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1 Introduction

The piano package is intended as a platform for performing gene set analysis (GSA) using a
selection of available methods (some of which are also implemented in separate packages or other
software). The advantage with using piano is that all of these methods can be run using the same
setup, resulting in minimal effort for the user when switching between methods. Additionally,
piano contains a new approach which divides the gene set results into directionality classes,
giving deeper information. Further on, piano contains functions to perform consensus analysis
using different GSA methods. The details are presented in [1] and are briefly discussed in
Section 4 - Gene set analysis.

Piano also contains simple functions for basic microarray analysis. The purpose is to offer
a seamless analysis workflow, starting from raw microarray data and ending with GSA results.
Of course other packages and software can be used for the microarray processing and analysis
prior to using piano for GSA, and of course other data than microarray data (e.g. RNA-seq
data) can be used as input to the GSA.

Section 2 covers installation, Section 3 covers microarray analysis and Section 4 covers GSA.
More specific information, than mentioned in this introduction, regarding these topics can be
found in each section below.

1.1 Contact

For questions regarding piano, contact the authors at piano.rpkg@gmail.com.

1.2 Citation

If you use piano in your research please cite:

Varemo, L., Nielsen, J., Nookaew, I. (2013) Enriching the gene set analysis of genome-
wide data by incorporating directionality of gene expression and combining statistical
hypotheses and methods. Nucleic Acids Research. 41 (8), 4378-4391. doi:10.1093/nar/gkt111
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2 Getting started

A general introduction to R and apropriate tutorials can be found online, e.g. on the CRAN
webpage (http://cran.r-project.org/).

2.1 Installation and first run

Install piano by typing in R:

> install.packages("BiocManager")

> BiocManager::install("piano")

Once everything is installed you can load piano into your workspace:

> library(piano)

Note that this command has to be run every time you restart R in order to be able to use the
functions in piano. To get immediate help on piano or any of its functions (e.g. runGSA), type:

> ?piano

> ?runGSA

2.2 Optional requirements

To install all optionally required packages, simply run:

> BiocManager::install("piano", dependencies=TRUE)

This should install everything you need! If you only want to install selected packages, use the
following guidelines:

If you plan to use piano for basic microarray analysis (e.g. normalization of raw-data, quality
control and differential expression analysis) it is suggested that you also install the following
packages for full functionality:

> pkgs <- c("yeast2.db", "limma", "affy", "plier", "affyPLM", "gtools", "plotrix")

> BiocManager::install(pkgs)

If you wish to import SBML models to be used to define gene sets you will need the Bioconductor
package rsbml. Note that rsbml requires the open-source API LibSBML to be installed on your
system (see http://sbml.org/Downloads and rsbml at Bioconductor).

In order to run all the examples in this vignette, you will also need the Bioconductor package
biomaRt.
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3 Microarray analysis

This section will cover the use of piano for basic microarray analysis. For instructions on
the major purpose of piano, gene set analysis (GSA), please see the next section. A common
starting point of gene set analysis is gene expression data, commonly provided by microarrays
although the use of other technologies, such as RNA-sequencing, are increasing. The purpose
with the microarray analysis functions in piano is to provide the user with basic and simple
steps to transform raw data into statistics that are appropriate as input to the GSA. Of course
it is perfectly possible to use other packages or software to analyze data prior to continuing with
GSA using piano, and of course the input data to runGSA is not limited to gene expression data.

Essentially, the microarray analysis functions are wrappers around the popular and widely
used packages affy and limma. Hence, for more advanced analysis the user is referred directly
to those packages. The microarray analysis workflow in piano is as follows: (1) loading raw or
normalized data for preprocessing (loadMAdata), (2) performing quality control (runQC) and (3)
checking for differential expression (diffExp). After these steps it is possible, if one wishes, to
continue with GSA.

3.1 Loading the data

The starting point for the microarray analysis is the loadMAdata function. Typically you want
to load a set of CEL files. This also requires a setup file which describes the experimental setup
and assigns each CEL file to a specific condition. This file can be created e.g. in Notepad or
Excel and saved as a tab-delimited text file. If you name the file ”setup.txt” loadMAdata will
find it automatically. It is also possible to create the setup directly in R:

> # An example setup:

> oxygen <- c("aerobic","anaerobic")

> limitation <- c("Clim","Nlim")

> mySetup <- cbind(oxygen[c(1,1,1,2,2,2,1,1,1,2,2,2)],

+ limitation[c(1,1,1,1,1,1,2,2,2,2,2,2)])

> # The rownames correspond to the CEL-file names (CAE1.CEL etc):

> rownames(mySetup) <- c("CAE1","CAE2","CAE3","CAN1","CAN2","CAN3",

+ "NAE1","NAE2","NAE3","NAN1","NAN2","NAN3")

