.415982

[30,] 1151.4789 1151.4789 1 97.87418 51.214203 5.751630 8.904294

[31,] 1168.6235 1168.6235 1 88.01377 45.630787 6.274510 7.272406

[32,] 1192.7011 1192.7011 1 73.30719 37.510877 6.535950 5.739162

[33,] 1271.6609 1271.6609 1 3373.99415 1646.830819 10.457500 157.478443

[34,] 1297.6800 1297.6800 1 143.24711 68.802829 7.581700 9.074855

[35,] 1360.7611 1360.7611 1 3817.19024 1720.274080 13.071900 131.600921

[36,] 1361.7379 1361.7379 1 1393.40685 627.304821 20.653600 30.372662

[37,] 1378.8379 1378.8379 1 2998.58307 1325.589300 15.686300 84.506181

[38,] 1394.8413 1394.8413 1 133.39966 57.963577 9.150330 6.334589

[39,] 1474.6387 1474.6387 1 154.37366 63.766703 9.934640 6.418622

[40,] 1484.6606 1484.6606 1 554.64563 227.682827 11.764700 19.353050

[41,] 1500.6588 1500.6588 1 187.02460 76.020197 14.902000 5.101342

[42,] 1501.6659 1501.6659 1 237.91115 96.654308 20.130700 4.801339

[43,] 1502.6668 1502.6668 1 6512.56220 2644.229262 27.973900 94.524870

[44,] 1506.9383 1506.9383 1 1362.38924 551.970349 18.039200 30.598383

[45,] 1518.6637 1518.6637 1 3192.43549 1285.329891 14.902000 86.252174

[46,] 1519.6113 1519.6113 1 167.74746 67.506458 15.424800 4.376488

[47,] 1524.6527 1524.6527 1 142.45911 57.178770 9.411770 6.075241

[48,] 1534.6603 1534.6603 1 271.31959 108.323839 12.287600 8.815704

[49,] 1546.6550 1546.6550 1 180.74626 71.701513 10.196100 7.032249

[50,] 1588.8538 1588.8538 1 206.84694 80.203379 12.287600 6.527180

[51,] 1589.8317 1589.8317 1 205.68651 79.707376 14.379100 5.543280

[52,] 1606.8601 1606.8601 1 47659.91284 18289.702134 27.451000 666.267245

[53,] 1622.8482 1622.8482 1 282.49197 107.343397 8.104580 13.244782

[54,] 1628.8462 1628.8462 1 197.47847 74.759773 7.843140 9.531868

[55,] 1632.8754 1632.8754 1 231.62212 87.464920 9.673200 9.041984

[56,] 1643.8448 1643.8448 1 295.36538 110.772870 10.980400 10.088236

[57,] 1650.8348 1650.8348 1 219.30843 81.886503 9.411770 8.700436

[58,] 1660.8520 1660.8520 1 346.30112 128.490258 15.424800 8.330109

[59,] 1661.8523 1661.8523 1 7081.99299 2625.671094 20.392200 128.758599

[60,] 1675.8106 1675.8106 1 140.11613 51.492824 7.058820 7.294820

[61,] 1683.8293 1683.8293 1 115.18493 42.112772 6.535950 6.443252

[62,] 1687.8674 1687.8674 1 138.47730 50.496544 7.581700 6.660319

[63,] 1712.6676 1712.6676 1 116.18272 41.773239 6.274510 6.657610
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[64,] 1717.8060 1717.8060 1 100.80201 36.153297 6.274510 5.761932

