
The ChAMP Package

Morris TJ, Butcher L, Feber A, Teschendorff A, Chakravarthy A, Beck S

July 18, 2014

The ChAMP package is a pipeline that integrates currently available
450k analysis methods and also offers its own novel functionality. It utilises
the data import, quality control and SWAN (Maksimovic, 2012) normaliza-
tion functions offered by the minfi (Hansen and Ayree, 2011) package. In
addition, the ChAMP package includes the Peak Based Correction (PBC)
method (Dedeurwaerder, 2011) and the BMIQ normalization (Teschendorff,
2013) is set as the default method.

A number of other pipelines and packages are available for 450k analysis
including IMA (Wang, 2012), minfi (Hansen and Ayree, 2011), methylumi
(Davis et al., 2013), R n Beads (Assenov et al., 2012) and watermelon (Pids-
ley et al., 2013). However, ChaMP includes several analysis options that are
not available in other packages. The singular value decomposition (SVD)
method (Teschendorff, 2009) allows an in-depth look at batch effects and
for correction of batch related to slide number the ComBat method (John-
son, 2007) has been implemented. For the identification of differentially
methylated regions (DMRs) ChAMP offers the new Probe Lasso method.
Finally, ChAMP has an additional function to analyse 450k for copy number
alterations (Feber et al., 2014).

1

1 Installation

It is essential that you have R already installed on your computer. ChAMP
is a pipeline that utilises many Bioconductor packages that are currently
available from CRAN and Bioconductor. For all of the steps of the pipeline
to work make sure that you have installed minfi , DNAcopy , impute, marray ,
limma, preprocessCore, RPMM , sva, IlluminaHumanMethylation450kmanifest
and wateRmelon.

This can be done in one go using the following commands:

> source("http://bioconductor.org/biocLite.R")

> biocLite(c('minfi', 'DNAcopy', 'impute', 'marray', 'limma', 'preprocessCore',
+ 'RPMM', 'sva', 'IlluminaHumanMethylation450kmanifest','wateRmelon'))

Load the ChAMP package.

> library(ChAMP)

It is then easier to set your working directory to the folder containing
your .idat files and sample sheet. There can only be one sample sheet in
this folder.

2 Test Dataset

The package contains a test dataset of HumanMethylation450 data which
can be used to test functions available in ChAMP .
This can be loaded by pointing the directory to the testDataSet:

> testDir=system.file("extdata",package="ChAMPdata")

Also a pre-filtered saved version can be loaded using

> data(testDataSet)

> myLoad=testDataSet

2

Figure 1: An overview of the ChAMP pipeline showing all major steps avail-
able in the pipeline. This steps can be run as a full pipeline or individually
as functions combined with other packages. This vignette will explain in
detail how to proceed.

3 Full Pipeline

Figure 1 outlines the steps in the ChAMP pipeline. Each step can be run
individually as a separate function. This allows integration with other anal-
ysis pipelines. It also enables the user to save the results of each step for
future reference or further analysis. Alternatively the full pipeline can be
run at once with one command:

> champ.process(directory = testDir)

When running the full pipeline through the champ.process() function a
number of parameters can be adjusted.

3

4 A note on computational requirements

The ability to run the pipeline on a large number of samples depends some-
what on the memory available. The ChAMP pipeline runs 200 samples
successfully on a computer with 8GB of memory. Beyond this it may be
necessary to find a server/cluster to run the analysis on.

The champ.load() function uses the most memory. If you plan to run the
analysis more than once it is recommended to to run myLoad=champ.load()
and save this list for future analyses. In this case, when the list of load ob-
jects is saved to the variable ’myLoad’ you can simply run champ.process(fromIDAT=F).

> save(myLoad,file="currentStudyloadedData.RData")

> load("currentStudyloadedData.RData")

> champ.process(fromIDAT=FALSE)

Another option if you have time or space constraints or if you are com-
bining ChAMP with other analysis pipelines is to run the analysis step by
step and not use the champ.process() function. Each separate function is
described in detail below, but the full pipeline in a step-wise process would
go:

> myLoad=champ.load(directory = testDir)

> myNorm=champ.norm()

> champ.SVD()

> batchNorm=champ.runCombat()

> limma=champ.MVP()

> lasso=champ.lasso(fromFile =TRUE, limma=limma)

> champ.CNA()

5 Description of ChAMP functions

As previously mentioned, the user has the option to run each of the ChAMP
functions individually to allow integration with other pipelines or to save
the results of each step. Here each function is described in detail.