> colnames(mySetup) <- c("oxygen","limitation")

> # The final setup object can look like this:

> mySetup

oxygen limitation

CAE1 "aerobic" "Clim"

CAE2 "aerobic" "Clim"

CAE3 "aerobic" "Clim"

CAN1 "anaerobic" "Clim"

CAN2 "anaerobic" "Clim"

CAN3 "anaerobic" "Clim"

NAE1 "aerobic" "Nlim"

NAE2 "aerobic" "Nlim"

NAE3 "aerobic" "Nlim"

NAN1 "anaerobic" "Nlim"
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NAN2 "anaerobic" "Nlim"

NAN3 "anaerobic" "Nlim"

No matter if you make the setup in R or in a tab delimited text file, the format should be as
follows: The first column (the rownames if in R) should contain the names of the CEL files and
additional columns should assign attributes in some category to each array.

Once you have your setup, either as a file or an object in R, make sure that you are in the
directory of your CEL files, then run:

> # If you have the experimental setup in a file named setup.txt in the

> # working directory:

> myArrayData <- loadMAdata()

>

> # If you have the experimental setup in an object mySetup:

myArrayData <- loadMAdata(setup=mySetup)

The above commands are assuming that you are using yeast 2.0 CEL files, and in this case the
correct annotation and filtering will be applied automatically. If you are using other arrays (or
want to use a custom annotation) you can add the annotation separately. This is done through
the argument annotation, pointed to either a data.frame or the file-name of a tab delimited
text file containing the columns: Probeset ID (the rownames if you use a data.frame), Gene
Name, Chromosome and Chromosome location. If only the Gene Names are available the two
other columns can be set to arbitrary values (e.g. 1), but are still required. The Chromosome
and Chromosome location info is only used in the polar plot (see below).

The loadMAdata function will normalize the raw data (by default using the plier algorithm).
Further on, you can choose whether or not to filter the normalized data, through the filter

argument. If you set this to TRUE only probesets that are included in the annotation will be kept
for further analysis.

It is also possible to load already normalized data, either from a separate file or from a
data.frame in R. The first column (or rownames if object in R) should be the probeset IDs and
correspond to the ones used in the annotation. The column headers should match the names
used in the setup. Note that if you are loading pre-normalized Yeast 2.0 data, you need to
specify platform="yeast2" in order to get automatic annotation. In other cases just leave this
argument to its default (platform=NULL) and supply separate optional annotation as described
above.

For more details see the help page on loadMAdata (> ?loadMAdata). To have an example
in this vignette we will load data included in the piano package, which is microarray data from
yeast cultivated in aerobic and anaerobic conditions using either carbon limited or nitrogen
limited media [2]. When we load this data we also use the datadir argument to specify the
location of the data, since it is not in our working directory:

> # Get path to example data and setup files:

> dataPath <- system.file("extdata", package="piano")

> # Load pre-normalized data:

> myArrayData <- loadMAdata(datadir=dataPath,

+ dataNorm="norm_data.txt.gz",

+ platform="yeast2")
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The loadMAdata function will return a list-like object of class ArrayData, in this case stored in
myArrayData, containing the elements: dataRaw, dataNorm, setup and annotation:

> myArrayData

ArrayData object

dataNorm: data frame containing normalized expression values

samples: 12

genes: 5705

setup: data frame containing experimental setup

samples: 12

factor categories: 2

annotation: data frame containing annotation information

genes: 5705

You can examine these elements to see that they were correctly loaded:

> # Check the setup:

> myArrayData$setup

oxygen limitation

CAE1 aerobic Clim

CAE2 aerobic Clim

CAE3 aerobic Clim

CAN1 anaerobic Clim

CAN2 anaerobic Clim

CAN3 anaerobic Clim

NAE1 aerobic Nlim

NAE2 aerobic Nlim

NAE3 aerobic Nlim

NAN1 anaerobic Nlim

NAN2 anaerobic Nlim

NAN3 anaerobic Nlim

> # Check the annotation (top 10 rows):

> myArrayData$annotation[1:10,]

geneName chromosome start

1769308_at YKR009C 11 -454352

1769311_at YDL157C 4 -174232

1769312_at YER059W 5 272624

1769313_at YGL059W 7 392223

1769314_at YDR481C 4 -1418550

1769317_at YML113W 13 44045

1769319_at YIL157C 9 -46949

1769320_at YPR003C 16 -561504

1769321_at YNR074C 14 -777602

1769322_s_at YLR154C-H 12 -468827

Note that depending on the input dataRaw and/or annotation may be excluded.
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3.2 Quality control

