GeneSelector package vignette Martin Slawski^{1,2} * Anne-Laure Boulesteix^{1,2,3} † Sylvia Lawry Centre, Munich, Germany Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University Munich, Germany Department of Statistics, Ludwig-Maximilians-University Munich, Germany #### Abstract This is the vignette of the Bioconductor add-on package **GeneSelector** which contains methods to assess quantitatively the variability among multiple gene rankings, obtained by using altered datasets or several ranking procedures. The resulting multiplicity problem is addressed by functionality for rank aggregation. ### 1 Introduction An important aspect of microarray data analysis is the detection of genes that are differentially expressed, e.g. in different experimental conditions or in individuals with different phenotypes. The results of microarray studies are usually the starting point for further more expensive and time-consuming experiments, which involve only a small number of candidate genes Aerts et al. [2006]. The set of candidate genes is typically determined by computing a two-sided test statistic for each gene $j = 1, \ldots, p$, and ordering them decreasingly according to the size of the absolute of the statistic. This yields an ordered list $\boldsymbol{l}=(l_m,\ m=1,\ldots,p)$ and ranks $\mathbf{r} = (r_j, j = 1, ..., p)$ defined by $r_j = m \Leftrightarrow l_m = j, j, m = 1, ..., p$. The genes at the top of the list are displayed in almost all microarray-related biomedical publications, often considered as an unequivocal and definitive result. Critical voices have pointed out that this procedure might yield false research findings Ioannidis [2005], since it ignores the variability of the obtained ordered lists Ein-Dor et al. [2006], Qiu et al. [2007]. The Gene-Selector package tries to quantify this variability by mimicking changed data situations via resampling- and related strategies, and then comparing the results to those obtained with the reference datasets. For this purpose, GeneSelector assembles several stability measures for rank data. A second source of variability, which, to our knowledge, has not been addressed in the literature, is the multiplicity of test statistics (= ranking criteria) proposed for gene expression data with the aim to cope with the 'small n, large p' situation, with n denoting the number of replicates. GeneSelector implements a collection of fourteen such ranking criteria, displayed in Table 1, and hence enables the user to explore this source of variability. Using several ranking criteria instead of only one may additionally be seen as sensitivity ^{*}ms@cs.uni-sb.de [†]boulesteix@ibe.med.uni-muenchen.de | Method | Function name | Package | Reference | |-------------------------------------|-----------------------|----------|---------------------------------| | Foldchange | RankingFC | | | | t-statistic | RankingTstat | | | | Welch's t statistic | RankingWelchT | | | | Bayesian t -statistic (1) | RankingBaldiLong | | Baldi and Long [2001] | | Bayesian t -statistic (2) | RankingFoxDimmic | | Fox and Dimmic [2006] | | Shrinkage t-statistic | RankingShrinkageT | | Opgen-Rhein and Strimmer [2007] | | Soft-thresholded t-statistic | RankingSoftthresholdT | | Wu [2005] | | Parametric empirical Bayes | RankingLimma | limma | Smyth [2004] | | B-statistic | RankingBstat | sma | Lönnstedt and Speed [2002] | | Nonparametric empirical Bayes | RankingEbam | siggenes | Efron et al. [2001] | | SAM | RankingSam | samr | Tusher et al. [2001] | | Wilcoxon statistic | RankingWilcoxon | | | | Wilcoxon statistic, empirical Bayes | RankingWilcEbam | siggenes | Efron and Tibshirani [2002] | | Permutation test | RankingPermutation | multtest | | Table 1: Overview of the ranking procedures in GeneSelector. If the 'package' is not given, then the respective procedure is *not* imported from a foreign package. analysis, since most criteria rely on idealized, hard-to-check assumptions. Each ranking criteria produces its own result, whereas