Package 'cytofkit'

April 22, 2016

Type Package

Title cytofkit: an integrated analysis pipeline for mass cytometry data

Version 1.2.4

Date 2015-11-12

Author Jinmiao Chen, Hao Chen

Description An integrated mass cytometry data analysis pipeline that enables simultaneous illustration of cellular diversity and progression.

License Artistic-2.0

Maintainer

Jinmiao Chen < Chen_Jinmiao@immunol.a-star.edu.sg>, Hao Chen < chen_hao@immunol.a-star.edu.sg>

biocViews FlowCytometry, GUI, CellBiology, Clustering, DimensionReduction, BiomedicalInformatics

Depends R (>= 2.10.0), ggplot2(>= 0.9.3.1), plyr

VignetteBuilder knitr

Suggests knitr, RUnit, testthat, BiocGenerics

Imports tcltk, stats, Rtsne, e1071, flowCore, gplots, VGAM, reshape, reshape2, shiny, vegan, Biobase, doParallel, pdist, igraph(>= 1.0.1), RANN(>= 2.5), Rcpp (>= 0.12.0)

LinkingTo Rcpp

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:

cytofkit-package	2
applyComp	
auto_lgcl	4
ClusterX	5
cytofkit	6
cytofkitNews	8

cytofkitShinyAPP	8
cytofkit_GUI	9
cytof_addToFCS	9
cytof_cluster	10
cytof_clusterPlot	
cytof_dimReduction	12
cytof_exprsExtract	13
cytof_exprsMerge	14
cytof_heatmap	15
cytof_progression	
cytof_progressionPlot	
cytof_writeResults	18
densVM	19
find_neighbors	19
getParameters_GUI	
launchShinyAPP_GUI	21
peaksGamma_plot	
Rphenograph	
scaleData	
	24

Index

cytofkit-package cytofkit: an integrated analysis pipeline for mass cytometry data

Description

This package is designed to facilitate the analysis workflow of mass cytometry data with automatic subset identification and mapping of cellular progression. Both command line and a GUI client are provided for executing the workflow easily.

Details

This package integrates merging methods of multiple FCS files, dimension reduction methods (PCA, t-SNE and ISOMAP) and clustering methods (DensVM, densityClustX, and Rphenograph) for rapid subset detection. Cell subsets can be visualized in scatter plot and heat map. The method isomap is also provided to map the cellular progression. This workflow can be easily executed with the main function cytofkit or through the GUI client cytofkit_GUI.

Pre-processing

Using function cytof_exprsMerge, one or multiple FCS files will be loaded via the *read.FCS* function in the *flowCore* package. Then transformation was applied to the expression value of selected markers of each FCS file. Transformation methods include auto_lgcl, fixed_lgcl, arcsin and biexp, where auto_lgcl is the default.Then multiple FCS files are merged using method all, min, fixed or ceil.

Dimensionality reduction

Using function cytof_dimReduction, t-Distributed Stochastic Neighbor Embedding (tsne) is suggested for dimensionality reduction although we also provide methods like isomap and pca.

cytofkit-package

Cluster

Using function cytof_cluster, three cluster method are provided, densVM, ClusterX and Rphenograph. densVM, densityClustX are performend on the dimension reducted data, while Rphenograph is performed directed on the high dimensional expression data.

Post-processing

- Using function cytof_clusterPlot to visualize the cluster results in a catter plot, in which dots represent cells, colours indicate their assigned clusters and point shapes represent their belonging samples.

- Using function cytof_heatmap to generate heat map to visualize the mean expression of every marker in every cluster. This heat maps is useful to interrogate marker expression to identify each cluster's defining markers.

- Using function cytof_progressionPlot to visualize the expression patter of selected markers against the estimated cellular progression order.

- Using function cytof_addToFCS to add any dimension reduced data, cluster results, progression data into the original FCS files, new FCS files will be saved for easy checking with other softwares like FlowJo.

All the above post processing can be automatically implemented and saved using one function cytof_writeResults.