There are many quality control methods implemented in R. The runQC function collects a selec-
tion of these methods and lets you run them on your loaded and preprocessed data (Figure 1).
The methods that are possible to run depends on if you started from raw data or not. To run
all quality control methods possible for your data, simply type:

> runQC(myArrayData)

In this case a warning message will be given that rnaDeg and nuseRle could not be run due to
that no raw data was available (since we started with pre-normalized data using loadMAdata).
If you wish to run only selected quality control methods this can be specified by a true/false
statement for each appropriate argument. For instance:

> # To only run the PCA:

> runQC(myArrayData, rnaDeg=FALSE, nuseRle=FALSE, hist=FALSE,

+ boxplot=FALSE, pca=TRUE)

> # Additionally, for the PCA you can specify other colors:

> runQC(myArrayData, rnaDeg=FALSE, nuseRle=FALSE, hist=FALSE,

+ boxplot=FALSE, pca=TRUE, colors=c("cyan","orange"))

The quality control may result in the decision to remove some bad arrays, in that case remove
those and reload your data again with loadMAdata.

Figure 1: Example of figures that are produced by the runQC function.
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3.3 Differential expression analysis

Once you have loaded and preprocessed the data and checked the quality, the next step is to
check for differentially expressed genes. The piano package uses the linear models approach of
the limma package [3]. Differential expression analysis can be carried out in many ways. Since
the microarray analysis of piano aims to be simple and straight-forward, the options are limited
to the most common approach. Here, you are required to define two conditions that are to be
compared, and genes that differ in expression between these conditions will be detected. In order
to see the conditions that are assigned to each microarray, use the extractFactors function:

> extractFactors(myArrayData)

$factors

factors

CAE1 aerobic_Clim

CAE2 aerobic_Clim

CAE3 aerobic_Clim

CAN1 anaerobic_Clim

CAN2 anaerobic_Clim

CAN3 anaerobic_Clim

NAE1 aerobic_Nlim

NAE2 aerobic_Nlim

NAE3 aerobic_Nlim

NAN1 anaerobic_Nlim

NAN2 anaerobic_Nlim

NAN3 anaerobic_Nlim

$uniqueFactors

[1] "aerobic_Clim" "anaerobic_Clim" "aerobic_Nlim" "anaerobic_Nlim"

The conditions is simply a merge of the columns of the setup, if these get to specific, try to
reduce the number of columns in the setup. In our case we have four unique conditions. As
an example, we choose to compare yeast cultured in aerobic conditions to yeast in anaerobic
conditions, for carbon limited and nitrogen limited media, separately. To do so, we will use the
diffExp function:

> pfc <- diffExp(myArrayData, contrasts=c("aerobic_Clim - anaerobic_Clim",

+ "aerobic_Nlim - anaerobic_Nlim"))

Note that the compared conditions, called contrasts, are defined in a character vector, where
each condition is separated from the condition it will be compared to, with a ” - ” (do not forget
the spaces). The names of the conditions should match those returned by extractFactors. The
diffExp function returns a list (stored in pfc in the example above) with the elements pValues,
foldChanges and resTable, containing the statistics returned by topTable (in limma). By
default the p-values are adjusted for multiple testing using FDR. To view e.g. the top five
significant genes for each contrast:

> # Sort genes in "aerobic_Clim - anaerobic_Clim" according to adjusted p-value:

> ii <- sort(pfc$resTable[[1]]$adj.P.Val, index.return=TRUE)$ix

> pfc$resTable[[1]][ii[1:5],]
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Figure 2: Example of figures that are produced by the diffExp function.

ProbesetID GeneName logFC AveExpr t P.Value

2492 1774122_at YOR388C 6.129208 8.014575 80.15804 4.527221e-19

655 1770580_at YCR010C 4.859860 8.166250 46.06582 6.409365e-16

5398 1779660_at YLR174W 3.661590 9.559445 45.50038 7.531924e-16

2233 1773640_at YDR046C -4.193094 7.568842 -33.47018 4.125785e-14

5090 1779075_at YPR194C -3.291721 10.668819 -34.04934 3.300794e-14

adj.P.Val B

2492 2.582780e-15 31.91323

655 1.432321e-12 26.56316

5398 1.432321e-12 26.42497

2233 4.707521e-11 22.80293

5090 4.707521e-11 23.01335

> # Sort genes in "aerobic_Nlim - anaerobic_Nlim" according to adjusted p-value:

> ii <- sort(pfc$resTable[[2]]$adj.P.Val, index.return=TRUE)$ix

> pfc$resTable[[2]][ii[1:5],]

