
GeneAnswers, Integrated Interpretation of Genes

Gang Feng‡∗, Pan Du‡†, Warren A. Kibbe‡‡, Simon Lin‡§

October 13, 2015

‡Northwestern University Biomedical Informatics Center
Northwestern University, Chicago, IL, 60611, USA

1 Overview of GeneAnswers

Microarray techniques have been widely employed in genomic scale studies for
more than one decade. The standard analysis of microarray data is to filter out
a group of genes from thousands of probes by certain statistical criteria. These
genes are usually called significantly differentially expressed genes. Recently,
next generation sequencing (NGS) is gradually adopted to explore gene tran-
scription, methylation, etc. Also a gene list can be obtained by NGS preliminary
data analysis. However, this type of information is not enough to understand
the potential linkage between identified genes and interested functions. The in-
tegrated functional and pathway analysis with gene expression data would be
very helpful for researchers to interpret the relationship between the identified
genes and proposed biological or medical functions and pathways.

The GeneAnswers package provides an integrated solution for a group of
genes and specified categories (biological or medical functions, such as Gene
Ontology, Disease Ontology, KEGG, etc) to reveal the potential relationship
between them by means of statistical methods, and make user-friendly network
visualization to interpret the results. Besides the package has a function to
combine gene expression profile and category analysis together by outputting
concept-gene cross tables, keywords query on NCBI Entrez Gene and application
of human based Disease ontology analysis of given genes from other species can
help people to understand or discover potential connection between genes and
functions.

2 Citation

For the people using GeneAnswers package, please cite the following papers in
your publications.

* For DOLite:

∗g-feng (at) northwestern.edu
†dupan (at) northwestern.edu
‡wakibbe (at) northwestern.edu
§s-lin2 (at) northwestern.edu

1

Du, P., Feng, G., Flatow, J., Song, J., Holko, M., Kibbe, W.A. and Lin,
S.M., (2009) ’From disease ontology to disease-ontology lite: statistical methods
to adapt a general-purpose ontology for the test of gene-ontology associations’,
Bioinformatics 25(12):i63-8

* For GeneAnswers:
Feng, G., Du, P., Krett, N.L., Tessel, M., Rosen, S., Kibbe, W.A., and Lin,

S.M., (submitted) ’Bioconductor Methods to Visualize Gene-list Annotations’,
Thanks for your help!

3 Installation of GeneAnswers package

In order to install the GeneAnswers package, the user needs to first install
R, some related Bioconductor packages. You can easily install them by the
following codes.

source("http://bioconductor.org/biocLite.R")

biocLite("GeneAnswers")

For the users want to install the latest developing version of GeneAnswers,
which can be downloaded from the developing section of Bioconductor website.
Some additional packages might be required to be installed because of the update
the Bioconductor. These packages can also be found from the developing section
of Bioconductor website. You can also directly install the source packages from
the Bioconductor website by specify the developing version number, which can
be found at the Bioconductor website. Suppose the developing version is 2.5, to
install the latest GeneAnswers pakcage in the Bioconductor developing version,
you can use the following command:

install.packages("GeneAnswers",repos="http://www.bioconductor.org/packages/2.5/bioc",type="source")

4 Object models of major classes

The GeneAnswers package has one major class: GeneAnswers. It includes
the following slots:

1. geneInput: a data frame containing gene Entrez IDs with or without any
related values. The values could be foldChange, p value, or other values. These
data can be used for concept-gene network. Genes with positive values will be
represented as red nodes, while negative value genes are green nodes.

2. testType: statistical test method. Current version supports hypergeomet-
ric test to test relationship between genes and specified categories.

3. pvalueT: the cutoff of statistical test. Any categories will not be reported
if the p value is more than the cutoff.

4. genesInCategory: a list containing genes belonging to categories. The
names of the list are categories.

5. geneExpProfile: a data frame to store gene expression data. If not avail-
able, it could be NULL.

6. annLib: annotation database used for statistical test.
7. categoryType: functional or medical category used for statistical test.

2

Figure 1: Flow chart of GeneAnswers

8. enrichmentInfo: a data frame containing filtered categories with statisti-
cal results by specified pvalueT.

The figure, ’Flow chart of GeneAnswers’, shows how GeneAnswers package
works. A group of genes are essential. We use unique Entrez gene IDs to rep-
resent genes. Any relative feature values of these genes can also be optional
input information, like fold changes, p values, etc. If the gene expression pro-
file of these genes are available, it can be considered as input, too. Since we
want to find the potential connections between genes and categories, category
type is also need to be specified. GeneAnswers currently supports Gene On-
tology (GO), Pathway (KEGG) and developing Disease Ontology (DOLite) in
our team. Furthermore, GeneAnswers supports Entrez eUtilis so that users can
make customized annotation library based on interested keywords. If users have
own annotation library, GeneAnswers can use it to build relationship between
it and given genes.

Besides usual barplot and pie chart of top categories, GeneAnswers also pro-
vides four types of visualization. One is concepts-genes network, which show
the concepts and genes on a network layout. The second one is concepts-genes
cross table that integrated gene expression profile and corresponding categories
together. The third one is a concepts-network shows connections between cat-
egories only. The last one is a table, which contains all of information of cat-
egories and genes. Combining all of these presentations can be helpful to find
and explain the possible linkages between genes and categories.

