
Biseq: A package for analyzing targeted
bisulfite sequencing data

Katja Hebestreit, Hans-Ulrich Klein

March 31, 2015

Contents

1 Introduction 3

2 Data import and classes 4
2.1 Sample data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Import of Bismark’s methylation output files . . . . . . . . . . 4
2.3 The BSraw and BSrel classes . . . . . . . . . . . . . . . . . . 4

2.3.1 The BSraw class . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 The BSrel class . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Data handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Quality control 11

4 Detection of DMRs within groups of samples 13
4.1 Definition of CpG clusters . . . . . . . . . . . . . . . . . . . . 13
4.2 Smooth methylation data . . . . . . . . . . . . . . . . . . . . 15
4.3 Model and test group effect . . . . . . . . . . . . . . . . . . . 17
4.4 Test CpG clusters for differential methylation . . . . . . . . . 20
4.5 Trim significant CpG clusters . . . . . . . . . . . . . . . . . . 24
4.6 Definition of DMR boundaries . . . . . . . . . . . . . . . . . . 25

5 Detection of DMRs between two samples 27

1



6 Testing of predefined genomic regions 28
6.1 Testing predefined genomic regions using the BiSeq method . . 28
6.2 Testing predefined genomic regions using the Global Test . . . 29

7 Further data processing 30

2



1 Introduction

The BiSeq package provides useful classes and functions to handle and ana-
lyze targeted bisulfite sequencing (BS) data such as reduced representation
bisulfite sequencing (RRBS) data. In particular, it implements an algorithm
to detect differentially methylated regions (DMRs), as described in detail in
[1]. The package takes already aligned BS data from one or multiple samples.
Until now, it was used for the analysis of CpG methylation of human and
mouse samples only.

3



2 Data import and classes

2.1 Sample data

As sample data we use a small part of a recently published data set, see [2].
It comprises RRBS data from 10 samples of CpG sites from genomic regions
on p arms of chromosome 1 and 2 covered in at least one sample. Data was
obtained from 5 bone marrow probes of patients with acute promyelocytic
leukemia (APL) and 5 control samples (APL in remission). RRBS data was
preprocessed with the Bismark software version 0.5 [3].

2.2 Import of Bismark’s methylation output files

Bismark [3] a bisulfite read mapper and methylation caller. BiSeq allows the
import of Bismark output files.

> library(BiSeq)

readBismark imports the CpG context output files created by the methyla-
tion extractor of Bismark:

> readBismark(files, colData)

The argument files point to files created by Bismark’s methylation_extractor
and bismark2bedGraph (see the man page of readBismark for details on how
to retrieve the right input files). colData specifies the sample names and ad-
ditional phenotype information. This method returns a BSraw object.

2.3 The BSraw and BSrel classes

The BiSeq package contains the classes BSraw and BSrel , both derived from
RangedSummarizedExperiment .

2.3.1 The BSraw class

The BSraw class is a container for ’raw’ RRBS data. It comprises sample
information together with CpG positions and numbers of reads spanning the
CpG positions as well as the number of methylated reads.

A BSraw object consists of four slots:

4



1. A list of arbitrary content describing the overall experiment, accessi-
ble with metadata.

2. A GRanges of the positions of CpG-sites covered by BS in at least one
sample, accessible with rowRanges.

3. A DataFrame of samples and the values of variables measured on those
samples, accessible with colData.

4. An assays slot containing a SimpleList of two matrices, one containing
the numbers of reads (accessible with totalReads) and the other the
numbers of methylated reads (accessible with methReads).

A new BSraw object can also be created by hand:

> metadata <- list(Sequencer = "Instrument", Year = "2013")

> rowRanges <- GRanges(seqnames = "chr1",

ranges = IRanges(start = c(1,2,3), end = c(1,2,3)))

> colData <- DataFrame(group = c("cancer", "control"),

row.names = c("sample_1", "sample_2"))

> totalReads <- matrix(c(rep(10L, 3), rep(5L, 3)), ncol = 2)

> methReads <- matrix(c(rep(5L, 3), rep(5L, 3)), ncol = 2)

> BSraw(metadata = metadata,

rowRanges = rowRanges,

colData = colData,

totalReads = totalReads,

methReads = methReads)

Nevertheless, users will most likely create BSraw objects when use readBis-

mark to load data.
We load and show the APL data:

> data(rrbs)

> rrbs

class: BSraw

dim: 10502 10

metadata(0):

assays(2): totalReads methReads

rownames(10502): 1456 1457 ... 4970981 4970982

5



rowRanges metadata column names(0):

colnames(10): APL1 APL2 ... APL11624 APL5894

colData names(1): group

We show the sample characteristics slot:

> colData(rrbs)

DataFrame with 10 rows and 1 column

group

<factor>

APL1 APL

APL2 APL

APL3 APL

APL7 APL

APL8 APL

APL10961 control

APL11436 control

APL11523 control

APL11624 control

APL5894 control

The first CpG sites on chromosome 1 which were covered:

> head(rowRanges(rrbs))

GRanges object with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

1456 chr1 [870425, 870425] +

1457 chr1 [870443, 870443] +

1458 chr1 [870459, 870459] +

1459 chr1 [870573, 870573] +

1460 chr1 [870584, 870584] +

1461 chr1 [870599, 870599] +

-------

seqinfo: 25 sequences from an unspecified genome; no seqlengths

The coverage of the first CpG sites per sample:

6



> head(totalReads(rrbs))

APL1 APL2 APL3 APL7 APL8 APL10961 APL11436 APL11523

1456 39 6 10 0 0 48 31 65

1457 39 6 10 0 0 48 31 65

1458 39 6 10 0 0 48 27 65

1459 20 26 49 48 39 27 23 34

1460 20 26 49 48 39 27 23 34

1461 20 26 49 48 39 27 22 34

APL11624 APL5894

1456 39 29

1457 39 29

1458 39 29

1459 29 15

1460 28 15

1461 29 15

The number of methylated reads of the first CpG sites per sample:

> head(methReads(rrbs))

APL1 APL2 APL3 APL7 APL8 APL10961 APL11436 APL11523

1456 32 6 7 0 0 15 23 16

1457 33 6 7 0 0 18 10 19

1458 33 6 10 0 0 20 10 19

1459 13 20 34 41 32 3 8 8

1460 14 18 35 37 33 2 4 4

1461 14 16 35 40 31 5 5 5

APL11624 APL5894

1456 7 7

1457 2 7

1458 2 3

1459 6 4

1460 3 0

1461 1 2

2.3.2 The BSrel class

The BSrel is a container for ’relative’ methylation levels of BS data. It
comprises sample information together with CpG positions and the relative
methylation values (between 0 and 1).