References

http://signbioinfo.github.io/cytofkit/

See Also

cytofkit, cytofkit_GUI

```
## Run on GUI
#cytofkit_GUI() # remove the hash symbol to launch the GUI
## Run on command
dir <- system.file('extdata',package='cytofkit')
file <- list.files(dir, pattern='.fcs$', full=TRUE)
parameters <- list.files(dir, pattern='.txt$', full=TRUE)
## remove the hash symbol to run the following command
#cytofkit(fcsFile = file, markers = parameters, projectName = 'test')</pre>
```

```
## Checking the vignettes for more details
if(interactive()) browseVignettes(package = 'cytofkit')
```

applyComp

Description

apply compensation on the FCS expression data

Usage

applyComp(fcs, keyword)

Arguments

fcs	FCS file.
keyword	Keywords.

auto_lgcl

a modified version of "estimateLogicle" from flowCore

Description

a modified version of "estimateLogicle" from flowCore

Usage

auto_lgcl(x, channels, m = 4.5, q = 0.05)

Arguments

х	Data.
channels	Channel names.
m	Para m.
q	Para q.

ClusterX

Description

This package implement the clustering algorithm described by Alex Rodriguez and Alessandro Laio (2014) with improvements of automatic peak detection and parallel implementation

Usage

```
ClusterX(data, dimReduction = NULL, outDim = 2, dc, gaussian = TRUE,
    alpha = 0.001, detectHalos = FALSE, parallel = FALSE, nCore = 4)
```

Arguments

data	A data matrix for clustering.
dimReduction	Dimenionality reduciton method.
outDim	Number of dimensions will be used.
dc	Distance cutoff value.
gaussian	If apply gaussian to esitmate the density.
alpha	Signance level for peak detection.
detectHalos	If detect the halos.
parallel	If run the algorithm in parallel.
nCore	Number of cores umployed for parallel compution.

Value

a object of ClusterX class

Author(s)

Chen Hao

```
iris_unique <- unique(iris) # Remove duplicates
data <- as.matrix(iris_unique[,1:4])
ClusterXRes <- ClusterX(data)</pre>
```

cytofkit

Description

A user friendly GUI is provided for easy usage of cytofkit, cytofkit_GUI.

Usage

```
cytofkit(fcsFiles = getwd(), markers = NULL, projectName = "cytofkit",
mergeMethod = "ceil", fixedNum = 10000, ifCompensation = FALSE,
transformMethod = "auto_lgcl", dimReductionMethod = "tsne",
clusterMethods = "ClusterX", visualizationMethods = "tsne",
progressionMethod = NULL, uniformClusterSize = 500, resultDir = getwd(),
saveResults = TRUE, saveObject = TRUE, saveToFCS = TRUE,
scaleTo = NULL, q = 0.05, ...)
```

Arguments

fcsFiles	it can be either the name of the path where stores your FCS files or a vector of FCS file names.
markers	it can be either a text file that specifies the makers to be used for analysis or a vector of the marker names.
projectName	a prefix that will be added to the names of result files.
mergeMethod	when multiple fcs files are selected, cells can be combined using one of the four different methods including ceil, all, min, fixed. The default option is ceil, up to a fixed number (specified by fixedNum) of cells are sampled without replacement from each fcs file and combined for analysis. all: all cells from each fcs file are combined for analysis. min: The minimum number of cells among all the selected fcs files are sampled from each fcs file and combined for analysis. fixed: a fixed num (specified by fixedNum) of cells are sampled (with replacement when the total number of cell is less than fixedNum) from each fcs file and combined for analysis.
fixedNum	up to fixedNum of cells from each fcs file are used for analysis.
ifCompensation	Boolean value to decide if do compensation. This will be applied to flow cytom- etry data.
transformMethod	t construction of the second se
dimReductionMet	dat transformation method, either auto_lgcl, fixed_lgcl, arcsin or biexp.
utiliteduc tionine	the method used for dimensionality reduction, including tsne, pca and isomap.
clusterMethods	the clustering method(s) used for subpopulation detection, including densVM, ClusterX and Rphenograph. Multiple selection are accepted.
visualizationMethods	
	the method(s) used for visualize the cluster data, including tsne, pca and isomap. Multiple selection are accepted.

