
Package ‘CNORfeeder’
April 22, 2016

Type Package

Title Integration of CellNOptR to add missing links

Version 1.10.0

Date 2015-14-08

Author F.Eduati

Maintainer F.Eduati <eduati@ebi.ac.uk>

Depends R (>= 2.15.0), CellNOptR (>= 1.4.0), graph

Suggests minet, catnet, Rgraphviz, RUnit, BiocGenerics, igraph

biocViews CellBasedAssays, CellBiology, Proteomics, Bioinformatics,
NetworkInference

Description This package integrates literature-constrained and data-driven methods to infer sig-
nalling networks from perturbation experiments. It permits to extends a given net-
work with links derived from the data via various inference methods and uses informa-
tion on physical interactions of proteins to guide and validate the integration of links.

License GPL-3

LazyLoad yes

NeedsCompilation no

R topics documented:
CNORfeeder-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Binference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
gaBinaryT1W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
linksRanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
makeBTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
mapBTables2model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
mapDDN2model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
MIinference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PPINigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
UniprotIDdream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Index 17

1



2 CNORfeeder-package

CNORfeeder-package R package to integrate literature-constrained and data-driven methods
to infer signalling networks from perturbation experiments

Description

CNORfeeder permits to extend a network derived from literature with links derived strictly from the
data via various inference methods using information on physical interactions of proteins to guide
and validate the integration of links. The package is designed to be integrated with CellNOptR.

Details

Package: CNORfeeder
Type: Package
Version: 1.0.0.
Date: 2012-11-22
License: GPLv2
LazyLoad: yes

Author(s)

F. Eduati Maintainer: F. Eduati <eduati@ebi.ac.uk>

References

F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-
constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-2317,
2012.

Examples

library(CNORfeeder)

# this is an example of the main steps of the integrated CellNOptR - CNORfeeder pipeline

# load the data already formatted as CNOlist
data(CNOlistDREAM,package="CellNOptR")
# load the model (PKN) already in the CNO format
data(DreamModel,package="CellNOptR")
# see CellNOptR documentation to import other data/PKNs)

# A. INFERENCE - CNORfeeder
# FEED inference: codified in Boolean Tables
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
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# B. COMPRESSION - CellNOptR
# preprocessing step
model<-preprocessing(data=CNOlistDREAM, model=DreamModel)

# C. INTEGRATION - CNORfeeder
# integration with the compressed model
modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)
# see example in ?MapDDN2Model to use other reverse-engineering methods

# D. WEGHTING - CNORfeeder
# integrated links are weighted more according to the integratin factor integrFac
modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,

CNOlist=CNOlistDREAM, integrFac=10)

# E. TRAINING - CellNOptR
initBstring<-rep(1,length(modelIntegr$reacID))
# training to data using genetic algorithm (run longer to obtain better results)
DreamT1opt<-gaBinaryT1W(
CNOlist=CNOlistDREAM,
model=modelIntegrWeight,
initBstring=initBstring,
maxGens=2,
popSize=5,
verbose=FALSE)

Binference Bayesian network inference

Description

This function uses data (CNOlist) to infer a Bayesian network using the catnet package.

Usage

Binference(CNOlist, mode="AIC", tempCheckOrders=10,
maxIter=100, filename="BAYESIAN")

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

mode a character, optimization network selection criterion such as "AIC" and "BIC",
to be used in cnSearchSA

tempCheckOrders

an integer, the number of iteration, orders to be searched, with constant temper-
ature, to be used in cnSearchSA

maxIter an integer, the total number of iterations, thus orders, to be processed, to be used
in cnSearchSA

filename name of the sif file saved, default BAYESIAN
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Details

This function transforms the data in a format compatible with catnet package, infers the network
using the Stochastic Network Search as implemented in catnet (see cnSearchSA), computes the con-
sensus model of the models returned by cnSearchSA considering only links that have a frequency
of appearence greater than 0.1 and returns the model in the sif format.