the user may be confronted with the dilemma of finding exactly one result, which should unify all results as good as possible, hopefully giving rise to an improved and more stable ranking and in turn to a set of candidate genes with as least as possible false positives. In this spirit, our package offers a GeneSelector function as well as several methods for rank aggregation. # 2 Illustration #### 2.1 Description of the data set We demonstrate the functionalities of GeneSelector in the classical setting of two independent samples, each of size 10. We simulate a gene expression matrix \mathbf{x} containing 2,000 genes in the following manner. - Gene expression intensities are drawn from a multivariate normal distribution with zero mean vector and covariance which itself has been drawn randomly from an inverse Wishart distribution. - The first 40 genes are differentially expressed. The differences in the means between the two classes are simulated independently according to a normal distribution with variance 0.9. We access the data using the lines: ``` > data(toydata) > y <- as.numeric(toydata[1,])</pre> ``` ``` > x <- as.matrix(toydata[-1,]) > dim(x) [1] 2000 20 > table(y) y 1 2 10 10 ``` Knowing that the first genes are differentially expressed, we make boxplots of the gene expression intensities of the first four genes: ``` > par(mfrow=c(2,2)) > for(i in 1:4) boxplot(x[i,]~y, main=paste("Gene", i)) ``` # 2.2 Rankings We now perform a ranking using the ordinary t-statistic. ``` > ordT <- RankingTstat(x, y, type="unpaired")</pre> The resulting objects are all instances of the class GeneRanking. To get basic information, we use the commands: > getSlots("GeneRanking") х statistic ranking pval "matrix" "factor" "numeric" "numeric" "vector" "character" method "character" > str(ordT) Formal class 'GeneRanking' [package "GeneSelector"] with 7 slots : num [1:2000, 1:20] 1 2.78 -1.18 2.79 -2.95- attr(*, "dimnames")=List of 2$: chr [1:2000] "1" "2" "3" "4"$: chr [1:20] "arr1" "arr2" "arr3" "arr4" ... : Factor w/ 2 levels "1", "2": 1 1 1 1 1 1 1 1 1 1@ statistic: Named num [1:2000] 6.32 9.53 -2.29 13.09 -7.93- attr(*, "names")= chr [1:2000] "1" "2" "3" "4"@ ranking : Named int [1:2000] 11 3 185 1 5 17 13 451 6 375- attr(*, "names")= chr [1:2000] "1" "2" "3" "4" ... : Named num [1:2000] 5.83e-06 1.85e-08 3.44e-02 1.23e-10 2.79e-07- attr(*, "names")= chr [1:2000] "1" "2" "3" "4" ... : chr "unpaired" : chr "ordinaryT" ..@ method > show(ordT) Ranking by ordinaryT, number of genes: 2000. > toplist(ordT) ``` ``` index statistic pval 4 13.087900 1.232978e-10 1 2 11 10.404717 4.833338e-09 2 9.533551 1.853162e-08 3 4 26 -8.378361 1.261238e-07 5 5 -7.927116 2.791221e-07 6 9 -7.744184 3.880996e-07 7 23 7.392767 7.402187e-07 8 38 -6.986973 1.592778e-06 9 28 -6.786421 2.345378e-06 40 6.421584 4.808461e-06 10 ``` The last command yields the top-ranking genes according to the respective procedure. #### 2.3 Altered data sets In order to inspect stability of the obtained ranking with respect to changes in the data, we use resampling techniques implemented in **GeneSelector**. The following command produces jackknif-ed data sets, i.e. datasets resulting from successively removing exactly one sample from the complete sample: ``` > loo <- GenerateFoldMatrix(y = y, k=1)</pre> > show(loo) number of removed samples per replicate: 1 number of replicates: 20 constraints: minimum classize for each class: 9 We plug this into the method RepeatRanking, which determines the ranking 20 times, i.e. for each removed observation, anew: > loor_ordT <- RepeatRanking(ordT, loo)</pre> The object loo may additionally be used in the following manner: > ex1r_ordT <- RepeatRanking(ordT, loo, scheme = "labelexchange") The argument scheme = "labelexchange" specifies that instead of leaving one observa- tion out, it is assigned the opposite class label. We may also use the bootstrap, e.g. > boot <- GenerateBootMatrix(y = y, maxties=3, minclassize=5, repl=30) > show(boot) number of bootstrap