5.1 Load

5.1.1 Load Data from idat files

The champ.load() function utilises minfi to load data from .idat files. By
default this loads data from the current working directory, in this directory

4

you should have all .idat files and a sample sheet. The sample sheet currently
needs to be a .csv file as came with your results following hybridization. You
can choose whether you want M-values or beta-values. For small datasets
M-values are recommended (Zhuang, 2012).

The minfi function used to load the data from the idat files automatically
filters out the 65 SNP probes that were included on the chip as internal
controls which can useful for identifying sample mixups. As such, before
filtering for low quality probes the dataset will include 485,512 probes.

> myLoad$pd

Sample_Name Sample_Plate Sample_Group Pool_ID Project Sample_Well Array

C1 C1 NA C NA NA E09 R03C02

C2 C2 NA C NA NA G09 R05C02

C3 C3 NA C NA NA E02 R01C01

C4 C4 NA C NA NA F02 R02C01

T1 T1 NA T NA NA B09 R06C01

T2 T2 NA T NA NA C09 R01C02

T3 T3 NA T NA NA E08 R01C01

T4 T4 NA T NA NA C09 R01C02

Slide

C1 7990895118

C2 7990895118

C3 9247377086

C4 9247377086

T1 7766130112

T2 7766130112

T3 7990895118

T4 7990895118

Basename

C1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R03C02

C2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R05C02

C3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R01C01

C4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R02C01

T1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R06C01

T2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R01C02

T3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C01

T4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C02

filenames

C1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R03C02

5

C2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R05C02

C3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R01C01

C4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/9247377086_R02C01

T1 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R06C01

T2 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7766130112_R01C02

T3 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C01

T4 /Users/regmtmo/Desktop/Sync/ACTIVE work/ChrisP_450k_Lung_7Aug2012/testSet/7990895118_R01C02

5.1.2 Filtering for failed probes

By default ChAMP filters the data for detection p-value (< 0.01). This
utilises minfi method for calculating the detection p-value which differs from
the method used in Genome Studio. A file failedSamples.txt is saved (see
Figure 2) and also printed to the screen showing the fraction of failed probes
per sample. If any of these values is high (>0.05) you may want to consider
removing that sample from the analysis and rerunning.

By default ChAMP will filter out probes with <3 beads in at least 5% of
samples per probe. This default can changed with the filterBeads parameter
or the frequency can be adjusted with the beadCutoff parameter.

Figure 2: An example of the output showing the portion of probes with a
detection p-value above the specified cutoff (default is 0.01) for each sample.
Users may want to consider removing samples above 0.05.

> myLoad=champ.load(directory = testDir, filterBeads=TRUE)

5.1.3 Output

The load function saves 3 quality control images (see Figures 3, 5 and 6.
The clustering image will not be saved if there are more than 65 samples in

6

the dataset.

Figure 3: An example of a density plot showing the density of unnormalised
beta values for all the samples that have been uploaded. They are coloured
based on the Sample Group as defined in the sample sheet (Figure 4). This
plot may identify potential outliers that have significantly different profiles.

Figure 4: An example of the sample sheet.

5.1.4 Usage

> myLoad = champ.load(directory=testDir)

7

Figure 5: An example of a MDS (multidimensional scaling) plot. This plot
allows a visualisation of the similarity of samples based on the top 1000
most variable probes amongst all samples. The samples are coloured by
Sample Group (as defined in the sample sheet Figure 4.