5 Data preprocessing

First of all, load the GeneAnswers package.

> library(GeneAnswers)

3

5.1 Build a GeneAnswers instance

The key point of GeneAnswers package is to build a GeneAnswers instance.
The essential input for GeneAnswers is an Entrez gene IDs vector (a character
vector). However, if users have any interested values associated with genes,
these values can also be as optional inputs. In this case, the input, geneInput,
could be a matrix or a dataframe. The first column is always for Entrez gene
IDs. Other columns are used to store those interested values. Rownames for
the matrix or dataframe are not necessary, but colnames are recommended for
further usage. We use two internal datasets, one is from human and another
is from mouse, as examples to show how to implement GeneAnswers package.
The human and mouse datasets coming with the GeneAnswers package are from
human and mouse Illumina beadarray experiments. Each dataset contains two
dataframes. For example, humanGeneInput is a dataframe containing Entrez
gene IDs with fold changes and p values, while the data frame, humanExpr,
includes two types, control and treatment, of gene expression profile of the
genes in humanGeneInput.

> data('humanGeneInput')

> data('humanExpr')

> ## build a GeneAnswers instance with statistical test based on biological process of GO and saved example data.

> x <- geneAnswersBuilder(humanGeneInput, 'org.Hs.eg.db', categoryType='GO.BP', testType='hyperG', pvalueT=0.1, FDR.correction=TRUE, geneExpressionProfile=humanExpr)

[1] "geneInput has built in ..."

[1] "annLib and categoryType have built in ..."

[1] "genesInCategory has built in ..."

[1] "Enrichment test is only performed based on annotated genes"

[1] "testType, pvalueT and enrichmentInfo have built in ..."

[1] "geneExpressionProfile has been built in ..."

[1] "GeneAnswers instance has been successfully created!"

> class(x)

[1] "GeneAnswers"

attr(,"package")

[1] "GeneAnswers"

> ## build a GeneAnswers instance with statistical test based on KEGG and saved example data.

> y <- geneAnswersBuilder(humanGeneInput, 'org.Hs.eg.db', categoryType='KEGG', testType='hyperG', pvalueT=0.1, geneExpressionProfile=humanExpr, verbose=FALSE)

[1] "GeneAnswers instance has been successfully created!"

> ## build a GeneAnswers instance with statistical test based on DOLite and saved example data.

> z <- geneAnswersBuilder(humanGeneInput, 'org.Hs.eg.db', categoryType='DOLITE', testType='hyperG', pvalueT=0.1, geneExpressionProfile=humanExpr, verbose=FALSE)

[1] "GeneAnswers instance has been successfully created!"

> w <- geneAnswersBuilder(humanGeneInput, 'org.Hs.eg.db', categoryType='GO.BP', testType='hyperG', pvalueT=0.1, FDR.correction=TRUE, geneExpressionProfile=humanExpr, level=2, verbose=FALSE)

[1] "GeneAnswers instance has been successfully created!"

4

We have four GeneAnswers objects, x, y, z and w, containing the statistical
test of biological process of GO, KEGG, DOLite and GO (The first two level
nodes are removed), respectively. For Gene Ontology, sometimes, users think
some nodes are too general and not very relative to their interests. So we provide
parameter level to determine how many top levels of GO nodes are removed.
The instances have included the relationship between given genes and specified
categories.

GeneAnswers package also provides a function searchEntrez to retrieve En-
trez genes for given keywords by Entrez XML query. National Center for
Biotechnology Information (NCBI) provides many powerful online query sys-
tems. One of them is Entrez Programming Utilities (eUtils). Users can query
NCBI databases by simple keywords logical operations based on XML proto-
col. This is very helpful to find potential or interested biological functions or
pathways. Hence, the retrieved information can be considered as a customized
annotation library to test whether the given genes are relative to interested
keywords. Here is a case to build a customized GeneAnswers instance.

> ## before running the following codes, make sure that you can connect the internet.

> ##keywordsList <- list(Apoptosis=c('apoptosis'), CellAdhesion=c('cell adhesion'))

> ##entrezIDList <- searchEntrez(keywordsList)

> ##q <- geneAnswersBuilder(humanGeneInput, entrezIDList, testType='hyperG', totalGeneNumber = 45384, pvalueT=0.1, geneExpressionProfile=humanExpr, verbose=FALSE)

> ##class(q)

> ##getAnnLib(q)

> ##getCategoryType(q)

Customized GeneAnswers instances have NULL at annLib slot and ”User
defiend” in categoryType slot.

5.2 Visulization

Besides barplot and pie chart, GeneAnswers package can generate a network
(concept-gene network) show how genes are connected to specified categories
as well as general barplot and piechart. Function GeneAnswersConceptNet can
generate a common R canvas or tcl/tk interactive canvas to draw the network by
calling igraph. Genes are presented as red nodes, if specified values are positive,
and the gene nodes are green with negative values. The category nodes are
yellow nodes, the sizes are relative to user-specified values. Currently, if function
�GeneAnswersBuilder successfully returns a GeneAnswers instance, the genes are
represented as entrez IDs and categories are also category IDs. User can map
them to gene symbols and categories terms by function GeneAnswersReadable.
Function GeneAnswersReadable reads slot annLib to map Entrez IDs to gene
symbols, so make sure slot annLib is correct before mapping.