replicates: 30 constraints: minimum classize for each class: 5 maximum number of ties per observation: 3 > boot_ordT <- RepeatRanking(ordT, boot)</pre> ... or add a small amount of noise to the observed expression intensities: ``` To get a toplist that tabulates how top list positions are distributed over all repeated rankings, we use: > toplist(loor_ordT, show=FALSE) #### original dataset: | | ${\tt index}$ | ${\tt statistic}$ | pvals | |----|---------------|-------------------|--------------| | 4 | 4 | 13.087900 | 1.232978e-10 | | 11 | 11 | 10.404717 | 4.833338e-09 | | 2 | 2 | 9.533551 | 1.853162e-08 | | 26 | 26 | -8.378361 | 1.261238e-07 | | 5 | 5 | -7.927116 | 2.791221e-07 | | 9 | 9 | -7.744184 | 3.880996e-07 | | 23 | 23 | 7.392767 | 7.402187e-07 | | 38 | 38 | -6.986973 | 1.592778e-06 | | 28 | 28 | -6.786421 | 2.345378e-06 | | 40 | 40 | 6.421584 | 4.808461e-06 | In the following table, rownames correspond to gene indices. The columns contain the absolute frequencies for the corresponding ranks over all replications. Genes are ordered according to the first column, then to the second, and so on. | | Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 | Rank 9 | Rank 10 | |----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------| | 4 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 11 | 0 | 18 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0 | 1 | 17 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | 26 | 0 | 0 | 1 | 13 | 5 | 1 | 0 | 0 | 0 | 0 | | 5 | 0 | 1 | 0 | 3 | 7 | 7 | 2 | 0 | 0 | 0 | | 9 | 0 | 0 | 0 | 1 | 4 | 10 | 5 | 0 | 0 | 0 | | 23 | 0 | 0 | 0 | 0 | 3 | 2 | 11 | 4 | 0 | 0 | | 38 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 11 | 7 | 1 | | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | | 28 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 9 | 5 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 4 | | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | As an exploratory tool to examine the difference in rankings between original and perturbed data sets, a plot command is available. From Figure 1, it is obvious that variability increases for a higher list position. Moreover, the figure shows that variability depends on the method used to generate altered data sets. In this example, the bootstraped rankings are more scattered around the angle bisector than the jackknif-ed rankings. ``` > par(mfrow=c(2,2)) > plot(loor_ordT, col="blue", pch=".", cex=2.5, main = "jackknife") > plot(ex1r_ordT, col="blue", pch=".", cex=2.5, main = "label exchange") > plot(boot_ordT, col="blue", pch=".", cex=2.5, main = "bootstrap") > plot(noise_ordT, frac=1/10, col="blue", pch=".", cex=2.5, main = "noise") ``` Figure 1: Scatterplots of rankings from altered datasets vs. rankings from the original dataset. #### 2.4 Stability measures Alternative to visual methods, one can compute of the stability measures tabulated in Table 2. Let σ, σ' be either two rankings r, r' or two lists l, l'. A function s is called pairwise stability measure if (i) $$s(\boldsymbol{\sigma}, \boldsymbol{\sigma}') = s(\boldsymbol{\sigma}', \boldsymbol{\sigma}),$$ (ii) $$s(\boldsymbol{\sigma}, \boldsymbol{\sigma}') \leq s(\boldsymbol{\sigma}, \boldsymbol{\sigma}) = s(\boldsymbol{\sigma}', \boldsymbol{\sigma}') = 1.$$ In the current version of **GeneSelector**, there are two groups of pairwise stability measures: the first group is set-based, counting/summing up overlaps of lists, while the second one computes distances. Pairwise stability measures are particularly appropriate in the presence of a reference list/ranking. In the example given in the previous subsection, the | Name | Definition | Reference | |----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------| | Intersection count † | $s_{\cap}(\boldsymbol{l}, \boldsymbol{l}') = s_{\cap}(\boldsymbol{l}_{[k]}, \boldsymbol{l}'_{[k]}) = \frac{\sum_{1 \leq m, m' \leq k} I(l_m = l'_{m'})}{k}, k = 1, \dots, p.