[65,] 1718.8742 1718.8742 1 78.34668 28.084804 6.535950 4.296973

[66,] 1753.7102 1753.7102 1 89.35262 31.479802 5.490200 5.733817

[67,] 1777.8665 1777.8665 1 106.10370 36.931121 6.013070 6.141808

[68,] 1798.8819 1798.8819 1 175.36393 60.387426 7.581700 7.964893

[69,] 1815.9052 1815.9052 1 9222.23376 3149.090677 24.052300 130.926800

[70,] 1831.9004 1831.9004 1 327.93247 111.106409 5.751630 19.317378

[71,] 1837.8935 1837.8935 1 368.32791 124.420732 6.274510 19.829554

[72,] 1847.8954 1848.9034 1 373.94066 125.769264 6.274510 20.044476

[73,] 1852.9575 1853.9655 1 162.82771 54.759202 10.980400 4.986995

[74,] 1853.9657 1854.9737 1 2843.33423 956.199297 12.549000 76.197251

[75,] 1869.9595 1870.9675 1 428.17483 143.949541 6.013070 23.939442

[76,] 1885.0257 1886.0337 1 2133.58704 717.090660 9.150330 78.367738

[77,] 1885.9545 1886.9625 1 157.60489 52.969416 9.673200 5.475894

[78,] 1897.9419 1898.9499 1 73.78245 24.791914 4.444440 5.578186

[79,] 1901.0127 1902.0207 1 88.40198 29.699519 4.705880 6.311151

[80,] 1919.0078 1920.0158 1 146.81338 49.262012 6.013070 8.192489

[81,] 1937.0230 1938.0310 1 10570.00554 3542.208390 27.712400 127.820340

[82,] 1953.0164 1954.0244 1 116.41446 38.969904 3.660130 10.647137

[83,] 1958.9972 1960.0052 1 146.46839 49.010187 3.921570 12.497593

[84,] 1963.0361 1964.0441 1 219.18520 73.321530 6.013070 12.193693

[85,] 1969.9485 1970.9565 1 300.77264 100.565706 4.444440 22.627306

[86,] 1981.0615 1982.0695 1 244.80593 81.788588 13.594800 6.016167

[87,] 1982.0622 1983.0702 1 5026.37446 1679.171934 15.686300 107.047037

[88,] 1994.0448 1995.0528 1 131.82282 44.002302 3.921570 11.220583

[89,] 1995.0238 1996.0318 1 80.08364 26.729978 3.660130 7.303013

[90,] 1998.0483 1999.0563 1 86.94219 29.013159 3.398690 8.536571

[91,] 2004.0431 2005.0511 1 76.49392 25.515850 3.660130 6.971296

[92,] 2008.0804 2009.0884 1 135.36306 45.139784 3.660130 12.332836

[93,] 2039.0826 2040.0906 1 56.21698 18.706247 2.875820 6.504666

[94,] 2052.9999 2054.0079 1 68.78940 22.867355 2.352940 9.718631

[95,] 2092.1287 2093.1367 1 81.25674 26.937889 3.660130 7.359818

[96,] 2098.0541 2099.0621 1 76.68433 25.411441 3.137260 8.099884

[97,] 2105.0082 2106.0162 1 172.43705 57.102886 3.398690 16.801440

[98,] 2109.1722 2110.1802 1 245.65930 81.315327 11.764700 6.911806

[99,] 2110.1592 2111.1672 1 5284.54566 1749.046494 14.117600 123.891206

[100,] 2126.1453 2127.1533 1 79.78905 26.365834 2.352940 11.205485

[101,] 2132.1398 2133.1478 1 59.98968 19.811183 2.352940 8.419757

[102,] 2136.1764 2137.1844 1 73.48454 24.257865 2.614380 9.278630

[103,] 2154.1284 2155.1364 1 41.38739 13.637363 2.091500 6.520374

[104,] 2157.9980 2159.0060 1 41.70303 13.735924 1.830070 7.505682

[105,] 2166.1065 2167.1145 1 73.99919 24.353337 2.352940 10.350173

[106,] 2172.1089 2173.1169 1 33.40553 10.987191 1.830070 6.003700

[107,] 2188.0666 2189.0746 1 36.97220 12.140359 1.633987 7.429897

[108,] 2211.1144 2212.1224 1 68.46039 22.420721 2.091500 10.719924

[109,] 2226.1425 2227.1505 1 102.26718 33.429187 1.633987 20.458655

[110,] 2233.0991 2234.1071 1 33.83283 11.049641 1.633987 6.762378

[111,] 2257.0072 2258.0152 1 73.28383 23.861885 1.633987 14.603469

[112,] 2283.2155 2284.2235 1 182.53729 59.238704 2.091500 28.323550

[113,] 2284.1745 2285.1825 1 24.06579 7.809115 2.091500 3.733739
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[114,] 2427.2620 2428.2700 1 50.99018 16.211010 1.633987 9.921134

R>

The results can be examined in detail graphically. We finally present some selected regions
to demonstrate that our method performs well. The pre-defined method visualize can be
used display the template fitting at several stages for regions within selected m/z intervals
as specified by the arguments lower and upper.

R> visualize(EMGlist, x, y, lower= 963, upper = 973,

fit = FALSE, fittedfunction = TRUE, fittedfunction.cut = TRUE,

localnoise = TRUE, quantile = 0.5,

cutoff.functions = 3)

R>
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R> visualize(EMGlist, x, y, lower= 1502, upper = 1510,

fit = FALSE, fittedfunction = TRUE, fittedfunction.cut = TRUE,

localnoise = TRUE, quantile = 0.5,

cutoff.functions = 2)

R>

R>
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In the m/z range [963, 973] a charge-1 peak overlaps with a more intense charge two peak.
A further overlap occurs in the interval [1502, 1510], and it is correctly resolved.
An even more challenging problem, in which it is already difficult to unravel the overlap
by visual inspection, is displayed in the following plot.