> ## mapping gene IDs and category IDs to gene symbols and category terms

> xx <- geneAnswersReadable(x)

[1] "Mapping geneInput ..."

[1] "Mapping genesInCategory ..."

[1] "Mapping enrichmentInfo rownames ..."

[1] "Mapping geneExprProfile rownames ..."

5

Figure 2: Screen shot of pie chart of top categories

> yy <- geneAnswersReadable(y, verbose=FALSE)

> zz <- geneAnswersReadable(z, verbose=FALSE)

> ww <- geneAnswersReadable(w, verbose=FALSE)

> ## before running the following codes, make sure that you can connect the internet.

> ##q <- setAnnLib(q, 'org.Hs.eg.db')

> ##qq <- geneAnswersReadable(q, catTerm=FALSE)

Since function geneAnswersReadable implements mapping based on annota-
tion database in slot annLib, we assign ’org.Hs.eg.db’ to customized GeneAn-
swers instance annLib slot at first for make it readable.

> ## plot barplot and / or piechart

> geneAnswersChartPlots(xx, chartType='all')

The nodes could be represented by different colors for different specified
values, like fold change. In this case, overexpressed genes are represented as red
nodes while green dots stand for underexpressed genes. If the node is more red,
which means its fold change is larger. It’s same for green nodes, but different
direction.

> ## plot interactive concept-gene network

> geneAnswersConceptNet(xx, colorValueColumn='foldChange', centroidSize='pvalue', output='interactive')

6

Figure 3: Screen shot of barplot of top categories

7

Figure 4: Screen shot of concept-gene network

The top 5 categories might not be very specific. Users might get a tree view
to see relative category terms by calling function geneAnswersConceptRelationif
the category has an ontology structure. The size of nodes is proportional to
number of genes in these GO categories. The color of nodes stand for how
relative the given genes are to the GO categories. More red, more relative. The
given GO categories are yellow framed dots with dark purple edges connetions.

> ## plot interactive go structure network

> geneAnswersConceptRelation(x, direction='both', netMode='connection', catTerm=TRUE, catID=TRUE, nameLength=15)

Also the new version GeneAnswers integrates gene or protein interaction
database from NCBI. The following case is a typical one to show interaction
information could be included in basic concepts-genes network.

> ## plot interactive concept-gene network

> geneAnswersConceptNet(x, color='foldChange', geneLayer=5, output='interactive', showCats=c("GO:0009611", "GO:0043933", "GO:0045622"), catTerm=TRUE, geneSymbol=TRUE, catID=TRUE)

This function can also be used to show how the given genes interact with
each other. For example, for the given genes in the GeneAnswers instance,
x, users can use the following command to show gene ’444’,’3638’, ’5087’ and
’55835’ interact with each other and other genes in the given geneInput of x.

> ## plot the given gene interaction

> buildNet(c('444','3638', '5087','55835'), idType='GeneInteraction', layers=2, filterGraphIDs=getGeneInput(x)[,1], filterLayer=2, netMode='connection')

In this case, large black dots with yellow frame stand for the 4 given genes.
They also connect to other genes by dark-blue-purple edges. Small black dots

8

Figure 5: Screen shot of go structure network

Figure 6: Screen shot of concept-gene network

9

Figure 7: Screen shot of the given gene interaction network

represent the other genes from getGeneInput(x). Small white dots are genes
that are not in the genes from getGeneInput(x), but interact with these genes.

If there are some certain values associate with genes in geneInput of x, like
the example data, you can represent any one column by colors. For example, if
users want to show how genes interaction with gene expression information, the
following command can show this:

> ## plot the given gene interaction

> buildNet(c('444','3638', '5087','55835'), idType='GeneInteraction', layers=2, filterGraphIDs=getGeneInput(x)[,1:2], filterLayer=2, netMode='connection')

The following one is based on expression p-values, we often use -log2 to
transform p-values.

> ## plot the given gene interaction

> buildNet(c('444','3638', '5087','55835'), idType='GeneInteraction', layers=2, filterGraphIDs=cbind(getGeneInput(x)[,1], -log2(getGeneInput(x)[,3])), filterLayer=2, netMode='connection')

Users can also define customized color scheme and transfer it into ’buildNet’
function by parameter ’colorMap’. Details are available in ’buildNet’ manual
page. If users want to have a overview for the interaction of all of the given
genes from getGeneInput(x), the following command could be used:

> ## plot the given gene interaction

> buildNet(getGeneInput(x)[,1], idType='GeneInteraction', layers=2, filterGraphIDs=getGeneInput(x)[,1:2], filterLayer=2, netMode='connection')

If there are a lot of genes, the network could be very complicated. We
strongly recommend to use ’interactive’ mode to show the network since it’s
easy to manually change layout. The default setting is ’interactive’, but users
can change it to ’fixed’ for a small or simple network.