$ | Qiu et al. [2007] | | Overlap score † | $s_{O\cap}(m{l},m{l}') = rac{\sum_{k=1}^p w_k s_{\cap}(m{l}_{[k]},m{l}'_{[k]})}{\sum_{k=1}^p w_k}$ | Yang et al. [2006] | | ℓ^1 ‡ | $s_{\ell^1}(m{r},m{r}') = 1 - rac{\sum_{j=1}^p w_j r_j - r_j' }{\sum_{j=1}^p w_{(j)} j - (p-j+1) }$ | Jurman et al. [2008] | | ℓ^2 ‡ | $s_{\ell^2}(m{r},m{r}') = 1 - rac{\sum_{j=1}^p w_j (r_j - r_j')^2}{\sum_{j=1}^p w_{(j)} j - (p - j + 1) }$ | Jurman et al. [2008] | | Spearman's ρ ‡ | $\frac{\sum_{j=1}^{p} w_j(r_j - (p+1)/2)(r'_j - (p+1)/2)}{\left(\sum_{j=1}^{p} r_j^2\right)^{1/2} \left(\sum_{j=1}^{p} r_j'^2\right)^{1/2}}$ | Jurman et al. [2008] | | Kendall's τ ‡ | $s_{\tau}(\boldsymbol{r}, \boldsymbol{r'}) = 1 - \frac{\sum_{1 \leq j < m \leq p} w_j w_m I([(r_j - r_m)(r'_j - r'_m)] < 0)}{\sum_{1 \leq j < m \leq p} w_j w_m}$ | DeConde et al. [2006] | | Union count Δ | $s_{\cup}(m{l}_{1\;[k]},\ldots,m{l}_{B\;[k]}) = 1 - rac{ U_{[k]} - k}{\min\{Bk,p\} - k}$ | Jurman et al. [2008] | | Union score Δ | $s_{O \cup}(m{l}_1, \dots, m{l}_B) = rac{\sum_{k=1}^p w_k s_{\cup}(m{l}_1}{\sum_{k=1}^p w_k} w_k}{\sum_{k=1}^p w_k}$ | | Table 2: Overview of the stability measures in GeneSelector. Notations: $\boldsymbol{l}_{[k]} = (l_m, 1 \leq m \leq k)$ denotes the top-k list of \boldsymbol{l} ; the w_j 's are (fixed) weights - the subscript in the brackets indicate ordering, i.e. $w_{(1)} \leq \ldots \leq w_{(p)}$; $|U_{[k]}|$ denotes the size of the union of all top k-lists to be compared. Legend: \dagger - implemented in GetStabilityOverlap; \ddagger - implemented in GetStabilityUnion. natural choice for the reference is the ranking obtained with the original dataset. If one wants to compute a stability indicator for several lists without a reference, e.g. when comparing the output of different ranking criteria, we introduce the following notion. Let σ_b , $b = 1, \ldots, B$ be a sequence of rankings or lists. A function s is called multi-input stability measure if (i) $$s(\boldsymbol{\sigma}_1, \dots, \boldsymbol{\sigma}_B) = s(\boldsymbol{\sigma}_{\pi_1}, \dots, \boldsymbol{\sigma}_{\pi_B})$$ for any permutation $\boldsymbol{\pi}$ of $\{1, \dots, B\}$, (ii) $$s(\sigma_1, \ldots, \sigma_B) \le s(\sigma_1, \ldots, \sigma_1) = \ldots = s(\sigma_B, \ldots, \sigma_B) = 1.$$ As shown in Table 2, an additional component of stability measures is a weighting scheme which penalizes variability at the top of list more severely than at the bottom, since only the top is of practical relevance. As illustration, we apply GetStabilityOverlap to the rankings obtained after swapping class labels, which seems to perturb considerably the original ranking, as indicated by Figure 1. Concerning the sequence of weights, we choose $w_m = 1/m, m = 1, \ldots, p$, which is realized by using the option decay = "linear". ``` > stab_ex1r_ordT <- GetStabilityOverlap(ex1r_ordT, scheme = "original", + decay="linear") > show(stab_ex1r_ordT) Stability measure: intersection count and overlap score, scheme: original, weighting: linear weight decay. > GetStabilityOverlap computes both normalized intersection counts and overlap scores when truncating at list position k, k = 1, \ldots, p. Evaluating these scores for position k = 10, we use the lines: > summary(stab_ex1r_ordT, measure = "intersection", display = "all", position = 10) intersection fractions (with respect to reference data set): iter.1 iter.2 iter.3 iter.4 iter.5 iter.6 iter.7 iter.8 iter.9 iter.10 0.8 0.9 0.6 0.7 0.9 0.9 0.8 0.8 0.6 0.8 iter.11 iter.12 iter.13 iter.14 iter.15 iter.16 iter.17 iter.18 iter.19 iter.20 0.7 0.9 0.8 0.7 0.7 0.8 0.8 expected score in the case of no-information: > summary(stab_ex1r_ordT, measure = "overlapscore", display = "all", position = 10) overlap scores (with respect to reference data set): iter.2 iter.3 iter.5 iter.6 iter.7 iter.8 iter.9 iter.10 iter.1 iter.4 0.776 0.537 0.874 0.660 0.695 0.494 0.490 0.430 0.481 0.851 iter.11 iter.12 iter.13 iter.14 iter.15 iter.16 iter.17 iter.18 iter.19 iter.20 0.606 0.716 0.597 0.647 0.763 0.528 0.703 0.608 0.672 0.769 expected score in the case of no-information: 