cytofkit

progressionMeth	lod
	use the first ordination score of isomap to estimated the preogression order of cells, choose NULL to ignore.
uniformClusterS	ize
	the uniform size of each cluster.
resultDir	the directory where result files will be generated.
saveResults	if save the results, and the post-processing results including scatter plot, heatmap, and statistical results.
saveObject	save the resutls into RData objects for loading back to R for further analysis
saveToFCS	save the results back to the FCS files, new FCS files will be generated.
scaleTo	scale the expression values to the same scale after transformation, default is NULL, should be a vector of two numbers if scale.
q	quantile of negative values removed for auto w estimation in logicle transformation, default is 0.05.
	more arguments contral the logicle transformation

Details

cytofkit provides a workflow for one or multiple CyTOF data analysis, including data preprocess with merging methods of multiple fcs file, expression data transformation, dimension reduction with PCA, isomap or tsne(default), clustering methods(densVM, ClusterX, Rphenograph) for sub-population detection, and estimation of cellular progression with isomap. The analysis results can be visualized with scatter plot, heatmap plot or progression plot. Moreover theses results can be saved back to FCS files. By default the results will be automatically saved for further annotation. An interactive web application is provided for interactive exploration of the analysis results, cytofkitShinyAPP.

Value

a list containing expressionData, dimReductionMethod, visualizationMethods, dimReducedRes, clusterRes and progressionRes. If choose 'saveResults = TRUE', results will be saved into files under resultDir

Author(s)

Chen Jinmiao, Chen Hao

References

http://signbioinfo.github.io/cytofkit/

See Also

cytofkit, cytofkit_GUI

Examples

```
dir <- system.file('extdata',package='cytofkit')
file <- list.files(dir, pattern='.fcs$', full=TRUE)
parameters <- list.files(dir, pattern='.txt$', full=TRUE)
## remove the hash symbol to run the following command
#cytofkit(fcsFile = file, markers = parameters, projectName = 'test')</pre>
```

cytofkitNews

check the package update news

Description

check the package update news

Usage

cytofkitNews()

cytofkitShinyAPP A Shiny app to interactively visualize the analysis results

Description

Load the RData object saved by cytofkit, explore the analysis results with interactive control

Usage

cytofkitShinyAPP()

Examples

if (interactive()) cytofkit::cytofkitShinyAPP()

8

cytofkit_GUI

Description

This GUI provides an easy way for CyToF data analysis using cytofkit package. Main parameters for running 'cytofkit' were integrated in this GUI, and each parameter has a help button to show the instruction. cytofkit analysis will be launched after submitting.

Usage

cytofkit_GUI()

Value

the GUI for cytofkit-package

Author(s)

Chen Jinmiao, Chen Hao

References

http://signbioinfo.github.io/cytofkit/

See Also

cytofkit-package, cytofkit

Examples

#cytofkit_GUI() # remove the comment hash to run

cytof_addToFCS Add data to the original FCS files

Description

Store the new dimension transformed data and cluster data into the exprs matrix in new fcs files under analyzedFCSdir

Usage

```
cytof_addToFCS(data, rawFCSdir, analyzedFCSdir, transformed_cols = c("tsne_1",
    "tsne_2"), cluster_cols = c("cluster"), inLgclTrans = TRUE)
```

Arguments

data	The new data matrix to be added in.	
rawFCSdir	The directory containing the original fcs files.	
analyzedFCSdir	The directory to store the new fcs files.	
transformed_cols		
	the column name of the dimension transformend data in data.	
cluster_cols	the column name of the cluster data in data.	
inLgclTrans	Boolean value decides if apply the inverse lgcl transformation to the data before saving	

Value

new fcs files stored under analyzedFCSdir

cytof_cluster	Subset detection by clustering

Description

Apply clustering algorithms to detect cell subsets. densVM and densityClustX clustering is based on the transformend ydata; Rphenograph is directly applied on the high dimemnional xdata. And densVM need the xdata to train the VM model.

Usage

```
cytof_cluster(ydata = NULL, xdata = NULL, method = "densVM")
```

Arguments

ydata	a matrix of the dimension reduced(transformed) data
xdata	a matrix of the expression data
method	cluster method including densVM, densityClustX and Rphenograph.