R> visualize(EMGlist, x, y, lower= 1360, upper = 1364,

fit = FALSE, fittedfunction = TRUE, fittedfunction.cut = TRUE,

localnoise = TRUE, quantile = 0.5,

cutoff.functions = 2)

R>
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4 Extension to process LC-MS runs

In the preceding sections, it has been demonstrated how IPPD can be used to process single
spectrums. For LC-MS, multiple spectra, one for a sequence of retention times {tl}Ll=1, have
to be processed. In this context, a single spectrum is referred to as scan. The resulting data
can be displayed as in Figure 2 by plotting intensities over the plane defined by retention
times and m/z-values. IPPD offers basic functionality to process this kind of data. Support
for mzXML format as well as an implementation of the sweep line scheme as suggested in
Schulz-Trieglaff et al. [2008] is provided, which is briefly demonstrated in the sequel.

R> directory <- system.file("data", package = "IPPD")

R> download.file("http://www.ml.uni-saarland.de/code/IPPD/CytoC_1860-2200_500-600.mzXML",

destfile = paste(directory, "/samplefile", sep = ""),

quiet = TRUE)

R> data <- read.mzXML(paste(directory, "/samplefile", sep = ""))

R>

The sweep line scheme aggregates the peaklists of multiple scans by looking for blocks of
consecutive retention times at which there is signal at nearby m/z-positions. The output
is a quadruple consisting of a retention time interval, a m/z-position, a charge state and

15



Figure 2: Graphical display of the sample mzXML file used in the code.

a quantification of the intensity. The intervals are found by sequentially processing the
results of getPeaklist, where the results of each peaklist will lead to extensions of existing
interval of preceding lists or to the creation of new intervals; intervals are closed once they
have not been extended after processing more than gap additional peaklists, where gap

is a parameter to be specified by the user. For more details, we refer to Schulz-Trieglaff
et al. [2008]. The function analyzeLCMS runs getPeaklist for each scan and then calls
the function sweepline, which can as well be run independently from analyzeLCMS to
aggregate the results. While there is a default setting, parameters can be changed by
passing appropriate arguments.

R> processLCMS <- analyzeLCMS(data,

arglist.getPeaklist = list(control.basis = list(charges = c(1,2,3))),

arglist.threshold = list(threshold = 10),

arglist.sweepline = list(minboxlength = 20))

R> boxes <- processLCMS$boxes

The output can be displayed as follows. The retention time intervals are given by the two
columns rt_begin and rt_end, the corresponding m/z-positions are given by the column
loc. Quantitive information is contained in the column quant. The output is visualized by
means of a contour plot, where the contour lines depict intensities over the plane defined
by m/z-positions and retention times. The intervals of the output are drawn as red lines.

R> print(boxes)

loc charge quant rt_begin rt_end npeaks gapcount

[1,] 503.3474 1 4804929 2093.26 2113.46 26 6

[2,] 505.8353 2 58628590 2067.62 2097.79 34 13

[3,] 520.3157 1 4060317 2097.79 2118.62 22 11

[4,] 521.6749 3 174362565 1929.97 1971.22 57 6
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[5,] 534.3278 2 82024006 2068.95 2099.10 35 12

[6,] 535.3383 1 242848614 2099.10 2150.15 70 9

[7,] 546.8268 2 43092586 2112.83 2137.57 37 2

[8,] 549.3673 1 10241899 1882.23 1925.06 56 8

[9,] 584.8515 2 358822314 2090.02 2155.51 91 10

[10,] 585.3650 2 17016750 2132.31 2155.51 31 5

[11,] 585.3691 2 13830263 2175.63 2193.95 25 3

[12,] 597.3784 2 10873799 1882.96 1906.53 35 1

R> rtlist <- lapply(data$scan, function(x)

as.numeric(sub("([^0-9]*)([0-9|.]+)([^0-9]*)", "\\2", x$scanAttr)))

R> rt <- unlist(rtlist)

R> nscans <- length(rt)

R> npoints <- length(data$scan[[1]]$mass)

R> Y <- matrix(unlist(lapply(data$scan, function(x) x$peaks)),

nrow = nscans,

ncol = npoints,

byrow = TRUE)

R> contour(rt, data$scan[[1]]$mass, Y, xlab = "t", ylab = "mz",

levels = 10^(seq(from = 5, to = 6.75, by = 0.25)),

drawlabels = FALSE)

R> for(i in 1:nrow(boxes))

lines(c(boxes[i,"rt_begin"], boxes[i,"rt_end"]), rep(boxes[i,"loc"], 2), col = "red")

R>

R>
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