7



A BSrel object consists of four slots:

1. A list of arbitrary content describing the overall experiment, accessi-
ble with metadata.

2. A GRanges of the positions of CpG-sites covered by BS in at least one
sample, accessible with rowRanges.

3. A DataFrame of samples and the values of variables measured on those
samples, accessible with colData.

4. An assays slot containing a SimpleList of a matrix with the relative
methylation levels (between 0 and 1), accessible with methLevel.

A new BSraw object can be created by:

> methLevel <- matrix(c(rep(0.5, 3), rep(1, 3)), ncol = 2)

> BSrel(metadata = metadata,

rowRanges = rowRanges,

colData = colData,

methLevel = methLevel)

We can convert a BSraw object to a BSrel object easily:

> rrbs.rel <- rawToRel(rrbs)

> rrbs.rel

class: BSrel

dim: 10502 10

metadata(0):

assays(1): methLevel

rownames(10502): 1456 1457 ... 4970981 4970982

rowRanges metadata column names(0):

colnames(10): APL1 APL2 ... APL11624 APL5894

colData names(1): group

The relative methylation values of the first CpG sites:

> head(methLevel(rrbs.rel))

8



APL1 APL2 APL3 APL7 APL8

1456 0.8205128 1.0000000 0.7000000 NaN NaN

1457 0.8461538 1.0000000 0.7000000 NaN NaN

1458 0.8461538 1.0000000 1.0000000 NaN NaN

1459 0.6500000 0.7692308 0.6938776 0.8541667 0.8205128

1460 0.7000000 0.6923077 0.7142857 0.7708333 0.8461538

1461 0.7000000 0.6153846 0.7142857 0.8333333 0.7948718

APL10961 APL11436 APL11523 APL11624 APL5894

1456 0.31250000 0.7419355 0.2461538 0.17948718 0.2413793

1457 0.37500000 0.3225806 0.2923077 0.05128205 0.2413793

1458 0.41666667 0.3703704 0.2923077 0.05128205 0.1034483

1459 0.11111111 0.3478261 0.2352941 0.20689655 0.2666667

1460 0.07407407 0.1739130 0.1176471 0.10714286 0.0000000

1461 0.18518519 0.2272727 0.1470588 0.03448276 0.1333333

2.4 Data handling

All methods for RangedSummarizedExperiment objects are applicable for
BSraw and BSrel objects:

> dim(rrbs)

[1] 10502 10

> colnames(rrbs)

[1] "APL1" "APL2" "APL3" "APL7" "APL8"

[6] "APL10961" "APL11436" "APL11523" "APL11624" "APL5894"

We can return subsets of samples or CpG sites:

> rrbs[,"APL2"]

> ind.chr1 <- which(seqnames(rrbs) == "chr1")

> rrbs[ind.chr1,]

We can also subset by overlaps with a GRanges object:

> region <- GRanges(seqnames="chr1",

ranges=IRanges(start = 875200,

end = 875500))

9



> findOverlaps(rrbs, region)

> subsetByOverlaps(rrbs, region)

We can sort BSraw and BSrel objects into ascending order of CpG sites
positions on chromosomes:

> sort(rrbs)

BSraw and BSrel objects can be combined and splitted:

> combine(rrbs[1:10,1:2], rrbs[1:1000, 3:10])

> split(rowRanges(rrbs),

f = as.factor(as.character(seqnames(rrbs))))

10



3 Quality control

Via two very simple methods it is possible to compare the sample’s coverages.
covStatistics lists the number of CpG sites that were covered per sample
together with the median of the coverage of these CpG sites. covBoxplots

represent the coverage distributions per sample.

> covStatistics(rrbs)

$Covered_CpG_sites

APL1 APL2 APL3 APL7 APL8 APL10961

5217 4240 4276 3972 3821 5089

APL11436 APL11523 APL11624 APL5894

5169 6922 6483 7199

$Median_coverage

APL1 APL2 APL3 APL7 APL8 APL10961

12 5 12 15 11 10

APL11436 APL11523 APL11624 APL5894

6 8 4 5

11



> covBoxplots(rrbs, col = "cornflowerblue", las = 2)