Value

a vector of the clusters assigned for each row of the ydata

Examples

```
d<-system.file('extdata', package='cytofkit')
fcsFile <- list.files(d, pattern='.fcs$', full=TRUE)
xdata <- cytof_exprsMerge(fcsFile, mergeMethod = 'fixed', fixedNum = 100)
ydata <- cytof_dimReduction(xdata, method = "tsne")
clusters <- cytof_cluster(ydata, xdata, method = "densVM")</pre>
```

10

Description

Dot plot visualization of the cluster results, with color indicating different clusters, and shape of different samples.

Usage

```
cytof_clusterPlot(data, xlab, ylab, cluster, sample, title = "cluster",
    type = 1, point_size = NULL)
```

Arguments

data	The data frame of cluster results, which should contains at least xlab, ylab and cluster
xlab	The column name of the x axis in input data
ylab	The column name of the y axis in input data
cluster	The column name of cluster in input data
sample	the column name of the sample in input data
title	the title of the plot
type	plot type, 1 indicates combined plot, 2 indicated grid facet plot seperated by samples
point_size	the size of the dot.

Value

the ggplot object of the scatter cluster plot

```
x <- c(rnorm(100, mean = 1), rnorm(100, mean = 3), rnorm(100, mean = 9))
y <- c(rnorm(100, mean = 2), rnorm(100, mean = 8), rnorm(100, mean = 5))
c <- c(rep(1,100), rep(2,100), rep(3,100))
rnames <- paste(paste('sample_', c('A','B','C'), sep = ''), rep(1:100,each = 3), sep='_')
data <- data.frame(dim1 = x, dim2 = y, cluster = c)
rownames(data) <- rnames
data$sample <- "data"
cytof_clusterPlot(data, xlab="dim1", ylab="dim2", cluster="cluster", sample = "sample")</pre>
```

cytof_dimReduction Dimension reduction of cytof expression data

Description

Apply dimension reduction on the cytof expression data, with method isomap, pca, or tsne.

Usage

```
cytof_dimReduction(data, method = "tsne", distMethod = "euclidean",
    out_dim = 2, isomap_k = 5, isomap_ndim = NULL,
    isomapFragmentOK = TRUE)
```

Arguments

data	An expression data matrix.	
method	Method chosed for dimensition reduction, must be one of $isomap$, pca or $tsne$.	
distMethod	Method for distance calcualtion.	
out_dim	The dimensionality of the output.	
isomap_k	Number of shortest dissimilarities retained for a point, parameter for isomap method.	
isomap_ndim	Number of axes in metric scaling, parameter for i somap method.	
isomapFragmentOK		
	What to do if dissimilarity matrix is fragmented, parameter for isomap method.	

Value

a matrix of the dimension reducted data, with colnames and rownames(if have, same as the input).

Author(s)

Chen Jinmiao

```
data(iris)
in_data <- iris[, 1:4]
out_data <- cytof_dimReduction(in_data)</pre>
```

cytof_exprsExtract Extract the expression matrix of the FCS data

Description

Extract the FCS expresssion data and apply the transformation

Usage

```
cytof_exprsExtract(fcsFile, comp = FALSE, verbose = FALSE, markers = NULL,
transformMethod = "auto_lgcl", scaleTo = NULL, w = 0.1, t = 4000,
m = 4.5, a = 0, q = 0.05)
```

Arguments

fcsFile	The name of the FCS file	
comp	Boolean value tells if do compensation	
verbose	Boolean value detecides if print the massage details	
markers	Selected markers for analysis, either from names or from description	
transformMethod	1	
	transformation method, auto_lgcl, fixed_lgcl, arcsin or biexp	
scaleTo	scale the expression to same scale, default is NULL, should be a vector of two numbers if scale	
w	Linearization width in asymptotic decades	
t	Top of the scale data value	
m	Full width of the transformed display in asymptotic decades	
a	Additional negative range to be included in the display in asymptotic decades	
q	quantile of negative values removed for auto w estimation, default is 0.05	

Value

The transformend expression data matrix with selected markers

```
d<-system.file('extdata',package='cytofkit')
fcsFile <- list.files(d,pattern='.fcs$',full=TRUE)
transformed <- cytof_exprsExtract(fcsFile)</pre>
```

cytof_exprsMerge

Description

Apply transformation of selected markers of each FCS file, arcsin, biexponential, auto logicle transformation and fixed logicle transformation are provided, then mutilple FCS files are merged using method all, min, fixed or ceil