10

Figure 8: Screen shot of the given gene interaction network with expression
information

11

Figure 9: Screen shot of the given gene interaction network with p-value infor-
mation

Figure 10: Screen shot of all of the given gene interaction network with expres-
sion information

12

Figure 11: Screen shot of concept-gene network for top 2 GO level nodes removal

The following example is to show top 5 GO-gene network for the first 2 level
GO nodes removal.

> ## plot Go-concept network for 2 level nodes removal

> geneAnswersConceptNet(ww, colorValueColumn='foldChange', centroidSize='pvalue', output='fixed')

Also, users can sort enrichment test information and plot it.

> ## sort enrichmentInfo dataframe by fdr adjusted p value

> xxx <- geneAnswersSort(xx, sortBy='correctedPvalue')

> yyy <- geneAnswersSort(yy, sortBy='pvalue')

> zzz <- geneAnswersSort(zz, sortBy='geneNum')

> geneAnswersConceptNet(yyy, colorValueColumn='foldChange', centroidSize='geneNum', output='fixed')

> geneAnswersConceptNet(zzz, colorValueColumn='foldChange', centroidSize='pvalue', output='fixed', showCats=c(10:16))

If users provide a gene expression profile, GeneAnswers package can generate
a table or heatmap labeling relationship between genes and categories with
a heatmap of these genes expression. We call this type of representation as
concept-gene cross tabulation.

> ## generate GO-gene cross tabulation

> geneAnswersHeatmap(x, catTerm=TRUE, geneSymbol=TRUE)

> geneAnswersHeatmap(yyy)

13

Figure 12: Screen shot of KEGG-gene network

14

Figure 13: Screen shot of DOLite-gene network

15

> ## generate GO-gene cross tabulation

> geneAnswersHeatmap(x, catTerm=TRUE, geneSymbol=TRUE)

initial value 2.163976

iter 5 value 0.576222

iter 10 value 0.168681

iter 15 value 0.108201

iter 20 value 0.073617

iter 25 value 0.044972

iter 30 value 0.038450

iter 35 value 0.028590

iter 40 value 0.018305

final value 0.007067

converged

initial value 6.107465

iter 5 value 0.918486

iter 10 value 0.138210

final value 0.004627

converged

C
tr

l1

C
tr

l2

C
tr

l3

Tr
t2

41

Tr
t2

42

Tr
t2

43

ASPH
CCL3
CAV1
INSIG1
UHRF1
GCH1
SKP2
EFEMP1
MGST1
HSPD1
SPARC
IRF4
CAV2
ARSB
BMPR1B
CCL5
ACSL3
GJA1
CXCL10
CCND1
VEGFA
CA2
PTK2B
RARA
IGFBP7
PBX1
CX3CR1
SATB1
ZC3H12A
AREG
KLF9
TXNIP
SMAD1
BCL6
IL6ST
CXCL13
CFLAR
MAP3K5
AKAP13

ce
ll

pr
ol

ife
ra

tio
n

re
gu

la
tio

n
of

 c
el

l d
iff

er
en

tia
tio

n

re
gu

la
tio

n
of

 ly
m

ph
oc

yt
e

ch
em

ot
ax

is

re
sp

on
se

 to
 li

pi
d

re
sp

on
se

 to
 o

rg
an

ic
 c

yc
lic

 c
om

po
un

d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 14: GO-gene cross tabulation

16

> geneAnswersHeatmap(yyy)

initial value 1.716305

iter 5 value 0.407656

iter 10 value 0.112360

iter 15 value 0.072109

iter 20 value 0.052017

iter 25 value 0.029419

final value 0.006019

converged

initial value 4.466884

iter 5 value 1.114859

iter 10 value 0.043826

final value 0.005340

converged

C
tr

l1

C
tr

l2

C
tr

l3

Tr
t2

41

Tr
t2

42

Tr
t2

43

CXCL10

CCND2

VEGFA

MCM4

CCL3

CAV2

RRM2

CAV1

CCNE2

SKP2

MCM6

ITGB8

BMPR1B

CCND1

CCL5

IL6ST

CX3CR1

CXCL13

PTK2B

CAPN2

C
yt

ok
in

e−
cy

to
ki

ne
 r

ec
ep

to
r

in
te

ra
ct

io
n

C
he

m
ok

in
e

si
gn

al
in

g
pa

th
w

ay

C
el

l c
yc

le

p5
3

si
gn

al
in

g
pa

th
w

ay

F
oc

al
 a

dh
es

io
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 15: KEGG-gene cross tabulation

17

For cross table, there are two types of representations. One is a table, which
is better for few genes, and another one is a two-color heatmap that is adopted
for a lot of genes. In the latter, the default setting is that white bar stands for
that a gene in that category.

Besides top categories, users can also show interested categories.

> GOBPIDs <- c("GO:0043627", "GO:0042493", "GO:0006259", "GO:0007243")

> GOBPTerms <- c("response to estrogen stimulus", "response to drug", "protein kinase cascade", "DNA metabolic process")

> ## generate concept-gene cross tabulation

> geneAnswersConceptNet(x, colorValueColumn='foldChange', centroidSize='pvalue', output='fixed', showCats=GOBPIDs, catTerm=TRUE, geneSymbol=TRUE)

> geneAnswersHeatmap(x, showCats=GOBPIDs, catTerm=TRUE, geneSymbol=TRUE)

Function geneAnswersConcepts shows the linkages of specified categories.
The width of edge stands for how overlapping between two categories.