●●●●
●
●
●●●

●●●●●

●●●

●

●●●●●●●
●●●●

●●●●●

●

●●●

●

●●●●●●●●●
●●●●●●

●●●

●●●

●●
●●●●●●●

●●●●●●●●●●●
●●

●

●●●●●●●●●

●●●

●●●●●●●●
●●●●●

●●●●●●●●

●●●●●●
●●●
●

●●●
●●●
●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●

●●●●●●
●●●●
●
●●●●●●

●●
●●●●●
●●●●

●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●
●●●
●

●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●●●●●●

●●●●
●●●
●●●●●●●●●●●●●

●●●

●

●●●
●●●
●●
●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●

●●●

●●

●

●●●●●●●●●●●
●
●

●●●
●●
●●

●●
●●●●●●●●

●●

●●●
●●●●
●

●●●
●●●●
●

●●
●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●

●●●●
●●

●●●
●●●●

●
●●●

●●●●●

●●

●
●●
●●●●

●●●

●●●

●●●●●

●
●
●

●●●●●●●●

●●

●●

●

●●●●●
●
●
●●●●●●●●●●
●●

●●

●●
●●

●

●

●●●●●

●●●●
●●●●●●●●

●●

●●●

●●●●●●
●

●

●●●

●●
●

●●●●

●
●

●●

●

●
●
●●

●

●●●●●
●●●●

●●●

●●

●●

●●

●

●●
●

●●●
●●

●

●

●

●

●

●

●
●●●●
●●●●
●●

●

●

●●

●●

●●
●●●

●
●●

●

●●

●●●●
●●
●
●●

●
●●
●●●
●●

●●
●●
●

●●●●

●

●●●

●●●●●
●●●

●
●●
●●●●●

●●●●●●●●●●●●●●●●

●

●●●●●
●

●●●●●●
●
●

●●●●●●●
●●●
●●●

●●

●
●●●●●●
●●●
●●

●●

●

●●●

●●●

●●●●●

●●●●●●
●●●
●●●●●

●●●●●

●

●●●●●●●●

●●●

●●●●

●●

●●

●●●

●
●

●●●●
●●●●●●●●

●●

●●●●●●●

●●

●●●●●

●●

●●●●

●●●●

●●●●

●
●●

●●

●●

●●

●●●●●●

●

●●
●●●●●

●●●

●●

●●●

●●
●●●

●●●

●●●●●
●●●●●●●●●

●●●●●

●●●
●

●●●●
●
●

●●●●●●●●

●●●●●●●●●●●●●●
●●●●

●●●

●●●●●●
●
●●

●●

●●●●●●●

●●●

●

●●●●

●●●●
●
●●●●●

●●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●
●

●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●

●●●●●

●●

●

●●●

●●

●●●●
●●
●●

●●●●●

●●●

●●●●●●●
●

●●●●●●

●●●●

●●

●●

●●

●

●●●●●●
●●

●●
●●
●
●

●●●●●●●●●●●
●●●●●

●

●●●

●●●

●●
●●●●●●●●

●●●●●●●●

●

●
●●●●

●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●
●

●●●●●●
●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●
●●
●●●●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●●●●●●●●●

●
●●●●●

●●●●●●●●
●●●●●●●

●●●

●●●●●

●●●●●

●
●
●●●
●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●
●●●

●●●

●●● ●●●

●●●●●

●●●●●●●●●●●●

●●●

●●●●●
●●

●●●

●●●●●●●
●

●●●●
●
●
●

●●●●●●●
●

●●●

●●●

●●

●●●●●●●●
●●●●●●●●●

●●

●●

●●
●

●●

●●●●●●

●●●
●●●

●

●●●●●●
●●●●

●●●●●●●●

●●
●
●●●

●●●

●●●●●●

●●●●

●●

●
●

●

●●●●●●●●

●●●

●●●●

●●●●●●●

●●●●

●●

●●●
●●●●●●●

●●●

●●●
●

●

●

●●●●●●

●●
●
●●●
●●●●●●

●

●●●●●●●●●●●

●●●

●●
●●●●●●
●●

●●●●●
●●●●●●●

A
P

L1

A
P

L2

A
P

L3

A
P

L7

A
P

L8

A
P

L1
09

61

A
P

L1
14

36

A
P

L1
15

23

A
P

L1
16

24

A
P

L5
89

4

0

20

40

60

80

100

120

C
ov

er
ag

e

Figure 1: Sample wise coverage distributions

12



4 Detection of DMRs within groups of sam-

ples

The algorithm to detect differentially methylated regions (DMRs) within two
groups of samples (e.g. cancer and control) is described in detail in [1]. To
better understand this User’s guide it is helpful to know the rough procedure.
The DMR detection is a five-steps approach:

1. Definition of CpG clusters

2. Smooth methylation data within CpG clusters

3. Model and test group effect for each CpG site within CpG clusters

4. Apply hierarchical testing procedure:

(a) Test CpG clusters for differential methylation and control weighted
FDR on cluster

(b) Trim rejected CpG clusters and control FDR on single CpGs

5. Define DMR boundaries

Please see [1] for more details.

4.1 Definition of CpG clusters

In order to smooth the methylation data we first have to detect CpG clus-
ters (regions with a high spatial density of covered CpG sites). Within a
BSraw object clusterSites searches for agglomerations of CpG sites across
all samples. In a first step the data is reduced to CpG sites covered in
round(perc.samples*ncol(object)) samples (here: 4 samples), these are
called ’frequently covered CpG sites’. In a second step regions are detected
where not less than min.sites frequently covered CpG sites are sufficiantly
close to each other (max.dist. Note, that the frequently covered CpG sites
are considered to define the boundaries of the CpG clusters only. For the sub-
sequent analysis the methylation data of all CpG sites within these clusters
are used.

We perform the analysis on a subset of our data to save time:

13



> rrbs.small <- rrbs[1:1000,]

> rrbs.clust.unlim <- clusterSites(object = rrbs.small,

groups = colData(rrbs)$group,

perc.samples = 4/5,

min.sites = 20,

max.dist = 100)

rrbs.clust.unlim is a again BSraw object but restricted to CpG sites within
CpG clusters. Each CpG site is assigned to a cluster:

> head(rowRanges(rrbs.clust.unlim))

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | cluster.id

<Rle> <IRanges> <Rle> | <character>

1513 chr1 [872335, 872335] * | chr1_1

1514 chr1 [872369, 872369] * | chr1_1

401911 chr1 [872370, 872370] * | chr1_1

1515 chr1 [872385, 872385] * | chr1_1

401912 chr1 [872386, 872386] * | chr1_1

1516 chr1 [872412, 872412] * | chr1_1

-------

seqinfo: 25 sequences from an unspecified genome; no seqlengths

The underlying CpG clusters can also be converted to a GRanges object with
the start and end positions:

> clusterSitesToGR(rrbs.clust.unlim)