Usage

```
cytof_exprsMerge(fcsFiles, comp = FALSE, verbose = FALSE, markers = NULL,
transformMethod = "auto_lgcl", scaleTo = NULL, mergeMethod = "ceil",
fixedNum = 10000, w = 0.1, t = 4000, m = 4.5, a = 0, q = 0.05)
```

Arguments

fcsFiles	the input fcsFiles (usually more than 1 file)	
comp	Boolean value tells if do compensation	
verbose	Boolean value detecides if print the massage details	
markers	Selected markers for analysis, either from names or from description	
transformMethod	1	
	transformation method, auto_lgcl, fixed_lgcl, arcsin or biexp	
scaleTo	scale the expression to same scale, default is NULL, should be a vector of two numbers if scale	
mergeMethod	merge method for mutiple FCS expression data. cells can be combined using one of the four different methods including ceil, all, min, fixed. The default option is ceil, up to a fixed number (specified by fixedNum) of cells are sam- pled without replacement from each fcs file and combined for analysis. all: all cells from each fcs file are combined for analysis. min: The minimum num- ber of cells among all the selected fcs files are sampled from each fcs file and combined for analysis. fixed: a fixed num (specified by fixedNum) of cells are sampled (with replacement when the total number of cell is less than fixedNum) from each fcs file and combined for analysis.	
fixedNum	the fixed number of cells for merging multiple FCSs	
W	Linearization width in asymptotic decades	
t	Top of the scale data value	
m	Full width of the transformed display in asymptotic decades	
а	Additional negative range to be included in the display in asymptotic decades	
q	quantile of negative values removed for auto w estimation, default is 0.05	

cytof_heatmap

Value

Merged FCS expression data matrix of selected markers after transformation

Examples

```
d<-system.file('extdata',package='cytofkit')
fcsFiles <- list.files(d,pattern='.fcs$',full=TRUE)
merged <- cytof_exprsMerge(fcsFiles)</pre>
```

cytof_heatmap Heatmap plot of cluster mean value results

Description

Heatmap plot of cluster mean value results

Usage

```
cytof_heatmap(data, baseName = "Cluster", scaleMethod = "none")
```

Arguments

data	a matrix with rownames and colnames
baseName	The name as a prefix in the title of the heatmap.
scaleMethod	character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. The default is 'none'.

Value

a heatmap object from gplots

```
m1 <- c(rnorm(300, 10, 2), rnorm(400, 4, 2), rnorm(300, 7))
m2 <- c(rnorm(300, 4), rnorm(400, 16), rnorm(300, 10, 3))
m3 <- c(rnorm(300, 16), rnorm(400, 40, 3), rnorm(300, 10))
m4 <- c(rnorm(300, 7, 3), rnorm(400, 30, 2), rnorm(300, 10))
m5 <- c(rnorm(300, 27), rnorm(400, 40, 1), rnorm(300, 10))
c <- c(rep(1,300), rep(2,400), rep(3,300))
rnames <- paste(paste('sample_', c('A','B','C','D'), sep = ''),
rep(1:250,each = 4), sep='_')
exprs_cluster <- data.frame(cluster = c, m1 = m1, m2 = m2, m3 = m3, m4 = m4, m5 = m5)
row.names(exprs_cluster) <- sample(rnames, 1000)
cluster_mean <- aggregate(. ~ cluster, data = exprs_cluster, mean)
rownames(cluster_mean) <- paste("cluster_", cluster_mean$cluster, sep = "")
cytof_heatmap(cluster_mean[, -which(colnames(cluster_mean) == "cluster")])</pre>
```

cytof_progression Progression estimation of cytof expression data

Description

Apply isomap to estimate the relationship of cell progression

Usage

```
cytof_progression(data, cluster, method = "isomap",
    uniformClusterSize = 500, seed = 500)
```

Arguments

data	Expression data matrix.	
cluster	A vector of cluster results for the data.	
method	Method for estimation of cell progression, isomap by default, tsne or pca.	
uniformClusterSize		
	The down sampled size of each cluster.	
seed	The seed for random down sample of the clusters.	

Value

a list includes sampleData, sampleCluster and progressionData.