[read.450k.sheet] Found the following CSV files:

[1] "/Library/Frameworks/R.framework/Versions/3.1/Resources/library/ChAMPdata/extdata/lung_test_set.csv"

C1 C2 C3 C4 T1 T2

0.0013429122 0.0022162171 0.0003563249 0.0002842360 0.0003831007 0.0011946152

T3 T4

0.0014953286 0.0015447610

5.2 Normalization for adjustment of type-2 bias

There are several normalization methods available: BMIQ (Teschendorff,
2013), SWAN (Maksimovic, 2012), PBC (Dedeurwaerder, 2011) or NONE.

The default method is BMIQ. It will save three quality control images to
the folder ’/Normalization’ for each sample (see Figures 7, 8 and 9). These
images show the fit that the normalization is applying to each probe type.

After normalization a second set of quality control images will be saved
similar to pre-normalization (see Figures 3, 5 and 6). The clustering image
will not be saved if there are more than 65 samples in the dataset.

8

Figure 6: An example of a cluster plot. This offers a second way to visualise
the similarity of samples based on all probes using hierarchical clustering.

5.2.1 Usage

> myNorm=champ.norm()

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.006191036

[1] 0.004188465

[1] 0.005634045

[1] 0.006276877

[1] 0.006500057

[1] 0.006500568

[1] 0.006378492

[1] 0.006186263

[1] 0.005952443

9

Figure 7: An example of the Type 1 fit with BMIQ.

Figure 8: An example of the Type 2 fit with BMIQ.

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.007033563

[1] 0.003338089

10

Figure 9: An overview of both type 1 and 2 fit achieved with BMIQ.

[1] 0.001729439

[1] 0.0009104943

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample C1"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.006573775

[1] 0.007992349

[1] 0.008885233

[1] 0.008956266

[1] 0.008667631

[1] 0.008222169

[1] 0.007709996

[1] 0.007178562

[1] 0.006636301

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.003113658

[1] 0.001810929

11

[1] 0.001627103

[1] 0.001317367

[1] 0.001025845

[1] 0.0007695485

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample C2"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.01018754

[1] 0.01085656

[1] 0.01108518

[1] 0.01085507

[1] 0.01037245

[1] 0.009766443

[1] 0.009111337

[1] 0.008450835

[1] 0.007810543

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.001331181

[1] 0.001004833

[1] 0.001087493

[1] 0.001219968

[1] 0.001280608

[1] 0.001290297

[1] 0.001277337

[1] 0.0013372

[1] 0.001615906

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample C3"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.007404439

[1] 0.009520642

12

[1] 0.009859673

[1] 0.009508654

[1] 0.008913462

[1] 0.008236997

[1] 0.007536016

[1] 0.006836855

[1] 0.006138831

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.001192635

[1] 0.0007472413

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample C4"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.007180818

[1] 0.01055302

[1] 0.01148289

[1] 0.01125918

[1] 0.01051869

[1] 0.009562452

[1] 0.008491017

[1] 0.007405749

[1] 0.006358774

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.005048938

[1] 0.005134682

[1] 0.005432618

[1] 0.00548507

[1] 0.005346675

[1] 0.005085212

[1] 0.004751035

[1] 0.004379809

13

[1] 0.00399619

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample T1"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.005385036

[1] 0.00266804

[1] 0.001490984

[1] 0.001554641

[1] 0.001811534

[1] 0.001846905

[1] 0.001771417

[1] 0.001642411

[1] 0.001490677

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.00919769

[1] 0.004458889

[1] 0.002482428

[1] 0.001549068

[1] 0.001086805

[1] 0.0008587614

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample T2"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.004899276

[1] 0.003942516

[1] 0.00537106

[1] 0.005797481

[1] 0.005804544

[1] 0.005632317

[1] 0.00538287

[1] 0.005101132

14

[1] 0.004806927

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.003487716

[1] 0.001880718

[1] 0.001105817

[1] 0.0006594542

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

[1] "Finished for sample T3"

[1] "Fitting EM beta mixture to type1 probes"

[1] Inf

[1] 0.005411847

[1] 0.006029011

[1] 0.006865831

[1] 0.00702813

[1] 0.006863271

[1] 0.006550351

[1] 0.006175359

[1] 0.005778846

[1] 0.005379059

[1] "Done"

[1] "Check"