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | cluster.id

<Rle> <IRanges> <Rle> | <factor>

[1] chr1 [872335, 872616] * | chr1_1

[2] chr1 [875227, 875470] * | chr1_2

[3] chr1 [875650, 876028] * | chr1_3

[4] chr1 [876807, 877458] * | chr1_4

[5] chr1 [877684, 877932] * | chr1_5

[6] chr2 [ 45843, 46937] * | chr2_1

-------

seqinfo: 25 sequences from an unspecified genome; no seqlengths

14



4.2 Smooth methylation data

In the smoothing step CpG sites with high coverages get high weights. To
reduce bias due to unusually high coverages we limit the coverage, e.g. to
the 90% quantile:

> ind.cov <- totalReads(rrbs.clust.unlim) > 0

> quant <- quantile(totalReads(rrbs.clust.unlim)[ind.cov], 0.9)

> quant

90%

32

> rrbs.clust.lim <- limitCov(rrbs.clust.unlim, maxCov = quant)

We then smooth the methylation values of CpG sites within the clusters with
the default bandwidth h = 80 base pairs. It is possible - and recommended
- to parallelize this step by setting mc.cores, to 6 cores for instance, if there
are 6 available.

> predictedMeth <- predictMeth(object = rrbs.clust.lim)

predictedMeth is a BSrel object with smoothed relative methylation levels
for each CpG site within CpG clusters:

> predictedMeth

class: BSrel

dim: 344 10

metadata(0):

assays(1): methLevel

rownames(344): 1 2 ... 343 344

rowRanges metadata column names(1): cluster.id

colnames(10): APL1 APL2 ... APL11624 APL5894

colData names(1): group

The effect of the smoothing step can be shown with the plotMeth function:

15



> covBoxplots(rrbs.clust.lim, col = "cornflowerblue", las = 2)

●●●●●●

●●●
●●●●●●●●

●●●●●●
●
●●●●●●●●

A
P

L1

A
P

L2

A
P

L3

A
P

L7

A
P

L8

A
P

L1
09

61

A
P

L1
14

36

A
P

L1
15

23

A
P

L1
16

24

A
P

L5
89

4

0

5

10

15

20

25

30

C
ov

er
ag

e

Figure 2: Sample wise coverage distributions after coverage limitation

16



> plotMeth(object.raw = rrbs[,6],

object.rel = predictedMeth[,6],

region = region,

lwd.lines = 2,

col.points = "blue",

cex = 1.5)

● ●

●

875200 875300 875400 875500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

APL10961

Position

M
et

hy
la

tio
n

●

Coverage

3x
29x

Figure 3: Raw data together with smoothed methylation levels

4.3 Model and test group effect

We observe a differential methylation between cancer and control for some
CpG sites:

17



> cancer <- predictedMeth[, colData(predictedMeth)$group == "APL"]

> control <- predictedMeth[, colData(predictedMeth)$group == "control"]

> mean.cancer <- rowMeans(methLevel(cancer))

> mean.control <- rowMeans(methLevel(control))

> plot(mean.control,

mean.cancer,

col = "blue",

xlab = "Methylation in controls",

ylab = "Methylation in APLs")

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●

●●●●●●

●●●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●
●●●●

●
●
●●

●
●

●●●
●●
●●●
●●●●●

●●●●●●
●●
●●

●
●●
●●

●
●●
●●

●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●

●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Methylation in controls

M
et

hy
la

tio
n 

in
 A

P
Ls

Figure 4: Smoothed methylation levels in APL and control samples

To detect the CpG sites where the DNA methylation differs between APL
and control samples we model the methylation within a beta regression with
the group as explanatory variable and use the Wald test to test if there is a

18



group effect:

> ## To shorten the run time set mc.cores, if possible!

> betaResults <- betaRegression(formula = ~group,

link = "probit",

object = predictedMeth,

type = "BR")

> ## OR:

> data(betaResults)

betaResults is a data.frame containing model and test information for each
CpG site:

> head(betaResults)

chr pos p.val meth.group1 meth.group2

chr1.1 chr1 872335 0.0011317652 0.9525098 0.8635983

chr1.2 chr1 872369 0.0007678027 0.9414368 0.8444060

chr1.3 chr1 872370 0.0008347451 0.9414314 0.8448725

chr1.4 chr1 872385 0.0010337477 0.9412217 0.8521862

chr1.5 chr1 872386 0.0010975571 0.9410544 0.8526863

chr1.6 chr1 872412 0.0035114839 0.9378250 0.8718024

meth.diff estimate std.error pseudo.R.sqrt

chr1.1 0.08891149 -0.5730618 0.1760266 0.6304051

chr1.2 0.09703074 -0.5542171 0.1647422 0.6291904

chr1.3 0.09655890 -0.5522164 0.1652843 0.6246474

chr1.4 0.08903549 -0.5192564 0.1582531 0.6108452

chr1.5 0.08836810 -0.5156622 0.1579728 0.6090794

chr1.6 0.06602261 -0.4018161 0.1376551 0.5851744

cluster.id

chr1.1 chr1_1

chr1.2 chr1_1

chr1.3 chr1_1

chr1.4 chr1_1

chr1.5 chr1_1

chr1.6 chr1_1

By setting type = "BR" the maximum likelihood with bias reduction is
called. This is especially useful, when the sample size is small, see [4]. The

19



mean of the response (methylation) is linked to a linear predictor described by
~ x1 + x2 using a link function while the precision parameter is assumed to
be constant. Sometimes the variance of DNA methylation is dependent on the
group factor, e.g. the methylation variance in cancer samples is often higher
than in normal samples. These additional regressors can be linked to the
precision parameter within the formula of type ~ x1 + x2 | y1 + y2 where
the regressors in the two parts can be overlapping, see the documentation in
the betareg package.