Author(s)

Chen Jinmiao

```
data(iris)
in_data <- iris[, 1:4]
out_data <- cytof_progression(in_data, cluster = iris[,5], uniformClusterSize = 50)</pre>
```

cytof_progressionPlot Progression plot

Description

Plot the expression trend along the estimated cell progressing order

Usage

```
cytof_progressionPlot(data, markers, orderCol = "isomap_1",
    clusterCol = "cluster", min_expr = NULL,
    trend_formula = "expression ~ sm.ns(Pseudotime, df=3)")
```

Arguments

data	The data frame for progression plot.
markers	The column names of the selected markers for visualization.
orderCol	The column name of the estimated cell progression order.
clusterCol	The column name of the cluster results
min_expr	the threshold of the minimal expression value for markers
trend_formula	a symbolic description of the model to be fit.

Value

a heatmap object from gplots

```
m1 <- c(rnorm(300, 10, 2), rnorm(400, 4, 2), rnorm(300, 7))
m2 <- c(rnorm(300, 4), rnorm(400, 16), rnorm(300, 10, 3))
m3 <- c(rnorm(300, 16), rnorm(400, 40, 3), rnorm(300, 10))
m4 <- c(rnorm(300, 7, 3), rnorm(400, 30, 2), rnorm(300, 10))
m5 <- c(rnorm(300, 27), rnorm(400, 40, 1), rnorm(300, 10))
c <- c(rep(1,300), rep(2,400), rep(3,300))
rnames <- paste(paste('sample_', c('A','B','C','D'), sep = ''),
rep(1:250,each = 4), sep='_')
exprs_cluster <- data.frame(cluster = c, m1 = m1, m2 = m2, m3 = m3, m4 = m4, isomap_1 = m5)
row.names(exprs_cluster) <- sample(rnames, 1000)
cytof_progressionPlot(exprs_cluster, markers = c("m1","m2","m3","m4"))</pre>
```

cytof_writeResults Save the cytofkit analysis results

Description

Scatter dot plot and heatmap of the cluster results, and all intermediate files will be generated and saved in the resultDir

Usage

```
cytof_writeResults(analysis_results, projectName = "cytofkit",
    resultDir = getwd(), saveToFCS = TRUE, rawFCSdir = getwd())
```

Arguments

analysis_results

	result data from output of cytofkit
projectName	a prefix that will be added to the names of result files.
resultDir	the directory where result files will be generated.
saveToFCS	save the results back to the FCS files, new FCS files will be generated.
rawFCSdir	the directory that contains fcs files to be analysed.

Value

save all results in the resultDir

See Also

cytofkit

```
d <- system.file('extdata',package='cytofkit')
f <- list.files(d, pattern='.fcs$', full=TRUE)
p <- list.files(d, pattern='.txt$', full=TRUE)
#tr <- cytofkit(fcsFile=f,markers=p,projectName='t',saveResults=FALSE)
#cytof_write_results(tr,projectName = 'test',resultDir=d,rawFCSdir =d)</pre>
```

densVM

Description

Density-based local maxima peak finding, subpopulation assigning with the power of SVM

Usage

```
densVM(ydata, xdata)
```

Arguments

ydata	a matrix of the dimension reduced(transformed) data
xdata	a matrix of the expression data

Value

a list contains a matrix peakdata of the peak numbers with different kernel bandwidth, and a matrix clusters of the cluster results

Author(s)

Chen Jinmiao

Examples

```
d<-system.file('extdata',package='cytofkit')
fcsFile <- list.files(d,pattern='.fcs$',full=TRUE)
xdata <- cytof_exprsMerge(fcsFile, mergeMethod = 'fixed', fixedNum = 100)
ydata <- cytof_dimReduction(xdata)
#clusters <- densVM(ydata, xdata)</pre>
```

find_neighbors K Nearest Neighbour Search

Description

Uses a kd-tree to find the p number of near neighbours for each point in an input/output dataset.

Usage

find_neighbors(data, k)

Arguments

data	Input data matrix.
k	Number of nearest neighbours.

Details

Use the nn2 function from the RANN package, utilizes the Approximate Near Neighbor (ANN) C++ library, which can give the exact near neighbours or (as the name suggests) approximate near neighbours to within a specified error bound. For more information on the ANN library please visit http://www.cs.umd.edu/~mount/ANN/.