0.001707086 ``` > The output shows that the overlap between reference- and alternative top-ten lists ranges from 60 to 90 percent. Overlap score and intersection count disagree visibly, which is due to the fact that the overlap score is computed with weights. Though 1 suggests some discrepancy between reference- and alternative lists, the output shows that the fraction of accordance is much larger than the expectation in the no-information case, i.e. in the case of mutually unrelated lists. To have a look at how the two scores vary with increasing list position (on average), we invoke the predefined plot(...) routine: Next, let us investigate which sample is most influential in the sense that its removal perturbs the reference ranking most. For this purpose, we apply GetStabilityDistance with the option measure = "spearman" to the jackknif-ed rankings. ``` > stab_loo_ordT <- GetStabilityDistance(ex1r_ordT, scheme = "original", measure + = "spearman", decay="linear") > show(stab_loo_ordT) ``` Stability measure: spearman's rank correlation, ## percentage of overlap #### average overlap score Figure 2: Visualization of intersection count and overlap score. ``` scheme: original, weighting: linear weight decay. > summary(stab_loo_ordT, display = "all") stability scores (with respect to reference data set): iter.1 iter.2 iter.3 iter.4 iter.5 iter.6 iter.7 iter.8 iter.9 iter.10 0.351 0.749 0.745 0.568 0.157 0.489 0.585 0.420 0.393 0.683 iter.11 iter.12 iter.13 iter.14 iter.15 iter.16 iter.17 iter.18 iter.19 iter.20 0.402 0.460 0.654 0.674 0.720 0.446 0.230 0.698 0.509 0.564 expected score in the case of no-information: 0 ``` > From the output we conclude that the fifth sample is by far the most influential one. ## 2.5 Aggregating multiple ranking criteria In addition to the ordinary t-statistic, we compute five additional rankings (cf. Table 1): ``` > BaldiLongT <- RankingBaldiLong(x, y, type="unpaired") > FoxDimmicT <- RankingFoxDimmic(x, y, type="unpaired") > sam <- RankingSam(x, y, type="unpaired") > wilcox <- RankingWilcoxon(x, y, type="unpaired") > wilcoxeb <- RankingWilcEbam(x, y, type="unpaired")</pre> ``` Again, we first assess variability visually. The method HeatmapRankings produces a heatmap from all obtained rankings, clustering genes and criteria simultaneously. We restrict to our attention to the first forty, differentially expressed genes (ind = 1:40). ``` > Merged <- MergeMethods(list(ordT, BaldiLongT, FoxDimmicT, sam, wilcox, wilcoxeb)) > HeatmapRankings(Merged, ind=1:40) ``` To cope with the multiplicity problem, we exploit the functionalities for rank aggregation in the GeneSelector package. A simple approach would just take the average of all observed ranks, which is, among other things, implemented in the method AggregateSimple. As a more sophisticated approach, we use the Markov chain model propagated in DeConde et al. [2006] and implemented in the method AggregateMC. Lastly, we use the GeneSelector function, which aims at finding genes falling consistently, i.e. for all ranking criteria, below a pre-specified threshold, here chosen as 50. > AggMean <- AggregateSimple(Merged, measure = "mean")</pre> ``` > AggMC <- AggregateMC(Merged, type = "MCT", maxrank = 100) > GeneSel <- GeneSelector(list(ordT, BaldiLongT, FoxDimmicT, sam, wilcox, + wilcoxeb), threshold="user", maxrank=50) > show(GeneSel) GeneSelector run with gene rankings from the following statistics: ordinaryT BaldiLongT FoxDimmicT Sam Wilcoxon WilcEbam Number of genes below threshold rank 50 in all statistics:29 > sel <- sum(slot(GeneSel, "selected"))</pre> > cbind(mean = toplist(AggMean, top = sel, show = F), MC = toplist(AggMC, top + = sel, show = F), GeneSelector = toplist(GeneSel, top = sel, show = F)[,1]) index index GeneSelector 1 5 5 2 4 4 11 3 11 2 11 4 2 26 2 5 9 9 5 6 26 28 9 7 28 26 38 8 38 38 28 7 9 7 40 10 29 29 12 11 14 14 7 12 30 29 30 13 820 40 30 14 40 820 14 15 12 12 33 16 33 33 1799 17 1799 1799 820 1146 23 1146 18 19 1633 1146 1633 20 1677 1633 1551 21 