[1] "Fitting EM beta mixture to type2 probes"

[1] Inf

[1] 0.009150745

[1] 0.005213355

[1] 0.003543846

[1] 0.002718733

[1] 0.002282639

[1] 0.002043122

[1] 0.001907019

[1] 0.001825575

[1] 0.001772188

[1] "Done"

[1] "Start normalising type 2 probes"

[1] "Generating final plot"

15

[1] "Finished for sample T4"

5.3 SVD for identification of components of variation (batch
effects)

The singular value decomposition method (SVD) implemented by Teschen-
dorff (Teschendorff, 2009) for 27k data is used to identify the most significant
components of variation. These components of variation would ideally be
biological factors of interest, but it may be technical variation (batch ef-
fects). To get the most from this analysis it is useful to include as much
information as possible. If samples have been loaded from .idat files then
the 18 internal controls on the bead chip (including bisulphite conversion
efficiency) are included as well as any study details defined in the sample
sheet (well position, sentrix id, batch etc) (Figure 4). Additional pheno-
type/study information (age, gender, batch) can be included in a separate
file (set studyInfo=TRUE) (Figure 10). This must be a .txt file saved as
studyInfo.txt and the first column must be labelled ”Sample Name” with
the sample names as used in the sample sheet. These new covariates will
be considered categorical by default. If any are continuous it is necessary to
include a vector in the parameter infoFactor=c() that defines them. TRUE
= categorical, FALSE=continuous. These settings will print to the screen
after the SVD analysis has been run to confirm they were correctly assigned.

It is important to realise SVD does not manipulate the data, but anal-
yses it to compute p-values based on the significance of each component.
The result is a heatmap (saved as SVDsummary.pdf) of the top 6 principle
components correlated to the information provided (Figure 11). The darker
colours represent a lower p-value indicating a larger component of variation.
If it becomes clear from this SVD analysis that the largest components of
variation are technical factors (batch effects) then it is worth considering the
experimental design and implementing other normalization methods that
may help remove technical variation. ComBat is included in this pipeline
to remove variation related to chip number but it or other methods may be
implemented independently to remove other sources of technical variation
revealed in the SVD analysis.

5.3.1 Usage

> champ.SVD()

[1] 4

[1] 0

16

Figure 10: An example of the study info file. This file must include the first
column ”Sample Name” and be identical to the first column of the sample
sheet (Figure 4). It should be saved as studyInfo.txt and can include any
addition study information including gender, age, batch, cell type, patientID
etc.

[1] 4

[,1] [,2]

[1,] "TRUE" "Sample_Well"

[2,] "TRUE" "Sample_Group"

[3,] "TRUE" "Slide"

[4,] "TRUE" "Array"

null device

1

5.4 Correction for batch effects related to bead chip using
ComBat

This function implements the ComBat normalization method (Johnson, 2007)
that was developed for microarrays. The sva R package is used to imple-
ment this function. ComBat is specifically defined in the ChAMP package
to correct for batch effects related to the slide (Sentrix ID). More advanced
users can implement ComBat using sva documentation to adjust for other
batch effects.

17

Singular Value Decomposition Analysis (SVD)

P
C

−
1

P
C

−
2

P
C

−
3

P
C

−
4

P
C

−
5

p < 1x 10−10

p < 1x 10−5

p < 0.01
p < 0.05
p > 0.05 Sample_Group

Slide

Array

Batch

Cell_Type

Sex

BSC−I C1 Grn

BSC−I C2 Grn

BSC−I C3 Grn

BSC−I C4 Red

BSC−I C5 Red

BSC−I C6 Red

BSC−II C1 Red

BSC−II C2 Red

BSC−II C3 Red

BSC−II C4 Red

Target Removal 1 Grn

Target Removal 2 Grn

Hyb (Low) Grn

Hyb (Medium) 		Grn

Hyb (High) Grn

Extension (A) Red

Extension (T) Red

Extension (C) Grn

Extension (G) Grn

Figure 11: An example of the SVD output. This heatmap shows all the
components of variation that have been included in the analysis. The first
18 are internal controls on the bead chip representing potential technical
variation, The remaining covariates are obtained from data in the sample
sheet (Figure 4) and the study info file (Figure 10).