Value

a n-by-k matrix of neighbor indices

Examples

```
iris_unique <- unique(iris) # Remove duplicates
data <- as.matrix(iris_unique[,1:4])
neighbors <- find_neighbors(data, k=10)</pre>
```

getParameters_GUI GUI for marker selection

Description

Extract the markers from the fcsfiles

Usage

```
getParameters_GUI(fcsFile, rawFCSdir)
```

Arguments

fcsFile	The name of the FCS file
rawFCSdir	The path of the FCS file

Examples

#getParameters_GUI()

launchShinyAPP_GUI GUI for launching shiny APP

Description

A shiny APP for interactive exploration of the analysis results

Usage

launchShinyAPP_GUI(message)

Arguments

message A message to determine if open the shiny APP

Examples

launchShinyAPP_GUI()

peaksGamma_plot Plot variation of peak nums with increasing gamma

Description

Plot varaition of peak nums with increasing gamma

Usage

```
peaksGamma_plot(peakdata)
```

Arguments

peakdata a matrix of peakdata returned from densVM_cluster

Value

a line graph of peak nums vs. increasing gamma

```
x <- seq(0, 1, length.out = 20)
y <- c(20:6, 6, 6, 5:3)
peakdata <- data.frame(sig_range = x, numpeaks = y)
peaksGamma_plot(peakdata)
```

Rphenograph

Description

R implementation of the phenograph algorithm

Usage

Rphenograph(data, k = 30)

Arguments

data	Input data matrix.
k	Number of nearest neighbours, default is 30.

Details

A simple R implementation of the phenograph [PhenoGraph](http://www.cell.com/cell/abstract/S0092-8674(15)00637-6) algorithm, which is a clustering method designed for high-dimensional singlecell data analysis. It works by creating a graph ("network") representing phenotypic similarities between cells by calclating the Jaccard coefficient between nearest-neighbor sets, and then identifying communities using the well known [Louvain method](https://sites.google.com/site/findcommunities/) in this graph.

Value

a communities object, the operations of this class contains:

print	returns the communities object itself, invisibly.	
length	returns an integer scalar.	
sizes	returns a numeric vector.	
membership	returns a numeric vector, one number for each vertex in the graph that was the input of the community detection.	
modularity	returns a numeric scalar.	
algorithm	returns a character scalar.	
crossing	returns a logical vector.	
is_hierarchical		
	returns a logical scalar.	
merges	returns a two-column numeric matrix.	
cut_at	returns a numeric vector, the membership vector of the vertices.	
as.dendrogram	returns a dendrogram object.	
show_trace	returns a character vector.	
code_len	returns a numeric scalar for communities found with the InfoMAP method and NULL for other methods.	
plot	for communities objects returns NULL, invisibly.	

scaleData

Author(s)

Chen Hao

References

Jacob H. Levine and et.al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 2015.

Examples

```
iris_unique <- unique(iris) # Remove duplicates
data <- as.matrix(iris_unique[,1:4])
Rphenograph_out <- Rphenograph(data, k = 45)</pre>
```

scaleData rescale the data

Description

rescale the data

Usage

scaleData(x, range = c(0, 4.5))

Arguments

х	data.
range	The range of the data.

Index

applyComp, 4 auto_lgcl, 4 ClusterX, 5 cytof_addToFCS, 3, 9 cytof_cluster, 3, 10 cytof_clusterPlot, 3, 11 cytof_dimReduction, 2, 12 cytof_exprsExtract, 13 cytof_exprsMerge, 2, 14 cytof_heatmap, 3, 15 cytof_progression, 16 cytof_progressionPlot, 3, 17 cytof_writeResults, 3, 18 cytofkit, 2, 3, 6, 7, 9, 18 cytofkit-package, 2 cytofkit_GUI, 2, 3, 6, 7, 9 cytofkitNews, 8 cytofkitShinyAPP, 8 densVM, 19 find_neighbors, 19 getParameters_GUI, 20 launchShinyAPP_GUI, 21

 $peaksGamma_plot, 21$

 ${\tt Rphenograph, 22}$

scaleData, 23