4.4 Test CpG clusters for differential methylation

The aim is to detect CpG clusters containing at least one differentially methy-
lated location. To do so the P values p from the Wald tests are transformed
to Z scores: z = Φ−1(1 − p), which are normally distributed under Null hy-
pothesis (no group effect). As cluster test statistic a standardized Z score
average is used. To estimate the standard deviation of the Z scores we have
to estimate the correlation and hence the variogram of methylation between
two CpG sites within a cluster. The estimation of the standard deviation
requires that the distribution of the Z scores follows a standard normal dis-
tribution. However, if methylation in both groups differs for many CpG sites
the density distribution of P values shows a peak near 0. To ensure that the
P values are roughly uniformly distributed to get a variance of the Z scores
that is Gaussian with variance 1 we recommend to estimate the variogram
(and hence the correlation of Z scores) under the null hypothesis. To do so
we model the beta regression again for resampled data:

> ## Both resampled groups should have the same number of

> ## cancer and control samples:

> predictedMethNull <- predictedMeth[,c(1:4, 6:9)]

> colData(predictedMethNull)$group.null <- rep(c(1,2), 4)

> ## To shorten the run time, please set mc.cores, if possible!

> betaResultsNull <- betaRegression(formula = ~group.null,

link = "probit",

object = predictedMethNull,

type="BR")

> ## OR:

> data(betaResultsNull)

20



We estimate the variogram for the Z scores obtained for the resampled data:

> vario <- makeVariogram(betaResultsNull)

> ## OR:

> data(vario)

Based on the variogram plot we evaluate the sill (usually near 1) of the
variogram and smooth the curve:

> plot(vario$variogram$v)

> vario.sm <- smoothVariogram(vario, sill = 0.9)

> lines(vario.sm$variogram[,c("h", "v.sm")],

col = "red", lwd = 1.5)

> grid()

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●
●
●
●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●●●●
●
●●●●●●●
●●
●
●●
●
●●●●●●
●
●●●●●●●
●
●●●
●●●●●●
●
●●●●
●●
●●●
●
●●●
●
●●
●●●
●●●
●●
●●●

●●

●●
●

●
●
●

●●
●
●●●●●●
●
●●
●

●
●

●
●●●●●
●●●
●

●

●●●●●●
●

●

●

●
●

●

●

●

●●

●

●●●●●

●
●

●●
●
●
●●
●
●●
●

●

●●●
●●
●●●●●
●●

●
●

●●

●

●

●

●
●

●
●●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●
●
●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●●

●
●●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●●

●

●
●●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●
●

●

●
●
●
●

●

●●

●●●●

●

●
●
●●
●●

●
●●
●

●
●
●

●

●

●●●

●

●

●
●
●
●

●●
●●●

●

●●●●●
●
●
●●●

●
●

●

●
●
●●
●●
●●
●●●●
●●●●
●
●
●
●●●●
●●●

●

●

●
●●●●●

●
●●
●●
●

●

●●
●
●
●●●

●●

●
●●●

●
●●

●

●●

●

●
●

●

●

●
●
●
●
●

●
●

●
●●●
●
●
●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●
●
●

●

●
●

●

●●●●

●

●●
●●●
●
●
●●
●●
●●●●
●
●
●

●

●
●●

●

●●

●

●●●●●
●●
●
●
●●●

●

●●●●
●
●●●●
●
●●

●

●
●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●●
●●●●
●

●●

●
●
●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●
●
●
●

●

●●●●●●
●
●●●

●

●●

●

●

●

●●●●●●●
●●●

●

●●

●

●
●

●

●

●

●
●●●●●●●●

●
●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●
●
●
●●
●
●
●
●
●

●

●●
●
●
●
●●
●●●●●●●●●●●●●●

0 200 400 600 800 1000

0
2

4
6

8

h

v

Figure 5: Estimated variogram together with the smoothed curve

21



The vario.sm object is a list of two:

> names(vario.sm)

[1] "variogram" "pValsList"

> head(vario.sm$variogram)

h v.sm

1 1 0.0000000000

2 2 0.0000000000

3 3 0.0000000000

4 4 0.0004532616

5 5 0.0019789519

6 6 0.0038612942

> head(vario.sm$pValsList[[1]])

chr pos p.val meth.group1 meth.group2

chr1.1 chr1 872335 0.8567258 0.9267336 0.9191601

chr1.2 chr1 872369 0.7910594 0.9180561 0.9056264

chr1.3 chr1 872370 0.7855283 0.9187319 0.9060236

chr1.4 chr1 872385 0.7462536 0.9225722 0.9080750

chr1.5 chr1 872386 0.7462667 0.9225955 0.9081423

chr1.6 chr1 872412 0.8575813 0.9165966 0.9093737

meth.diff estimate std.error pseudo.R.sqrt

chr1.1 0.007573505 -0.05244358 0.2904759 0.006696118

chr1.2 0.012429670 -0.07781982 0.2937315 0.013223677

chr1.3 0.012708263 -0.07993265 0.2937384 0.013863179

chr1.4 0.014497213 -0.09359431 0.2892434 0.020416968

chr1.5 0.014453228 -0.09334700 0.2884945 0.020484807

chr1.6 0.007222875 -0.04562887 0.2542651 0.006457349

cluster.id z.score pos.new

chr1.1 chr1_1 -1.0657239 1

chr1.2 chr1_1 -0.8101026 35

chr1.3 chr1_1 -0.7910010 36

chr1.4 chr1_1 -0.6627467 51

chr1.5 chr1_1 -0.6627876 52

chr1.6 chr1_1 -1.0695155 78

22



We replace the pValsList object (which consists of the test results of the
resampled data) by the test results of interest (for group effect):

> ## auxiliary object to get the pValsList for the test

> ## results of interest:

> vario.aux <- makeVariogram(betaResults, make.variogram=FALSE)