Value

sif the inferred data-driven network in sif format

Author(s)

F.Eduati

See Also

mapDDN2model

Examples

data(CNOlistDREAM,package="CellNOptR")
DDN<-Binference(CNOlistDREAM, tempCheckOrders=10, maxIter=100,

filename="BAYESIAN")

gaBinaryT1W Genetic algorithm used to optimise a model differently weighting links

Description

This function is the genetic algorithm to be used to optimise a model by fitting to data containing
one time point. It is the function gaBinaryT1 of CellNOptR modified in orter to differently weights
for the integrated links

Usage

gaBinaryT1W(CNOlist, model, initBstring=NULL, sizeFac = 1e-04,
NAFac = 1, popSize = 50, pMutation = 0.5, maxTime = 60, maxGens = 500,
stallGenMax = 100, selPress = 1.2, elitism = 5, relTol = 0.1, verbose=TRUE,
priorBitString=NULL, maxSizeHashTable=5000)
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Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

model a model structure, as created by readSIF, normally pre-processed but that is
not a requirement of this function. If the linksWeight field is provided in model
structure, all links are weighted according to that.

initBstring an initial bitstring to be tested, should be of the same size as the number of
reactions in the model above (model$reacID). Default is all ones.

sizeFac the scaling factor for the size term in the objective function, default to 0.0001
NAFac the scaling factor for the NA term in the objective function, default to 1
popSize the population size for the genetic algorithm, default set to 50
pMutation the mutation probability for the genetic algorithm, default set to 0.5
maxTime the maximum optimisation time in seconds, default set to 60
maxGens the maximum number of generations in the genetic algorithm, default set to 500
stallGenMax the maximum number of stall generations in the genetic algorithm, default to

100
selPress the selective pressure in the genetic algorithm, default set to 1.2
elitism the number of best individuals that are propagated to the next generation in the

genetic algorithm, default set to 5
relTol the relative tolerance for the best bitstring reported by the genetic algorithm, i.e.,

how different from the best solution, default set to 0.1
verbose logical (default to TRUE) do you want the statistics of each generation to be

printed on the screen?
priorBitString At each generation, the GA algorithm creates a population of bitstrings that

will be used to perform the optimisation. If the user knows the values of some
bits, they can be used to overwrite bit values proposed by the GA algorithm. If
provided, the priorBitString must have the same length as the initial bitstring
and be made of 0, 1 or NA (by default, this bitstring is set to NULL, which is
equivalent to setting all bits to NA). Bits that are set to 0 or 1 are used to replace
the bits created by the GA itself (see example).

maxSizeHashTable

a hash table is use to store bitstring and related score. This allows the GA to be
very efficient is the case of small models. The size of the hash table is 5000 by
default, which may be too large for large models.

Details

The whole procedure is described in details in Saez-Rodriguez et al. (2009). The basic principle
is that at each generation, the algorithm evaluates a population of models based on excluding or
including some gates in the initial pre-processed model (this is encoded in a bitstring with contains
0/1 entries for each gate). The population is then evolved based on the results of the evaluation of
these networks, where the evaluation is obtained by simulating the model (to steady state) under the
various conditions present in the data, and then computing the squared deviation from the data, to
which a penalty is added for size of the model and for species in the model that do not reach steady
state.
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Value

This function returns a list with elements:

bString the best bitstring

results a matrix with columns "Generation", "Best_score", "Best_bitString", "Stall_Generation",
"Avg_Score_Gen", "Best_score_Gen", "Best_bit_Gen", "Iter_time"

stringsTol the bitstrings whose scores are within the tolerance

stringsTolScores

the scores of the above-mentioned strings

Author(s)

C. Terfve, T. Cokelaer, F.Eduati

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

gaBinaryT1

Examples

data(CNOlistDREAM,package="CellNOptR")
data(DreamModel,package="CellNOptR")
model<-preprocessing(data=CNOlistDREAM, model=DreamModel)

BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)

modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNOlist=CNOlistDREAM, integrFac=10)

initBstring<-rep(1,length(modelIntegr$reacID))
# training to data using genetic algorithm (run longer to obtain better results)
DreamT1opt<-gaBinaryT1W(
CNOlist=CNOlistDREAM,
model=modelIntegrWeight,
initBstring=initBstring,
maxGens=2,
popSize=5,
verbose=FALSE)
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linksRanking Ranking of links inferred from data

Description

This function uses data (CNOlist) to rank links based on measurement error model as used by FEED
method to reverse-engineer the network.

