Likelihood calculations for vsn

Wolfgang Huber

May 1, 2024

Contents

1		1
2	Setup and Notation.	1
3	Likelihood for Incremental Normalization	2
4	Profile Likelihood	3
5	Summary	5

Introduction 1

This vignette contains the computations that underlie the numerical code of vsn. If you are a new user and looking for an introduction on how to use vsn, please refer to the vignette Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation

Consider the model

 $\operatorname{arsinh}\left(f(b_i) \cdot y_{ki} + a_i\right) = \mu_k + \varepsilon_{ki}$

1

where μ_k , for $k=1,\ldots,n$, and $a_i,\ b_i$, for $i=1,\ldots,d$ are real-valued parameters, f is a function $\mathbb{R} \to \mathbb{R}$ (see below), and ε_{ki} are i.i.d. Normal with mean 0 and variance σ^2 . y_{ki} are the data. In applications to μ array data, k indexes the features and i the arrays and/or colour channels.

Examples for f are f(b) = b and $f(b) = e^{b}$. The former is the most obvious choice; in that case we will usually need to require $b_i > 0$. The choice $f(b) = e^b$ assures that the factor in front of y_{ki} is positive for all $b \in \mathbb{R}$, and as it turns out, simplifies some of the computations.

In the following calculations, I will also use the notation

$$Y \equiv Y(y, a, b) = f(b) \cdot y + a$$

$$h \equiv h(y, a, b) = \operatorname{arsinh} (f(b) \cdot y + a).$$
3

The probability of the data $(y_{ki})_{k=1...n,\ i=1...d}$ lying in a certain volume element of y-space (hyperrectangle with sides $[y_{ki}^{\alpha}, y_{ki}^{\beta}]$) is

$$P = \prod_{k=1}^{n} \prod_{i=1}^{d} \int_{y_{k_i}^{\alpha}}^{y_{k_i}^{\beta}} dy_{k_i} \ p_{\text{Normal}}(h(y_{k_i}), \mu_k, \sigma^2) \ \frac{dh}{dy}(y_{k_i}),$$

where μ_k is the expectation value for feature k and σ^2 the variance. With

$$p_{\text{Normal}}(x,\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
5

the likelihood is

$$L = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^{nd} \prod_{k=1}^n \prod_{i=1}^d \exp\left(-\frac{(h(y_{ki}) - \mu_k)^2}{2\sigma^2}\right) \cdot \frac{dh}{dy}(y_{ki}).$$

For the following, I will need the derivatives

$$\frac{\partial Y}{\partial a} = 1$$

$$\frac{\partial Y}{\partial b} = y \cdot f'(b) \tag{8}$$

$$\frac{dh}{dy} = \frac{f(b)}{\sqrt{1 + (f(b)y + a)^2}} = \frac{f(b)}{\sqrt{1 + Y^2}},$$
9

$$\frac{\partial h}{\partial a} = \frac{1}{\sqrt{1+Y^2}},$$

$$\frac{\partial h}{\partial b} = \frac{y}{\sqrt{1+Y^2}} \cdot f'(b).$$
 11

Note that for f(b) = b, we have f'(b) = 1, and for $f(b) = e^b$, $f'(b) = f(b) = e^b$.

3 Likelihood for Incremental Normalization

Here, incremental normalization means that the model parameters μ_1, \ldots, μ_n and σ^2 are already known from a fit to a previous set of μ arrays, i. e. a set of reference arrays. See Section 4 for the profile likelihood approach that is used if μ_1, \ldots, μ_n and σ^2 are not known and need to be estimated from the same data. Versions ≥ 2.0 of the vsn package implement both of these approaches; in versions 1.X only the profile likelihood approach was implemented, and it was described in the initial publication [1].