> vario.sm$pValsList <- vario.aux$pValsList

> head(vario.sm$pValsList[[1]])

chr pos p.val meth.group1 meth.group2

chr1.1 chr1 872335 0.0011317652 0.9525098 0.8635983

chr1.2 chr1 872369 0.0007678027 0.9414368 0.8444060

chr1.3 chr1 872370 0.0008347451 0.9414314 0.8448725

chr1.4 chr1 872385 0.0010337477 0.9412217 0.8521862

chr1.5 chr1 872386 0.0010975571 0.9410544 0.8526863

chr1.6 chr1 872412 0.0035114839 0.9378250 0.8718024

meth.diff estimate std.error pseudo.R.sqrt

chr1.1 0.08891149 -0.5730618 0.1760266 0.6304051

chr1.2 0.09703074 -0.5542171 0.1647422 0.6291904

chr1.3 0.09655890 -0.5522164 0.1652843 0.6246474

chr1.4 0.08903549 -0.5192564 0.1582531 0.6108452

chr1.5 0.08836810 -0.5156622 0.1579728 0.6090794

chr1.6 0.06602261 -0.4018161 0.1376551 0.5851744

cluster.id z.score pos.new

chr1.1 chr1_1 3.053282 1

chr1.2 chr1_1 3.167869 35

chr1.3 chr1_1 3.143485 36

chr1.4 chr1_1 3.080361 51

chr1.5 chr1_1 3.062480 52

chr1.6 chr1_1 2.695753 78

vario.sm now contains the smoothed variogram under the Null hypothesis
together with the P values (and Z scores) from the Wald test, that the group
has no effect on methylation. The correlation of the Z scores between two
locations in a cluster can now be estimated:

> locCor <- estLocCor(vario.sm)

We test each CpG cluster for the presence of at least one differentially methy-
lated location at q what can be interpreted as the size-weighted FDR on
clusters:

23



> clusters.rej <- testClusters(locCor,

FDR.cluster = 0.1)

3 CpG clusters rejected.

> clusters.rej$clusters.reject

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | value

<Rle> <IRanges> <Rle> | <character>

[1] chr1 [872335, 872616] * | chr1_1

[2] chr1 [875227, 875470] * | chr1_2

[3] chr2 [ 45843, 46937] * | chr2_1

p.value

<numeric>

[1] 6.867163e-03

[2] 4.295184e-07

[3] 1.881082e-09

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

4.5 Trim significant CpG clusters

We then trim the rejected CpG clusters that is to remove the not differentially
methylated CpG sites at q1 what can be interpreted as the location-wise FDR:

> clusters.trimmed <- trimClusters(clusters.rej,

FDR.loc = 0.05)

> head(clusters.trimmed)

chr pos p.val meth.group1

chr1_1.chr1.1 chr1 872335 0.0011317652 0.9525098

chr1_1.chr1.2 chr1 872369 0.0007678027 0.9414368

chr1_1.chr1.3 chr1 872370 0.0008347451 0.9414314

chr1_1.chr1.4 chr1 872385 0.0010337477 0.9412217

chr1_1.chr1.5 chr1 872386 0.0010975571 0.9410544

chr1_2.chr1.21 chr1 875227 0.0003916052 0.7175829

meth.group2 meth.diff estimate std.error

chr1_1.chr1.1 0.8635983 0.08891149 -0.5730618 0.1760266

24



chr1_1.chr1.2 0.8444060 0.09703074 -0.5542171 0.1647422

chr1_1.chr1.3 0.8448725 0.09655890 -0.5522164 0.1652843

chr1_1.chr1.4 0.8521862 0.08903549 -0.5192564 0.1582531

chr1_1.chr1.5 0.8526863 0.08836810 -0.5156622 0.1579728

chr1_2.chr1.21 0.3648251 0.35275781 -0.9212669 0.2598282

pseudo.R.sqrt cluster.id z.score pos.new

chr1_1.chr1.1 0.6304051 chr1_1 3.053282 1

chr1_1.chr1.2 0.6291904 chr1_1 3.167869 35

chr1_1.chr1.3 0.6246474 chr1_1 3.143485 36

chr1_1.chr1.4 0.6108452 chr1_1 3.080361 51

chr1_1.chr1.5 0.6090794 chr1_1 3.062480 52

chr1_2.chr1.21 0.6818046 chr1_2 3.358661 1

p.li

chr1_1.chr1.1 0.019767638

chr1_1.chr1.2 0.019953150

chr1_1.chr1.3 0.021679300

chr1_1.chr1.4 0.028817819

chr1_1.chr1.5 0.030594942

chr1_2.chr1.21 0.004852623

clusters.trimmed is a data.frame object containing all differentially methy-
lated CpG sites. The p.li column contains the P values estimated in the
cluster trimming step, see [1].

4.6 Definition of DMR boundaries

We can now define the boundaries of DMRs as rejected CpG sites within
which rejected CpG sites solely are located. Within the DMRs the dis-
tance between neighbored rejected CpG sites should not exceed max.dist

base pairs (usually the same as for max.dist in clusterSites), otherwise,
the DMR is splitted. DMRs are also splitted if the methylation difference
switches from positive to negative, or vice versa, if diff.dir = TRUE. That
way we ensure that within a DMR all CpG sites are hypermethylated, and
hypomethylated respectively.

> DMRs <- findDMRs(clusters.trimmed,

max.dist = 100,

diff.dir = TRUE)

> DMRs

25



GRanges object with 4 ranges and 4 metadata columns:

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] chr1 [872335, 872386] * |

[2] chr1 [875227, 875470] * |

[3] chr2 [ 46126, 46718] * |

[4] chr2 [ 46915, 46937] * |

median.p median.meth.group1

<numeric> <numeric>

[1] 0.0010337476937105 0.94143135870377

[2] 6.67719258580069e-06 0.502443544206678

[3] 3.9604046820675e-05 0.438629367812053

[4] 0.0148459621327497 0.13636374336524

median.meth.group2 median.meth.diff

<numeric> <numeric>

[1] 0.852186207117906 0.0890354930388882

[2] 0.182082007625853 0.319474180010203

[3] 0.0776818250851119 0.355363178661131

[4] 0.0369197526986237 0.099443990666616

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

26



5 Detection of DMRs between two samples

If there are two samples only to be compared we can use the compareTwoSam-
ples function which determines the differences per CpG site and aggregates
the sites surpassing the minimum difference minDiff:

> DMRs.2 <- compareTwoSamples(object = predictedMeth,

sample1 = "APL1",

sample2 = "APL10961",

minDiff = 0.3,

max.dist = 100)

Some of the DMRs detected within these two samples overlap with the group-
wise DMRs:

> sum(overlapsAny(DMRs.2,DMRs))

[1] 1

27



6 Testing of predefined genomic regions

There are sometimes biological and/or technical reasons for testing predefined
genomic regions for differential methylation. For example, one might want to
test for methylation differences in known CpG islands or promototer regions.
In this scenario it is not of interest which exact CpG sites are differentially
methylated. The methods of choice for testing genomic regions are BiSeq
and the global test (which we also implemented in this package) [5]. Here,
we want to give a short guidance on how to use the BiSeq package in order
to test predefined genomic regions using BiSeq and the global test.