> ## generate concept-gene cross tabulation

> geneAnswersConcepts(xxx, centroidSize='geneNum', output='fixed', showCats=GOBPTerms)

Users can also print top categories and genes on screen and save them in
files by specification as well as these two types of visualization. The default
file names are ”topCategory.txt” and ”topCategoryGenes.txt” for top categories
with or without corresponding genes, respectively.

> ## print top GO categories sorted by hypergeometric test p value

> topGOGenes(x, orderby='pvalue')

[1] "******** response to lipid::GO:0033993 p value : 1.683e-09 ********"

GeneID foldChange pValue

11214 AKAP13 2.062521 2.373847e-08

374 AREG 17.553825 1.241073e-11

411 ARSB -2.122207 3.199329e-06

760 CA2 -2.256972 8.992257e-04

857 CAV1 -2.122246 3.842276e-06

[1] "******** regulation of lymphocyte chemotaxis::GO:1901623 p value : 5.724e-08 ********"

GeneID foldChange pValue

6348 CCL3 -4.031781 1.147014e-07

6352 CCL5 -2.154827 1.092361e-03

3627 CXCL10 -2.376811 1.315856e-07

10563 CXCL13 10.688601 1.073456e-10

2185 PTK2B 2.036789 1.970066e-07

[1] "******** cell proliferation::GO:0008283 p value : 7.897e-08 ********"

GeneID foldChange pValue

374 AREG 17.553825 1.241073e-11

444 ASPH -2.337642 5.717355e-06

604 BCL6 2.380046 2.436277e-04

658 BMPR1B -2.161504 1.308048e-04

857 CAV1 -2.122246 3.842276e-06

[1] "******** response to organic cyclic compound::GO:0014070 p value : 8.78e-08 ********"

GeneID foldChange pValue

18

initial value 1.851350

iter 5 value 0.390287

iter 10 value 0.146730

iter 15 value 0.120260

iter 20 value 0.092560

iter 25 value 0.046348

iter 30 value 0.035369

iter 35 value 0.028131

iter 40 value 0.021161

iter 45 value 0.011081

iter 45 value 0.008695

iter 45 value 0.005071

final value 0.005071

converged

initial value 19.020185

iter 5 value 2.491750

iter 10 value 0.333367

iter 15 value 0.027846

final value 0.002865

converged

C
tr

l1

C
tr

l2

C
tr

l3

Tr
t2

41

Tr
t2

42

Tr
t2

43

TM2D3
SCD
PBK
HSPD1
BMPR1B
LMAN1
VEGFA
ENO2
GCH1
CAV2
IRF4
SLC20A1
SEL1L
CCL3
LDLR
TRPM8
AMD1
ATF3
CXCL10
CCL5
RARA
IGFBP7
CX3CR1
ZC3H12A
PBX1
AREG
PTK2B
CXCL13
P4HA1
CYSLTR1
MAP3K5
IL6ST
RHOB
BACH2
TLE1
RND3
AKAP13

Le
uk

em
ia

A
th

er
os

cl
er

os
is

In
fe

ct
io

n

P
ol

ya
rt

hr
iti

s

P
ro

st
at

e
ca

nc
er

Figure 16: DOLite-gene cross tabulation

19

Figure 17: Screen shot of customized GO-gene network

2181 ACSL3 -2.049592 5.282896e-04

11214 AKAP13 2.062521 2.373847e-08

374 AREG 17.553825 1.241073e-11

411 ARSB -2.122207 3.199329e-06

444 ASPH -2.337642 5.717355e-06

[1] "******** regulation of cell differentiation::GO:0045595 p value : 9.265e-08 ********"

GeneID foldChange pValue

374 AREG 17.553825 1.241073e-11

411 ARSB -2.122207 3.199329e-06

604 BCL6 2.380046 2.436277e-04

658 BMPR1B -2.161504 1.308048e-04

760 CA2 -2.256972 8.992257e-04

> ## print top KEGG categories sorted by gene numbers and sort genes by fold changes

> topPATHGenes(y, orderby='geneNum', top=4, topGenes=8, genesOrderBy='foldChange')

[1] "******** Cytokine-cytokine receptor interaction::04060 genes in Category : 8 ********"

GeneID foldChange pValue

6348 CCL3 -4.031781 1.147014e-07

7422 VEGFA -2.391115 7.147830e-09

3627 CXCL10 -2.376811 1.315856e-07

658 BMPR1B -2.161504 1.308048e-04

6352 CCL5 -2.154827 1.092361e-03

1524 CX3CR1 2.127494 4.412558e-06

20

initial value 2.571802

iter 5 value 0.603522

iter 10 value 0.239609

iter 15 value 0.146533

iter 20 value 0.105301

iter 25 value 0.032416

iter 30 value 0.011578

final value 0.004720

converged

initial value 0.000000

final value 0.000000

converged

C
tr

l1

C
tr

l2

C
tr

l3

Tr
t2

41

Tr
t2

42

Tr
t2

43

UHRF1

RRM2

MCM4

MCM6

CAV1

ARSB

CCND1

CCL5

GJA1

CCNE2

HSPD1

MGST1

UBE2T

EXO1

CA2

BCL6

AREG

RARA

TXNIP

PTK2B

re
sp

on
se

 to
 d

ru
g

re
sp

on
se

 to
 e

st
ro

ge
n

D
N

A
 m

et
ab

ol
ic

 p
ro

ce
ss

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 18: Customized concept-gene cross tabulation