5.4.1 Procedure

ComBat uses an empirical Bayes method to correct for technical variation.
If ComBat were applied directly to beta values zeros could be introduced
as beta values have a range between 0 and 1. For this reason ChAMP logit
transforms beta values before ComBat adjustment and then computes the
reverse logit transformation following the ComBat adjustment. If the user
has chosen to use M-values no logit transformation will be done. If the
dataset only includes data from one slide the adjustment will abort. As
the CNA method utilises intensity values rather than beta or M -values
the ComBat adjustment will be repeated for that function. The ComBat

18

function can be a time consuming step in the pipeline if you have a large
number of samples.

5.4.2 Usage

> batchNorm=champ.runCombat()

5.5 Calling MVPs - Methylation Variable Positions

This function implements the limma package to calculate the p-value for dif-
ferential methylation using a linear model. At present, the function can only
compute differential methylation between two groups. The two groups are
determined by the Sample Group column in the sample sheet. If more than
two groups are present the function will calculate the differential methylation
between the first two unique groups in the file. As the function is running it
will print which two groups the contrast is being computed for and will then
printout how many MVPs were found for the given p-value. All probes are
saved in a file ”MVP ALL.txt” which can be filtered for a p-value of interest.
The filename also includes the two groups compared and the method used
to adjust the p-values (for example ”MVP ALL CvsT BHadjust.txt”). The
file includes the annotation for each probe, the average beta (for the sample
group) and the delta beta for the two groups used in the comparison. In
addition, a bedfile is saved with only the significant MVPs. This may be
useful for downstream pathway analysis. It is planned that a future version
of ChAMP will include the ability to compare multiple groups. However, a
more advanced user can run limma with other settings and use the output
(including all probes and their p-values) for the DMR hunter.

5.5.1 Usage

> limma=champ.MVP()

> head(limma)

5.6 DMR Hunter - Probe Lasso

This function computes and returns a data frame of probes binned into
discreet differentially methylated regions (DMRs), with accompanying p-
value. The data frame is distilled from a limma output of probes and their
association statistics. It additionally writes three informative images as
pdfs: 1) a box plot of probe spacing for the input data as a function of
genomic feature/CGI relation (see Figure 12); 2) a cumulative quantile plot

19

illustrating how the user-specified parameters affect the sizes of all windows
employed for DMR-calling (see Figure 13) and; 3) a dot plot with size-scaled
dots to further illustrate the resulting window sizes for each genomic feature
that follows from the user-specified parameters (see Figure 14).

Differentially methylated regions (DMRs) are extended and discreet seg-
ments of the genome that show a quantitative alteration in DNA methy-
lation levels between two groups. A number of different approaches to the
identification of DMRs have been implemented, most notably ”windows”
in which differential methylation is sought over a stretch of DNA of pre-
defined - and often fixed - size. This approach is utilitarian and effective but
is confounded by the fluctuating CpG density throughout a genome; it is
further limited when using microarrays, in that coverage is often incomplete
and non-uniform. Consequently, DMR identification is likely to be biased
towards regions of densely tiled probes.

To compensate for this the Probe Lasso DMR Hunter is based on a
feature-oriented dynamic window (”lasso”), which aims to capture neigh-
bouring, significant probes and bundle them into DMRs.

5.6.1 Procedure

Because the Probe Lasso DMR Hunter takes into account probe spacing,
the first step to identify DMRs is to calculate a dataset-specific record of
probe spacing. Although it is tempting to calculate probe spacing based
on all 485,512 probes on the Infinium 450k BeadChip, the Probe Lasso
DMR Hunter requires input for a number of user-specified parameters (e.g.,
filtering of X-chromosome probes and putatively polymorphic probes) that
can truncate the dataset; additionally, probe failures are inevitable and will
differ between experiments. As such, each dataset is bestowed a unique set
of probes, which underscores the need for an experiment-specific catalogue of
probe-spacing. Once the dataset has been defined, the nearest neighbouring
probe is calculated for all available probes; this data is then partitioned into
one of 28 different categories comprising information on the genomic feature
(1st exon, 3′UTR, 5′UTR, body, intergenic region, TSS200, or TSS1500)
and that features relation (if any) to a nearby CpG island (island, shore,
shelf, or not associated).