6.1 Testing predefined genomic regions using the BiSeq
method

Testing predefined genomic regions using the BiSeq method is mostly equiva-
lent to the procedure shown above for DMR detection. Instead of the defini-
tion of CpG clusters (which we described in section 4.1) we will just add the
region information to the CpG sites in the BSraw object. In this example,
we assume that we want to test gene promoters for differential methylation.

We filter out all CpG sites of the BSraw object that do not fall into any
promoter region. The remaining CpG sites get the promoter identifier in a
column named cluster.id:

> data(promoters)

> data(rrbs)

> rrbs.red <- subsetByOverlaps(rrbs, promoters)

> ov <- findOverlaps(rrbs.red, promoters)

> rowRanges(rrbs.red)$cluster.id[ov@queryHits] <- promoters$acc_no[ov@subjectHits]

> head(rowRanges(rrbs.red))

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | cluster.id

<Rle> <IRanges> <Rle> | <character>

4636436 chr2 [46089, 46089] + | NM_001077710

4636437 chr2 [46095, 46095] + | NM_001077710

4636438 chr2 [46104, 46104] + | NM_001077710

4636439 chr2 [46111, 46111] + | NM_001077710

4636440 chr2 [46113, 46113] + | NM_001077710

28



4636441 chr2 [46126, 46126] + | NM_001077710

-------

seqinfo: 25 sequences from an unspecified genome; no seqlengths

From here on we can use the same pipeline as usual: Smoothing and modeling
(sections 4.2 and 4.3) of the DNA methylation data and subsequent testing
of the regions (section 4.4).

6.2 Testing predefined genomic regions using the Global
Test

Goeman et al. [6] proposed a score test for testing high dimensional al-
ternatives. The approach is implemented in the R/Bioconductor package
globaltest . The BiSeq package offers a wrapper function to apply Goeman’s
Global Test directly to RRBS data given as a BSrel object:

> data(promoters)

> data(rrbs)

> rrbs <- rawToRel(rrbs)

> promoters <- promoters[overlapsAny(promoters, rrbs)]

> gt <- globalTest(group~1,

rrbs,

subsets = promoters)

> head(gt)

p-value Statistic Expected Std.dev #Cov

1 0.00975 2.50e+01 11.1 4.89 206

2 0.05381 2.05e+01 11.1 5.61 67

3 0.05381 2.05e+01 11.1 5.61 67

4 1.00000 1.85e-31 11.1 14.81 8

5 1.00000 1.85e-31 11.1 14.81 8

6 0.06744 1.84e+01 11.1 4.88 149

If the parameter subsets is not given, the null hypothesis is that no CpG
site (rather than region) is associated with the given response variable.

29



7 Further data processing

The plotMethMap function is helpful to evaluate DMRs graphically. Via zlim

= c(0,1) that is passed to the heatmap function we ensure that green stands
for a relative methalytion of 0 and red stands for a relative methylation of 1:

> rowCols <- c("magenta", "blue")[as.numeric(colData(predictedMeth)$group)]

> plotMethMap(predictedMeth,

region = DMRs[3],

groups = colData(predictedMeth)$group,

intervals = FALSE,

zlim = c(0,1),

RowSideColors = rowCols,

labCol = "", margins = c(0, 6))

APL8

APL11436

APL11523

APL5894

APL11624

APL10961

APL2

APL1

APL7

APL3

Figure 6: Methylation map of smoothed methylation data within a detected
DMR together with hierarchical clustering of the samples

To represent the smoothed methylation curves we can use the plotSmooth-

30



Meth function:

> plotSmoothMeth(object.rel = predictedMeth,

region = DMRs[3],

groups = colData(predictedMeth)$group,

group.average = FALSE,

col = c("magenta", "blue"),

lwd = 1.5)

> legend("topright",

legend=levels(colData(predictedMeth)$group),

col=c("magenta", "blue"),

lty=1, lwd = 1.5)

46200 46400 46600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position

M
et

hy
la

tio
n

APL
control

Figure 7: The smoothed methylation curves for all samples within a detected
DMR

31



We can annotate the detected DMRs by means of a GRanges object, e.g.
a list of promoter regions. In case of an overlapping of both GRanges objects
the DMR is marked as TRUE, or with the respective identifier in the promoter
list:

> data(promoters)

> head(promoters)

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | acc_no

<Rle> <IRanges> <Rle> | <character>

[1] chr1 [66998824, 67000324] * | NM_032291

[2] chr1 [ 8383389, 8384889] * | NM_001080397

[3] chr1 [16766166, 16767666] * | NM_001145277

[4] chr1 [16766166, 16767666] * | NM_001145278

[5] chr1 [16766166, 16767666] * | NM_018090

[6] chr1 [50489126, 50490626] * | NM_032785

-------

seqinfo: 24 sequences from an unspecified genome; no seqlengths

> DMRs.anno <- annotateGRanges(object = DMRs,

regions = promoters,

name = 'Promoter',

regionInfo = 'acc_no')