First, let us note that the likelihood **6** is simply a product of independent terms for different i. We can optimize the parameters (a_i, b_i) separately for each $i = 1, \ldots, d$. From the likelihood **6** we get the *i*-th negative log-likelihood

$$-\log(L) = \sum_{i=1}^{d} -LL_{i}$$

$$-LL_{i} = \frac{n}{c} \log(2\pi\sigma^{2}) + \sum_{k=1}^{n} \left(\frac{(h(y_{ki}) - \mu_{k})^{2}}{2} + \log\frac{\sqrt{1+Y_{ki}^{2}}}{2} \right)$$
13

$$= \frac{n}{2} \log \left(2\pi\sigma^2\right) - n \log f(b_i) + \sum_{k=1}^n \left(\frac{(h(y_{ki}) - \mu_k)^2}{2\sigma^2} + \frac{1}{2} \log \left(1 + Y_{ki}^2\right)\right)$$
14

This is what we want to optimize as a function of a_i and b_i . The optimizer benefits from the derivatives. The derivative with respect to a_i is

$$\frac{\partial}{\partial a_{i}}(-LL_{i}) = \sum_{k=1}^{n} \left(\frac{h(y_{ki}) - \mu_{k}}{\sigma^{2}} + \frac{Y_{ki}}{\sqrt{1 + Y_{ki}^{2}}} \right) \cdot \frac{1}{\sqrt{1 + Y_{ki}^{2}}} = \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^{2}} + A_{ki}Y_{ki} \right) A_{ki}$$
¹⁵

and with respect to b_i

$$\frac{\partial}{\partial b_i}(-LL_i) = -n\frac{f'(b_i)}{f(b_i)} + \sum_{k=1}^n \left(\frac{h(y_{ki}) - \mu_k}{\sigma^2} + \frac{Y_{ki}}{\sqrt{1 + Y_{ki}^2}}\right) \cdot \frac{y_{ki}}{\sqrt{1 + Y_{ki}^2}} \cdot f'(b_i)$$
$$= -n\frac{f'(b_i)}{f(b_i)} + f'(b_i)\sum_{k=1}^n \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki}\right)A_{ki}y_{ki}$$
 16

Here, I have introduced the following shorthand notation for the "intermediate results" terms

$$r_{ki} = h(y_{ki}) - \mu_k \tag{17}$$

$$A_{ki} = \frac{1}{\sqrt{1 + Y_{ki}^2}}.$$
18

Variables for these intermediate values are also used in the C code to organise the computations of the gradient.

4 Profile Likelihood

If μ_1, \ldots, μ_n and σ^2 are not already known, we can plug in their maximum likelihood estimates, obtained from optimizing LL for μ_1, \ldots, μ_n and σ^2 :

1

$$\hat{\mu}_k = \frac{1}{d} \sum_{j=1}^{u} h(y_{kj})$$
 19

$$\hat{\sigma}^2 = \frac{1}{nd} \sum_{k=1}^n \sum_{j=1}^d (h(y_{kj}) - \hat{\mu}_k)^2$$
²⁰

into the negative log-likelihood. The result is called the negative profile log-likelihood

$$-PLL = \frac{nd}{2}\log\left(2\pi\hat{\sigma}^2\right) + \frac{nd}{2} - n\sum_{j=1}^d\log f(b_j) + \frac{1}{2}\sum_{k=1}^n\sum_{j=1}^d\log\sqrt{1+Y_{kj}^2}.$$
 21

Note that this no longer decomposes into a sum of terms for each j that are independent of each other – the terms for different j are coupled through Equations 19 and 20. We need the following derivatives.

$$\frac{\partial \hat{\sigma}^2}{\partial a_i} = \frac{2}{nd} \sum_{k=1}^n r_{ki} \frac{\partial h(y_{ki})}{\partial a_i}$$
$$= \frac{2}{nd} \sum_{k=1}^n r_{ki} A_{ki}$$

$$\frac{\partial \hat{\sigma}^2}{\partial b_i} = \frac{2}{nd} \cdot f'(b_i) \sum_{k=1}^n r_{ki} A_{ki} y_{ki}$$
²³