Figure 12 illustrates the wildly variable probe spacing as a function of
genomic feature on the Infinium 450k BeadChip. Data were derived from an
experiment in which the X-chromosome was omitted, polymorphic probes
were included, and >98% of probes were detected across all samples.

The user then specifies a maximum (or minimum) lasso size (bp) and

20

Figure 12: A study specific plot showing the number of probes found in each
feature. Note the different spacing on the 450k array between neighbouring
probes for different features (1st exon, 3′UTR, 5′UTR, gene body, intergenic
region, transcription start sites) and their relation to the nearest CpG island
(in the island, in a shore, in a shelf, not associated). Intergenic regions,
3′UTRs and gene bodies with no CGI relation are very sparsely spaced;
whereas probes in the 1st exon and TSSs are very closely spaced.

the Probe Lasso DMR Hunter determines which feature/CGI category fulfils
this criterion first and what quantile of the relevant feature/CGI category
it corresponds to. This quantile is applied to all feature/CGI categories to
define feature/CGI category-specific lasso sizes (see Figures 13 and 14).*Note
a minimum lasso size would rarely be appropriate.

Next, operating solely on the significant probes in the dataset, an appropriately-
sized lasso is thrown around each probe; if the lasso captures a user-specified
number of significant probes (including itself), that probe (and the probes

21

Figure 13: Defining the lasso for each feature type. This illustrates when
someone has specified a minimum lasso of 10bp and how this sets the quantile
for all feature/CGI relation-specific lassos to 4̃8%. These lassos are then cast
out (centred on each probe) to capture a minimum number of significant
probes. Probes that fulfil this are set aside.

captured by its lasso) is set aside, in essence, a ”mini-DMR”. Next, Probe
Lasso DMR Hunter attempts to close-up gaps between neighbouring mini-
DMRs whose lasso boundaries are either overlapping or less than a user-
specified distance apart (e.g., 1000bp), effectively defining a ”final DMR”.
The coordinates for each DMR are calculated by throwing an appropriately-
sized lasso around each probe in the DMR and taking the minimum and
maximum genomic coordinates.

Finally, Probe Lasso DMR Hunter pulls back all probes within the DMR
coordinates and returns them as data frame containing genomic annotation
and association statistics of each MVP. Additionally, a p-value for each DMR
is calculated using Stouffler’s method. This method combines the p-values
of individual probes within a DMR by weighting them according to the
underlying correlation structure of methylation scores between probes; p-
values of probes whose methylation scores are correlated are down-weighted,

22

Figure 14: This image shows the radius size for each feature.

while independent probes are not penalised. The concept of the probe lasso
is visualized as a cartoon in Figure 15.

5.6.2 SNP filtering

SNPs can be filtered from the DMR hunter using data obtained from the
1000 Genomes Project. This data includes SNP information for 4 popula-
tions (European, American, Asian and African). (The1000GenomesProjectConsortium,
2012)

5.6.3 Output

5.6.4 Usage

> lasso=champ.lasso(fromFile=TRUE, limma=limma, image=FALSE,bedFile=FALSE)

> if(!is.null(lasso))

+ {

23

Figure 15: The details on calling a DMR. This shows the application of
feature/CGI relation-specific lassos to the dataset. In the above example,
six probes are ’successful’ in capturing the minimum number of probes (e.g.,
3) in their lasso; however, because there is less than (the user-specified) 1kb
separating the first and last ’successful’ probes, the DMR boundaries are
defined between these (+/- their lassos!). Note that ’unsuccessful’ probes
are now included in the DMR.