Usage

linksRanking(CNOlist, measErr=c(0.1, 0), savefile=FALSE)

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

measErr a 2 value vector (err1, err2) defining the error model of the data as sd^2 = err1^2
+ (err2*data)^2, default to c(0.1, 0)

savefile TRUE to save the file in txt format, FALSE not. Default is FALSE.

Details

This function is similar to the fist step of FEED to reverse engineer the network strictly from data,
i.e. the inference of Boolean tables, as described in (Eduati et al., PLoS ONE, 2010) and imple-
mented in makeBTables. Links are ranked according to the upper limit value of parameterk allowing
the presence of the link, where k is the parameter which is multiplied by the measurement error in
order to assess the relevance of a link. The function returs link in decreasing order of importance and
associate to each link a value (maximum value of k allowing the presence of the link) quantifying
its relevance.

Value

this function returns a list with fields:

Lrank a matrix in which each link is associated with a numerical value, links are or-
dered in decreasing order of reliability)

Author(s)

F.Eduati

References

F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for
signaling network modeling. PLoS ONE; 5(9): e12789.

See Also

makeCNOlist, makeBTables
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Examples

data(CNOlistDREAM,package="CellNOptR")
Lrank <- linksRanking(CNOlist=CNOlistDREAM, measErr=c(0.1, 0))

makeBTables Make Boolean tables

Description

This function uses data (CNOlist) to infer a Boolean table for each measured protein, codifying if a
particular stimulus inhibitor combination affects the protein. A stimulus or an inhibitor significantly
affects an output protein if it is able to modify its activity level of a quantity that exceeds the
uncertainty associated with its measurement.

Usage

makeBTables(CNOlist, k=2, measErr=c(0.1, 0), timePoint=NA)

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

k a parameter that determine the threshold of significancy of the effect of stimuli
and inhibitors, default to 2

measErr a 2 value vector (err1, err2) defining the error model of the data as sd^2 = err1^2
+ (err2*data)^2, default to c(0.1, 0)

timePoint the time point to be considered for the inference of the Boolean tables (i.e. "t1"
or "t2"), if not specified all time points are consideres

Details

This function computes the fist step of FEED to reverse engineer the network strictly from data, i.e.
the inference of Boolean tables, as described in (Eduati et al., PLoS ONE, 2010). For each protein,
a Boolean table is inferred having one columns for each stimulus and one row for each inhibitor. If
a stimulus produces a significant effect on the activity level of the protein this is codified with a 1 in
the corresponding column, if also the inhibitor affects the protein there is a 2 in the corresponding
cell. The sign of the regulation is coded in separate tables.

Value

this function returns a list with fields:

namesSignals a vector of names of signals

tables a list with one Boolean table for each protein codifying the effect of stimuli
(columns) and inhibitors (rows), 1 if the stimulus affect the protein, 2 if also the
inhibior does
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NotMatStim has the same format as tables but just contains a 1 if the regulation has a negative
effect, and 0 otherwise

NotMatInhib has the same format as tables but just contains a 1 if the regulation has a negative
effect, and 0 otherwise

Author(s)

F.Eduati

References

F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for
signaling network modeling. PLoS ONE; 5(9): e12789.

See Also

makeCNOlist, mapBTables2model

Examples

data(CNOlistDREAM,package="CellNOptR")
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))

mapBTables2model Integrate Boolean tables with the model

Description

This function infers the network from the Boolean tables and integrates it with the network encoded
in the model (generally derived from prior knowledge), adding links that are missing.

Usage

mapBTables2model(BTable,model,optimRes=NA,allInter=TRUE,compressed=TRUE)

Arguments

BTable a BTable list, as created by makeBTables

model a model list, as created by readSif

optimRes a bit string with the reaction of the model to be considered, default considers all
reactions

allInter one new link in the network can correspond to more links in the model, set it to
TRUE if you want to add all possible links, FALSE to add only one link, default
is TRUE
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compressed this argument is used to decede how to deal with unmeasured and unperturbed
nodes (white nodes). As general guideline, it should be set to TRUE if the PKN
has been compressed in the preprocessing step, FALSE otherwise. Default is
TRUE.