21

Figure 19: Screen shot of customized GO category linkage

22

3572 IL6ST 2.213384 8.018338e-08

10563 CXCL13 10.688601 1.073456e-10

[1] "******** Focal adhesion::04510 genes in Category : 7 ********"

GeneID foldChange pValue

3696 ITGB8 -3.097913 1.178489e-06

858 CAV2 -2.643498 2.625770e-08

7422 VEGFA -2.391115 7.147830e-09

595 CCND1 -2.257123 5.932920e-07

894 CCND2 -2.239806 1.208734e-06

857 CAV1 -2.122246 3.842276e-06

824 CAPN2 2.568772 1.890638e-08

[1] "******** Cell cycle::04110 genes in Category : 6 ********"

GeneID foldChange pValue

9134 CCNE2 -2.379943 3.326011e-06

4175 MCM6 -2.356668 2.080808e-04

6502 SKP2 -2.276824 1.013445e-05

595 CCND1 -2.257123 5.932920e-07

894 CCND2 -2.239806 1.208734e-06

4173 MCM4 -2.082429 8.413734e-06

[1] "******** Chemokine signaling pathway::04062 genes in Category : 6 ********"

GeneID foldChange pValue

6348 CCL3 -4.031781 1.147014e-07

3627 CXCL10 -2.376811 1.315856e-07

6352 CCL5 -2.154827 1.092361e-03

2185 PTK2B 2.036789 1.970066e-07

1524 CX3CR1 2.127494 4.412558e-06

10563 CXCL13 10.688601 1.073456e-10

> ## print and save top 10 DOLites information

> topDOLITEGenes(z, orderby='pvalue', top=5, topGenes='ALL', genesOrderBy='pValue', file=TRUE)

[1] "******** Hyperlipidemia::DOLite:261 p value : 0.001982 ********"

GeneID foldChange pValue

10628 TXNIP 3.899457 4.296784e-09

6319 SCD -2.480571 6.976419e-07

2181 ACSL3 -2.049592 5.282896e-04

6352 CCL5 -2.154827 1.092361e-03

[1] "******** Prostate cancer::DOLite:447 p value : 0.003963 ********"

GeneID foldChange pValue

374 AREG 17.553825 1.241073e-11

262 AMD1 -2.538954 1.216657e-09

3490 IGFBP7 3.787547 2.688423e-08

5087 PBX1 2.552036 1.120693e-07

3627 CXCL10 -2.376811 1.315856e-07

[1] "******** Alveolar bone loss::DOLite:43 p value : 0.008729 ********"

GeneID foldChange pValue

6348 CCL3 -4.031781 1.147014e-07

6678 SPARC -2.289622 7.751533e-04

[1] "******** Leukodystrophy NOS::DOLite:307 p value : 0.01148 ********"

GeneID foldChange pValue

23

Figure 20: Screen shot of multigroup genes KEGG analysis

411 ARSB -2.122207 3.199329e-06

3329 HSPD1 -2.144728 7.145728e-05

[1] "******** Bronchiolitis::DOLite:93 p value : 0.01148 ********"

GeneID foldChange pValue

6348 CCL3 -4.031781 1.147014e-07

6352 CCL5 -2.154827 1.092361e-03

[1] "File topCategoryGenes.txt is successfully generated!"

5.3 Multigroup Genes Analysis

Several groups of genes are used to dynamically study biological processes by
different treatment or time points. In this case, GeneAnswers provide a solution
to integrate enrichment test information of different groups of genes.

> ##load multigroup genes sample data

> data(sampleGroupsData)

> ##Build a GeneAnswers List

> gAKEGGL <- lapply(sampleGroupsData, geneAnswersBuilder, 'org.Hs.eg.db', categoryType='KEGG', pvalueT=0.01, verbose=FALSE)

[1] "GeneAnswers instance has been successfully created!"

[1] "GeneAnswers instance has been successfully created!"

[1] "GeneAnswers instance has been successfully created!"

[1] "GeneAnswers instance has been successfully created!"

[1] "GeneAnswers instance has been successfully created!"

[1] "GeneAnswers instance has been successfully created!"

> ##Output integrated text table

> output<- getConceptTable(gAKEGGL, items='geneNum')

Function groupReport can generate a html file including all information.

5.4 Homologous Gene Mapping

Since DOLite is developed for human, any gene from other species can not take
advantage of this novel annotation database. Therefore, GeneAnswers package
provides two functions for this type of data interpretation. getHomoGeneIDs

24

can map other species gene Entrez IDs to human homologous gene Entrez IDs
at first. Then users can perform normal GeneAnswers functions. Finally, func-
tion geneAnswersHomoMapping maps back to original species gene Entrez IDs.
Current version supports two types of homologous gene mapping. One is called
”direct”, which is simple and only works between mouse and human. Since all of
human gene symbols are capitalized, while only first letter of mouse homologous
gene symbols is uppercase, this method simply maps homologous genes by cap-
italized moues gene symbols. Another method adopts biomaRt to do mapping.
biomaRt contacts its online server to mapping homologous genes. Its database
include more accurate information, but it might take longer to do that, while
’direct’ method can rapidly do conversation though it is possible to miss some
information.