> DMRs.anno

GRanges object with 4 ranges and 5 metadata columns:

seqnames ranges strand | median.p

<Rle> <IRanges> <Rle> | <numeric>

[1] chr1 [872335, 872386] * | 1.033748e-03

[2] chr1 [875227, 875470] * | 6.677193e-06

[3] chr2 [ 46126, 46718] * | 3.960405e-05

[4] chr2 [ 46915, 46937] * | 1.484596e-02

median.meth.group1 median.meth.group2

<numeric> <numeric>

[1] 0.9414314 0.85218621

[2] 0.5024435 0.18208201

[3] 0.4386294 0.07768183

[4] 0.1363637 0.03691975

32



median.meth.diff Promoter

<numeric> <character>

[1] 0.08903549 <NA>

[2] 0.31947418 <NA>

[3] 0.35536318 NM_001077710

[4] 0.09944399 NM_001077710

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

plotBindingSites plots the average methylation around given genomic
regions, e.g. protein binding sites. Here, we compare the methyation in and
around promoter regions between APL and controls:

33



> plotBindingSites(object = rrbs,

regions = promoters,

width = 4000,

group = colData(rrbs)$group,

col = c("magenta", "blue"),

lwd = 1.5)

> legend("top",

legend=levels(colData(rrbs)$group),

col=c("magenta", "blue"),

lty=1, lwd = 1.5)

−2000 −1000 0 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Genomic position relative to BS

M
ed

ia
n 

m
et

hy
la

tio
n

APL
control

Figure 8: Methylation around 1,000 promoters; Position 0 refers to the cen-
ters of the promoters

The raw and relative methylation data can also be viewed in the Integra-

34



tive Genomics Viewer (IGV; freely available for download from www.broadinstitute.org/igv)
[7]. To do so we first write the methylation information of each sample within
the BSraw or BSrel object to a bed file:

> track.names <- paste(colData(rrbs)$group,

"_",

gsub("APL", "", colnames(rrbs)),

sep="")

> writeBED(object = rrbs,

name = track.names,

file = paste(colnames(rrbs), ".bed", sep = ""))

> writeBED(object = predictedMeth,

name = track.names,

file = paste(colnames(predictedMeth), ".bed", sep = ""))

We can load the bed files of the raw data in the IGV. The integers beneath
the CpG marks represent the numbers of sequencing reads covering the CpG
sites:

Figure 9: IGV snapshot of the raw data in and around a detected DMR

35

http://www.broadinstitute.org/igv


We can also load the smoothed methylation levels:

Figure 10: IGV snapshot of the smoothed data in and around a detected
DMR

36



References

[1] Katja Hebestreit, Martin Dugas, and Hans-Ulrich Klein. Detection of
significantly differentially methylated regions in targeted bisulfite se-
quencing data. Bioinformatics, 29(13):1647–1653, Jul 2013. URL:
http://dx.doi.org/10.1093/bioinformatics/btt263, doi:10.1093/
bioinformatics/btt263.

[2] Till Schoofs, Christian Rohde, Katja Hebestreit, Hans-Ulrich Klein, Ste-
fanie Göllner, Isabell Schulze, Mads Lerdrup, Nikolaj Dietrich, Shuchi
Agrawal-Singh, Anika Witten, Monika Stoll, Eva Lengfelder, Wolf-
Karsten Hofmann, Peter Schlenke, Thomas Büchner, Klaus Hansen,
Wolfgang E Berdel, Frank Rosenbauer, Martin Dugas, and Carsten
Müller-Tidow. Dna methylation changes are a late event in acute
promyelocytic leukemia and coincide with loss of transcription fac-
tor binding. Blood, Nov 2012. URL: http://dx.doi.org/10.1182/

blood-2012-08-448860, doi:10.1182/blood-2012-08-448860.

[3] Felix Krueger and Simon R Andrews. Bismark: a flexible aligner
and methylation caller for bisulfite-seq applications. Bioinformat-
ics, 27(11):1571–1572, Jun 2011. URL: http://dx.doi.org/10.1093/
bioinformatics/btr167, doi:10.1093/bioinformatics/btr167.

[4] Bettina Grün, Ioannis Kosmidis, and Achim Zeileis. Extended Beta Re-
gression in R: Shaken, Stirred, Mixed, and Partitioned, 2012.

[5] Hans-Ulrich Klein and Katja Hebestreit. An evaluation of methods to
test predefined genomic regions for differential methylation in bisulfite
sequencing data. Under review.

[6] Jelle J. Goeman, Sara A. Van De Geer, and Hans C. Van Houwelingen.
Testing against a high dimensional alternative. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 68(3):477–493, 2006.

[7] Helga Thorvaldsdóttir, James T Robinson, and Jill P Mesirov. Integrative
genomics viewer (igv): high-performance genomics data visualization and
exploration. Brief Bioinform, Apr 2012. URL: http://dx.doi.org/10.
1093/bib/bbs017, doi:10.1093/bib/bbs017.

37

http://dx.doi.org/10.1093/bioinformatics/btt263
http://dx.doi.org/10.1093/bioinformatics/btt263
http://dx.doi.org/10.1093/bioinformatics/btt263
http://dx.doi.org/10.1182/blood-2012-08-448860
http://dx.doi.org/10.1182/blood-2012-08-448860
http://dx.doi.org/10.1182/blood-2012-08-448860
http://dx.doi.org/10.1093/bioinformatics/btr167
http://dx.doi.org/10.1093/bioinformatics/btr167
http://dx.doi.org/10.1093/bioinformatics/btr167
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1093/bib/bbs017

	Introduction
	Data import and classes
	Sample data
	Import of Bismark's methylation output files
	The BSraw and BSrel classes
	The BSraw class
	The BSrel class

	Data handling

	Quality control
	Detection of DMRs within groups of samples
	Definition of CpG clusters
	Smooth methylation data
	Model and test group effect
	Test CpG clusters for differential methylation
	Trim significant CpG clusters
	Definition of DMR boundaries

	Detection of DMRs between two samples
	Testing of predefined genomic regions
	Testing predefined genomic regions using the BiSeq method
	Testing predefined genomic regions using the Global Test

	Further data processing