1258 1258 724 22 1551 1258 1 23 937 937 1199 24 1715 1677 100 ``` | 25 | 724 | 1551 | 1370 | |----|------|------|------| | 26 | 1370 | 1715 | 937 | | 27 | 100 | 724 | 1715 | | 28 | 1641 | 6 | 1267 | | 29 | 1199 | 1370 | 476 | | | | | | > Here, we have first determined the number of genes passing the GeneSelector filter. In total, 29 genes manage to fall below rank 50 in all six rankings. Although the GeneSelector attempts to minimize the number of false positives, one still ends up with 14 false positive genes among the 29 selected ones. In this regard, the Markov chain approach is superior, because it selects only 11 false positive ones. Simple averaging seems to perform slightly worse, putting the false positive gene 820 at position 13. In contrast, the first false positive gene of the GeneSelector occurs at position 16. A nice feature we want to present at the end is the plot routine for the class GeneSelector. It allows one to obtain a detailed gene-specific overview: ``` > plot(GeneSel, which = 1) > ``` # GeneInfoScreen for gene 1 | selected? | criterion | rank 1 - 20
20 - 100
100 - 200
200 - 500 | |-----------|------------|---| | + | ordinaryT | 11 | | _ | BaldiLongT | 357 | | _ | FoxDimmicT | | | _ | Sam | 53 | | + | Wilcoxon | 11 | | + | WilcEbam | 14 | Interestingly, for the first, differentially expressed gene, simple approaches such as the ordinary t- and the Wilcoxon statistic perform well, while the more sophisticated statistics, which depend on hyperparameters, fail to detect differential expression. ### References - S. Aerts, D. Lambrechts, S. Maity, P. Van Loo, B. Coessens, F. DeSmet, L.-C. Tranchevent, B. DeMoor, P. Marynen, B. Hassan, P. Carmeliet, and Y. Moreau. Gene prioritization through genomic data fusion. *Nature Biotechnology*, pages 537–544, 2006. - P. Baldi and A.D. Long. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. *Bioinformatics*, 17: 509–519, 2001. - R. P. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, and r. Etzioni. Combining results of microarray experiments: a rank aggregation approach. *Statistical Applications in Genetics and Molecular Biology*, 5:15, 2006. - B. Efron and R. Tibshirani. Empirical Bayes Methods and False Discovery Rates for Microarrays. *Genetic Epidemiology*, 23:70–86, 2002. - B. Efron, R. Tibshirani, J.D. Storey, and V. Tusher. Empirical Bayes Analysis of a Microarray Experiment. *Journal of the American Statistical Association*, 96:1151–1160, 2001. - L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. *Proceedings of the National Academy of Sciences of the USA*, 103:5923–5928, 2006. - R.J. Fox and M.W. Dimmic. A two sample Bayesian t-test for microarray data. *BMC Bioinformatics*, 7:126, 2006. - J. P. A. Ioannidis. Microarrays and molecular research: noise discovery? *The Lancet*, 365: 454–455, 2005. - G. Jurman, S. Merler, A. Barla, S. Paoli, A. Galea, and C. Furlanello. Algebraic stability indicators for ranked lists in molecular profiling. *Bioinformatics*, 24:258–264, 2008. - I. Lönnstedt and T. Speed. Replicated Microarray Data. Statistica Sinica, 12:31–46, 2002. - R. Opgen-Rhein and K. Strimmer. Accurate Ranking of Differentially Expressed Genes by a Distribution-Free Shrinkage Approach. Statistical Applications in Genetics and Molecular Biology, 6:Iss.1, Art.9, 2007. - X. Qiu, Y. Xiao, A. Gordon, and A. Yakovlev. Assessing stability of gene selection in microarray data analysis. *BMC Bioinformatics*, pages 7–50, 2007. - G.K. Smyth. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3, 2004. - V. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied to the ionizing radiation response. *Proceedings of the National Academy of Sciences of the USA*, 98:5116–5121, 2001. - B. Wu. Differential gene expression using penalized linear regression models: The improved SAM statistic. *Bioinformatics*, 21:1565–1571, 2005. - X. Yang, S. Bentink, S. Scheid, and R. Spang. Similarities of ordered gene lists. *Journal of Bioinformatics and Computational Biology*, 4:693–708, 2006.