> ## load mouse example data

> data('mouseExpr')

> data('mouseGeneInput')

> mouseExpr[1:10,]

GeneID S11 S12 S13 S21 S22 S23

1 93695 11.140745 11.555394 11.199022 13.53989 13.684888 13.521658

2 20750 10.378364 10.780340 10.280152 12.51370 12.777766 12.727550

3 16854 10.576541 10.823445 10.539105 12.52568 12.948083 12.752825

4 20210 10.417790 10.503403 10.603501 12.38010 12.643765 12.453697

5 14282 9.392208 9.574147 9.456061 11.47399 11.247493 11.426657

6 17105 10.599174 11.078450 10.565310 12.47790 12.797566 12.508973

7 17110 12.674773 13.153840 12.672851 14.56094 14.891312 14.578346

8 16002 11.766943 12.268368 11.557304 13.42105 13.621636 13.608379

9 21924 8.874513 9.096380 8.860733 10.46360 10.669648 10.626148

10 269994 10.913894 10.330857 10.853911 9.07294 9.076301 9.043659

> mouseGeneInput[1:10,]

Symbol foldChange pValue

93695 93695 4.869452 1.864011e-08

20750 20750 4.573777 1.224957e-07

16854 16854 4.274721 6.526113e-08

20210 20210 3.956676 4.098411e-09

14282 14282 3.754383 3.190981e-09

17105 17105 3.597932 1.088294e-06

17110 17110 3.587662 1.035619e-06

16002 16002 3.217968 5.465650e-06

21924 21924 3.122260 2.337725e-08

269994 269994 -3.106423 1.962161e-06

> ## only keep first one for one to more mapping

> pickHomo <- function(element, inputV) {return(names(inputV[inputV == element])[1])}

> ## mapping geneInput to homo entrez IDs.

> homoLL <- getHomoGeneIDs(mouseGeneInput[,1], species='mouse', speciesL='human', mappingMethod='direct')

[1] "Warning: homogenes of some input genes can not be found and are removed!!!"

25

> newGeneInput <- mouseGeneInput[mouseGeneInput[,1] %in% unlist(lapply(unique(homoLL), pickHomo, homoLL)),]

> dim(mouseGeneInput)

[1] 71 3

> dim(newGeneInput)

[1] 67 3

> newGeneInput[,1] <- homoLL[newGeneInput[,1]]

> ## mapping geneExpr to homo entrez IDs.

> homoLLExpr <- getHomoGeneIDs(as.character(mouseExpr[,1]), species='mouse', speciesL='human', mappingMethod='direct')

[1] "Warning: homogenes of some input genes can not be found and are removed!!!"

> newExpr <- mouseExpr[as.character(mouseExpr[,1]) %in% unlist(lapply(unique(homoLLExpr) , pickHomo, homoLLExpr)),]

> newExpr[,1] <- homoLLExpr[as.character(newExpr[,1])]

> dim(mouseExpr)

[1] 71 7

> dim(newExpr)

[1] 67 7

> ## build a GeneAnswers instance based on mapped data

> v <- geneAnswersBuilder(newGeneInput, 'org.Hs.eg.db', categoryType='DOLITE', testType='hyperG', pvalueT=0.1, FDR.correct=TRUE, geneExpressionProfile=newExpr)

[1] "geneInput has built in ..."

[1] "annLib and categoryType have built in ..."

[1] "genesInCategory has built in ..."

[1] "Enrichment test is only performed based on annotated genes"

[1] "testType, pvalueT and enrichmentInfo have built in ..."

[1] "geneExpressionProfile has been built in ..."

[1] "GeneAnswers instance has been successfully created!"

> ## make the GeneAnswers instance readable, only map DOLite IDs to terms

> vv <- geneAnswersReadable(v, geneSymbol=F)

[1] "Mapping genesInCategory ..."

[1] "Mapping enrichmentInfo rownames ..."

> getAnnLib(vv)

[1] "org.Hs.eg.db"

> ## mapping back to mouse genes

> uu <- geneAnswersHomoMapping(vv, species='human', speciesL='mouse', mappingMethod='direct')

[1] "Change annLib ..."

[1] "Mapping geneInput ..."

[1] "Mapping genesInCategory ..."

[1] "Mapping geneExprProfile ..."

26

Figure 21: Screen shot of homogene DOLite-gene network

> getAnnLib(uu)

[1] "org.Mm.eg.db"

> ## make mapped genes readable, DOLite terms are not mapped

> u <- geneAnswersReadable(uu, catTerm=FALSE)

[1] "Mapping geneInput ..."

[1] "Mapping genesInCategory ..."

[1] "Mapping geneExprProfile rownames ..."