So, finally

$$\frac{\partial}{\partial a_i}(-PLL) = \frac{nd}{2\hat{\sigma}^2} \cdot \frac{\partial \hat{\sigma}^2}{\partial a_i} + \sum_{k=1}^n A_{ki}^2 Y_{ki}$$

$$= \sum_{k=1}^n \left(\frac{r_{ki}}{\hat{\sigma}^2} + A_{ki}Y_{ki}\right) A_{ki}$$

$$\frac{\partial}{\partial b_i}(-PLL) = -n\frac{f'(b_i)}{f(b_i)} + f'(b_i) \sum_{k=1}^n \left(\frac{r_{ki}}{\hat{\sigma}^2} + A_{ki}Y_{ki}\right) A_{ki}y_{ki}$$
24

5 Summary

Likelihoods, from Equations 12 and 21:

$$-LL_{i} = \underbrace{\frac{n}{2}\log(2\pi\sigma^{2})}_{\text{scale}} + \underbrace{\sum_{k=1}^{n} \frac{(h(y_{ki}) - \mu_{k})^{2}}{2\sigma^{2}}}_{\text{residuals}} - n\log f(b_{i}) + \frac{1}{2} \sum_{k=1}^{n} \log(1 + Y_{ki}^{2})$$

$$= \underbrace{\frac{nd}{2}\log(2\pi\hat{\sigma}^{2})}_{\text{scale}} + \underbrace{\frac{nd}{2}}_{\text{residuals}} + \underbrace{\sum_{i=1}^{d} \left(-n\log f(b_{i}) + \frac{1}{2} \sum_{k=1}^{n} \log(1 + Y_{ki}^{2})\right)}_{\text{jacobian}}$$

$$= \underbrace{\frac{nd}{2}\log(2\pi\hat{\sigma}^{2})}_{\text{scale}} + \underbrace{\frac{nd}{2}}_{\text{residuals}} + \underbrace{\sum_{i=1}^{d} \left(-n\log f(b_{i}) + \frac{1}{2} \sum_{k=1}^{n} \log(1 + Y_{ki}^{2})\right)}_{\text{jacobian}}$$

The computations in the C code are organised into steps for computing the terms "scale", "residuals" and "jacobian".

Partial derivatives with respect to a_i , from Equations 15 and 24:

$$\frac{\partial}{\partial a_i}(-LL_i) = \sum_{k=1}^n \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki}\right) A_{ki}$$
²⁸

$$\frac{\partial}{\partial a_i}(-PLL) = \sum_{k=1}^n \left(\frac{r_{ki}}{\hat{\sigma}^2} + A_{ki}Y_{ki}\right) A_{ki}$$
²⁹

Partial derivatives with respect to b_i , from Equations 16 and 25:

$$\frac{\partial}{\partial b_i}(-LL_i) = -n\frac{f'(b_i)}{f(b_i)} + f'(b_i)\sum_{k=1}^n \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki}\right)A_{ki}y_{ki}$$

$$30$$

$$\frac{\partial}{\partial b_i}(-PLL) = -n\frac{f'(b_i)}{f(b_i)} + f'(b_i)\sum_{k=1}^n \left(\frac{r_{ki}}{\hat{\sigma}^2} + A_{ki}Y_{ki}\right)A_{ki}y_{ki}.$$
31

Note that the terms have many similarities – this is used in the implementation in the C code.

References

- W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance stablization applied to microarray data calibration and to quantification of differential expression. *Bioinformatics*, 18:S96–S104, 2002.
- [2] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Parameter estimation for the calibration and variance stabilization of microarray data. *Statistical Applications in Genetics and Molecular Biology*, Vol. 2: No. 1, Article 3, 2003. http://www.bepress.com/sagmb/vol2/iss1/art3