Details

The function receive as input the Boolean Tables, infers the data-driven network form them (as
descibed in (Eduati et al., PLoS ONE, 2010)) and integrates it with the model, returning a new
model with the integrated links. If the Model is not given as input (Model=NULL), the data-driven
network is returned as model.

Value

a new model with the integrated links and an additional field:

indexIntegr a vector with the indexes of the integrated links

Author(s)

F.Eduati

References

F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for
signaling network modeling. PLoS ONE; 5(9): e12789.

See Also

readSif, readMIDAS, makeBTables

Examples

data(CNOlistDREAM,package="CellNOptR")
data(DreamModel,package="CellNOptR")
model<-preprocessing(data=CNOlistDREAM, model=DreamModel)
BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)
# modelIntegr$reacID[modelIntegr$indexIntegr] to see the integrated links
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mapDDN2model Integrate data-drive network with the model

Description

This function integrates the data-driven network (in sif format) with the network encoded in the
model (generally derived from prior knowledge), adding links that are missing.

Usage

mapDDN2model(DDN,model,CNOlist,allInter=TRUE)

Arguments

DDN a sif file encoding a data-driven network, as created by Binference or MIinfer-
ence

model a model list, as created by readSif

CNOlist a CNOlist, as created by makeCNOlist

allInter one new link in the network can correspond to more links in the model, set it to
TRUE if you want to add all possible links, FALSE to add only one link, default
is TRUE

Details

The function receives as input a sif file with the data-driven network, as created by Binference or
MIinference, and integrates it with the model, returning a new model with the integrated links.

Value

a new Model with the integrated links and an additional field:

indexIntegr a vector with the indexes of the integrated links

Author(s)

F.Eduati

See Also

readSif, readMIDAS, Binference, MIinference
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Examples

data(CNOlistDREAM,package="CellNOptR")
data(DreamModel,package="CellNOptR")
model<-preprocessing(data=CNOlistDREAM, model=DreamModel)

## Not run:
DDN<-Binference(CNOlistDREAM, tempCheckOrders=10, maxIter=100,

filename="BAYESIAN")

modelIntegr<-mapDDN2model(DDN=DDN,model=model,CNOlist=CNOlistDREAM)

## End(Not run)

MIinference Mutual information based network inference

Description

This function uses data (CNOlist) to infer a data-driven network using the mutual information based
appoaches ARACNe and CLR as implemented in the minet package.

Usage

MIinference(CNOlist, method="ARACNE", PKNgraph=NULL,
filename="ARACNE")

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

method a character, the name of the method to be used: ARACNE or CLR. Default,
ARACNE

PKNgraph a network to be used for comparison to assess the directionality of some links.
Default is NULL.

filename name of the sif file saved, default ARACNE

Details

This function transforms the data in a format compatible with minet package, infers the network
using aracne or clr as implemented in the minet package and returns the network in the sif format.
It is important to notice that mutual information approaches do not allow for determining the di-
rectionality of the links thus both directions are considered. The function allows to give as input a
network in graph format (graph package, see sif2graph to convert from sif to graph format) to be
used as comparison to assess the directionality of some links, e.g. PKN.
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Value

sif the inferred data-driven network in sif format

Author(s)

F.Eduati

References

P. E. Meyer, F. Lafitte and G. Bontempi (2008). MINET: An open source R/Bioconductor Package
for Mutual Information based Network Inference. BMC Bioinformatics, 9(1), 2008

See Also

mapDDN2model, sif2graph, model2sif

Examples

data(CNOlistDREAM,package="CellNOptR")
data(DreamModel,package="CellNOptR")
PKNgraph<-sif2graph(model2sif(DreamModel))

method="ARACNE"
#method="CLR"
DDN<-MIinference(CNOlist=CNOlistDREAM, method=method,

PKNgraph=PKNgraph, filename=method)

PPINigraph Protein-protein interaction netwrok

Description

The human protein-protein interaction network was built using a unified PPI dataset obtained as
APID (Prieto,C. and De Las Rivas,J. 2006), by the combination of interactions coming from six
source databases. The starting whole dataset was composed by 68488 human physical protein-
protein interactions validated at least by one experimental method and reported in one article pub-
lished in PubMed. From this dataset we obtained two PPI subsets with increasing confidence: a set
of 28971 interactions validated by at least one binary experimental method (binary as defined in (De
Las Rivas,J. and Fontanillo,C. 2010)); a set 6033 interactions validated by at least two experimental
methods, one of them binary.