> ## sort new GeneAnswers instance

> u1 <- geneAnswersSort(u, sortBy='pvalue')

> ## plot concept-gene network

> geneAnswersConceptNet(u, colorValueColumn='foldChange', centroidSize='pvalue', output='fixed')

> ## plot homogene DOLite-gene cross tabulation

> geneAnswersHeatmap(u1)

> ## output top information

> topDOLITEGenes(u, geneSymbol=FALSE, catTerm=FALSE, orderby='pvalue', top=6, topGenes='ALL', genesOrderBy='pValue', file=TRUE)

[1] "******** Growth retardation p value : 1.86e-06 ********"

Symbol foldChange pValue

27

initial value 0.561792

iter 5 value 0.185166

iter 10 value 0.055120

iter 15 value 0.051535

iter 20 value 0.035624

final value 0.009132

converged

initial value 16.218142

iter 5 value 9.824398

final value 9.383898

converged

S
11

S
12

S
13

S
21

S
22

S
23

Ctsk

Edn1

Gpnmb

Igf2

Mmp2

Spp1

Plau

Ace

Apoe

C3

Ptx3

P4ha2

Vegfa

Slc2a1

Cyp19a1

M
ac

ul
ar

 d
eg

en
er

at
io

n

H
yp

og
ly

ce
m

ia

G
ro

w
th

 r
et

ar
da

tio
n

O
be

si
ty

P
ol

ya
rt

hr
iti

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 22: homogene DOLite-gene cross tabulation

28

13614 Edn1 2.504625 1.536084e-08

17390 Mmp2 2.932919 5.771626e-08

11816 Apoe 2.465045 4.135459e-06

16002 Igf2 3.217968 5.465650e-06

19288 Ptx3 -2.100947 4.364358e-05

[1] "******** Obesity p value : 5.282e-06 ********"

Symbol foldChange pValue

11421 Ace 2.897884 4.811431e-10

20525 Slc2a1 -2.590159 6.290580e-09

13614 Edn1 2.504625 1.536084e-08

22339 Vegfa -2.535157 3.651889e-08

17390 Mmp2 2.932919 5.771626e-08

[1] "******** Hypoglycemia p value : 9.692e-06 ********"

Symbol foldChange pValue

11421 Ace 2.897884 4.811431e-10

20525 Slc2a1 -2.590159 6.290580e-09

11816 Apoe 2.465045 4.135459e-06

[1] "******** Polyarthritis p value : 2.853e-05 ********"

Symbol foldChange pValue

13614 Edn1 2.504625 1.536084e-08

93695 Gpnmb 4.869452 1.864011e-08

18452 P4ha2 -2.584996 3.363470e-07

18792 Plau 2.456354 4.029683e-07

13038 Ctsk 2.220556 1.394015e-06

[1] "******** Macular degeneration p value : 3.459e-05 ********"

Symbol foldChange pValue

11421 Ace 2.897884 4.811431e-10

12266 C3 2.580510 1.185513e-09

22339 Vegfa -2.535157 3.651889e-08

11816 Apoe 2.465045 4.135459e-06

[1] "******** Capillaries disease p value : 5.687e-05 ********"

Symbol foldChange pValue

13614 Edn1 2.504625 1.536084e-08

22339 Vegfa -2.535157 3.651889e-08

17390 Mmp2 2.932919 5.771626e-08

[1] "File topCategoryGenes.txt is successfully generated!"

6 Session Info

> toLatex(sessionInfo())

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, stats4, utils

29

� Other packages: AnnotationDbi 1.32.0, Biobase 2.30.0,
BiocGenerics 0.16.0, DBI 0.3.1, GO.db 3.2.2, GeneAnswers 2.12.0,
Heatplus 2.16.0, IRanges 2.4.0, KEGG.db 3.2.2, MASS 7.3-44,
RColorBrewer 1.1-2, RCurl 1.95-4.7, RSQLite 1.0.0, S4Vectors 0.8.0,
XML 3.98-1.3, annotate 1.48.0, bitops 1.0-6, igraph 1.0.1,
org.Hs.eg.db 3.2.3, org.Mm.eg.db 3.2.3

� Loaded via a namespace (and not attached): RBGL 1.46.0, digest 0.6.8,
downloader 0.4, graph 1.48.0, magrittr 1.5, tools 3.2.2, xtable 1.7-4

7 Acknowledgments

We would like to thank the users and researchers around the world contribute to
the GeneAnswers package, provide great comments and suggestions and report
bugs

8 References

Du, P., Feng, G., Flatow, J., Song, J., Holko, M., Kibbe, W.A. and Lin, S.M.,
(2009) ’From disease ontology to disease-ontology lite: statistical methods to
adapt a general-purpose ontology for the test of gene-ontology associations’,
Bioinformatics 25(12):i63-8

Feng, G., Du, P., Krett, N.L., Tessel, M., Rosen, S., Kibbe, W.A., and Lin,
S.M., (submitted) ’Bioconductor Methods to Visualize Gene-list Annotations’,

30

	Overview of GeneAnswers
	Citation
	Installation of GeneAnswers package
	Object models of major classes
	Data preprocessing
	Build a GeneAnswers instance
	Visulization
	Multigroup Genes Analysis
	Homologous Gene Mapping

	Session Info
	Acknowledgments
	References