Figure 16: This is an example of the champ.lasso() output that is saved
if the dataset has produced a DMR list. The columns show the probeID,
adjusted p-value, chromosome, map info, chromosome arm, feature rela-
tion, SNP allele frequency for the forward strand for the selected population
(pol.af.f), SNP allele frequency for the reverse strand for the selected pop-
ulation (pol.af.r), the distance in base pairs to the next nearest significant
probe (nrst.probe), the size in base pairs of the lasso used to capture this
DMR (lasso.radii), the DMR number (dmr.no), the DMR start location
(dmr.start), the DMR end location (dmr.end), the DMR size (dmr.size) and
the p-value of significance for the DMR (dmr.p)

+ head(lasso)

+ }

24

5.7 Copy Number Alterations

This function uses the HumanMethylation450 data to identify copy number
alterations (Feber et al., 2014). The function utilises the intensity values for
each probe to count copy number and determine if copy number alterations
are present. Copy number is determined using the CopyNumber package.

5.7.1 Procedure

Intensity values are quantile normalized and by default the ComBat normal-
ization is run for correction of batch effects related to the slide before the
copy number is calculated.

Feber (Feber et al., 2014) compared the results obtained using this
method to copy number data from Illumina CytoSNP array and Affymetrix
SNP 6.0 arrays and found that using this method for 450k data was effective
in identifying regions of gain and loss.

Figure 17: This is an example of the champ.CNA() output that is saved for
each sample. The columns show the sample name, chromosome, segment
start, segment end, the number of probes in the segment and the segment
mean. Typically 0.3 is used as a cut-off for the segment mean to call gains
and losses.

5.7.2 Usage

> CNA=champ.CNA()

25

Figure 18: This image shows all the data for a single sample. Chromosomes
are shown alternating green and black.

6 Further analysis

Additional options for downstream analysis are available using other pack-
ages. It is recommended that DMRs be investigated using pathway analysis
software and Encode data. In addition data from previously published 450k
datasets can be downloaded using marmal-aid and combined with study
data for meta-analysis.

References

Assenov, Y., Muller, F., and Lutsik, P. (2012). RnBeads - Comprehensive
DNA Methylation Analysis.

Davis, S., Du, P., Bilke, S., Triche, T., Jr., and Bootwalla, M. (2013). methy-

26

lumi: Handle Illumina methylation data. R package version 2.6.1.

Dedeurwaerder, S. e. a. (2011). Evaluation of the infinium methylation 450k
technology. Epigenomics, 3(6), 771–84.

Feber, A., Guilhamon, P., Lechner, M., Fenton, T., Wilson, G. A., Thirlwell,
C., T. J. Morris, Flanagan, A. M., Teschendorff, A. E., Kelly, J. D., and
Beck, S. (2014). Using high-density dna methylation arrays to profile copy
number alterations. Genome Biol , 15(2), R30.

Hansen, K. and Ayree, M. (2011). Analyzing Illumina 450k Methylation
Arrays.

Johnson, W. E. e. a. (2007). Adjusting batch effects in microarray expression
data using empirical bayes methods. Biostatistics, 8(1), 118–27.

Maksimovic, J. e. a. (2012). Swan: Subset-quantile within array normal-
ization for illumina infinium humanmethylation450 beadchips. Genome
Biol , 13(6), R44.

Pidsley, R., CC, Y. W., Volta, M., Lunnon, K., Mill, J., and Schalkwyk,
L. C. (2013). A data-driven approach to preprocessing illumina 450k
methylation array data. BMC Genomics, 14, 293.

Teschendorff, A. E. e. a. (2009). An epigenetic signature in peripheral blood
predicts active ovarian cancer. PLoS One, 4(12), e8274.

Teschendorff, A. E. e. a. (2013). A beta-mixture quantile normalization
method for correcting probe design bias in illumina infinium 450 k dna
methylation data. Bioinformatics, 29(2), 189–96.

The1000GenomesProjectConsortium (2012). An integrated map of genetic
variation from 1,092 human genomes. Nature, 491(7422), 56–65.

Wang, D. e. a. (2012). Ima: an r package for high-throughput analysis of
illumina’s 450k infinium methylation data. Bioinformatics, 28(5), 729–30.

Zhuang, J. e. a. (2012). A comparison of feature selection and classification
methods in dna methylation studies using the illumina infinium platform.
BMC Bioinformatics, 13, 59.

27