Usage

PPINigraph
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Format

PPINigraph is an igraph with proteins as nodes and undirected links as physical protein interactions.

Source

This network was bult for the analysis performed in (Eduati,F. et al. 2012)

References

1. F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-
constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-
2317, 2012.

2. C. Prieto, J. De Las Rivas. APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids
Res., 34, W298-302, 2006.

3. J. De Las Rivas, C. Fontanillo. Protein-protein interactions essentials: key concepts to building
and analyzing interactome networks. PLoS Comput.Biol., 6, e1000807, 2010.

UniprotIDdream Uniprot identifiers for proteins in DreamModel

Description

This data object contains the Uniprot identifiers corresponding to DreamModel of CellNOptR pack-
age, in order to associat them with the corresponding nodes in the protein-protein interaction net-
work (PPINigraph).

Usage

UniprotIDdream

Format

UniprotIDdream is a list where each element is a protien of the DreamModel and is associated with
the respective Uniprot identifiers.

Source

This data object is manually derived from the Uniprot database.

References

1. F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-
constrained and data-driven inference of signalling networks. Bioinformatics, 28(18):2311-
2317, 2012.

2. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.
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weighting Weight integrated links.

Description

This function weights links integrated in the model using additional penalty and/or information
from protien-protein interactions networks (PINs).

Usage

weighting(modelIntegr,PKNmodel,CNOlist,integrFac,UniprotID,PPI)

Arguments

modelIntegr the integrated model as created by mapDDN2model or mapBTables2model

PKNmodel the model of the original prior-knowledge network

CNOlist a CNOlisi, as created by makeCNOlist

integrFac a number indicating the penalty for integrated links

UniprotID a list with the Uniprot identifiers of proteins in the PKN

PPI an igraph of the PIN to be used, if no network is provided (=NULL) this infor-
mation is not used. Default is NULL.

Details

Integrated links are less reliable than links from the PKN, thus should be penalized in the optimiza-
tion process. This function allows to include a panalty for integrated links (integrFact). Furthermore
links can be differently prioritized based on information derived from pritein interaction networks
(PIN): the basic idea is that if, for a directed link A -> B integrated in the PKN, there is a corre-
sponding path in the PIN, it is more plausible that there is a molecular pathway A -> B. Because
shorter paths are more feasible, as a first approximation the shortest path length between A and
B in the PIN can be used as a reliability score for the integrated link. Since the optimization is
performed on a compressed version of the PKN, one link integrated in the compressed network
generally corresponds to multiple possible links integrated in the PKN and the shortes path of all.
The weight for each integrated link in the compressed network is thus computed as (1 + the inverse
of the sum of the inverse of the corresponding PKN of the shortest paths in the PIN). A high quality
network of known human physical protein-protein interaction assembled from multiple databases
is provided with the package: interactions were included only if validated by at least one binary
experimental method in a published paper and the number of experimental evidences was reported
for each interaction.

Value

modelIntegr the input modelIntegr with an additional field: a vector with the weights of the
integrated links
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Author(s)

F.Eduati

See Also

mapDDN2model, mapBTables2model, gaBinaryT1W

Examples

data(CNOlistDREAM,package="CellNOptR")
data(DreamModel,package="CellNOptR")
data(UniprotIDdream,package="CNORfeeder")

model<-preprocessing(data=CNOlistDREAM, model=DreamModel)

BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))
modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)

modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
CNOlist=CNOlistDREAM, integrFac=10)

# weighting using PPI might take some minutes
## Not run:
data(UniprotIDdream,package="CNORfeeder")
data(PPINigraph,package="CNORfeeder")
modelIntegrWeight2 <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,

CNOlist=CNOlistDREAM, integrFac=10, UniprotID=UniprotIDdream,
PPI=PPINigraph)

## End(Not run)
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