ProbesetID GeneName logFC AveExpr t P.Value

914 1771091_at YJR150C -6.530596 9.474928 -34.05358 3.295453e-14

3318 1775717_at YLR413W -4.154929 9.856378 -36.62184 1.279124e-14

4952 1778804_at YER011W -6.305222 11.226470 -33.89155 3.506346e-14

965 1771190_at YGR177C -3.399908 8.735167 -32.27216 6.625773e-14

2556 1774236_at YMR006C -3.106606 10.280228 -31.05631 1.090939e-13

adj.P.Val B

914 6.667901e-11 22.62262

3318 6.667901e-11 23.41626

4952 6.667901e-11 22.56973

965 9.450008e-11 22.02138

2556 1.244761e-10 21.58456

The diffExp function also produces some plots (Figure 2): a Venn diagram, a polar plot,
a heatmap and a volcano plot. The Venn diagram shows the number of differentially expressed
genes for each contrast (by default at a significance level of 0.001, see argument significance).
Which genes the number represent can be accessed through the returned object, in this example
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pfc$vennMembers. The polar plot gives a visualization of differential expression by plotting the
-log10(p-values) against chromosomal location of each gene. The heatmap shows the expression
levels of significant genes (in at least one contrast, significance cutoff controlled by the argument
heatmapCutoff) for all microarrays and clusters similar expression patterns together. The vol-
cano plot shows the magnitude of change versus the significance. Each of these plots can be
turned on/off through the argument plot.

The gene-level statistics, returned by diffExp, can be used to select genes of interest for
further investigation but also passed on to additional global analyses. One common analysis in
this context is gene set analysis which is the main part of piano and is presented in the next
section.
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4 Gene set analysis

This section will give an overview of how to run gene set analysis (GSA) using piano. To not get
too technical, some details are left out here, but described more in detail in the documentation
of each function (e.g. > ?runGSA) as well as in the piano publication and its supplementary
material[1]. Please use these sources if interested in deeper details.

This section is organized in the following way: first a short introduction to GSA is given
(4.1), followed by a description of input data (4.2) and available GSA methods (4.3). Next the
main function runGSA is described (4.4). After this, some examples are presented to showcase
what is possible to do (4.5). Finally, the last part describes how different GSA runs (using
different settings) can be combined into a consensus result (4.6).

4.1 Introduction to gene set analysis

GSA is collective name of statistical methods that analyze the significance of genes, in terms of
gene sets. To give a common example, genes can be grouped by GO terms so that a statistic
for each GO term (gene sets in this case) can be calculated, representing the enrichment of
significant genes within each GO term. One advantage with GSA is that the biological interpre-
tation of gene-level data can be easier to assess using groups of genes that share some common
property, rather than considering each single gene separately. Simply put, the GSA methods
take gene-level statistics as input (i.e. a statistical value for each gene) and calculates gene set
statistics for each defined group of genes (gene sets). The gene-level statistics are commonly
taken from differential expression analysis of transcription data, but can in principle also be
based on genome-wide association studies, proteomics or metabolomics data. For the examples
in this vignette we will focus on gene-level statistics from gene expression studies.

4.2 GSA input data

To run GSA, two inputs are needed:

� Gene-level statistics

� Gene set collection (GSC)

The gene-level statistics are simply represented by a one-columned dataframe (or a named vector)
of numeric values (usually p-values or t-values from a differential expression analysis) with some
kind of gene IDs as rownames. Just to see an example of this we can use the gene-level p-values
of one of the contrasts from the microarray analysis (described in the previous section):

> # Get p-values from the aerobic_Clim vs anaerobic_Clim comparison:

> myPval <- pfc$pValues["aerobic_Clim - anaerobic_Clim"]

> # Display the first values and gene IDs:

> head(myPval)

aerobic_Clim - anaerobic_Clim

1769308_at 2.662353e-08

1769311_at 3.825827e-01

1769312_at 2.300665e-01

1769313_at 3.335551e-03

1769314_at 7.228196e-05

1769317_at 4.930221e-02
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Apart from gene-level statistics, an optional but common input is directions. This simply gives
the direction of expression change of each gene (e.g. fold-changes). This is used to separate up-
regulated and down-regulated genes e.g. when p-values are used as gene-level statistics. If
t-values are used as input, there is no need for directions, since this is given by the sign of
each t-value.

The gene set collection should describe the grouping of genes into gene sets. This can be
defined in many ways and is handled by the loadGSC function. This function loads a gene set
collection into the correct format required by the runGSA function. A simple dummy example:

> # Custom gene to gene set mapping:

> genes2genesets <- cbind(paste("gene",c("A","A","A","B","B","C","C","C","D"),sep=""),

+ paste("set",c(1,2,3,1,3,2,3,4,4),sep=""))

> genes2genesets

[,1] [,2]

[1,] "geneA" "set1"

[2,] "geneA" "set2"

[3,] "geneA" "set3"

[4,] "geneB" "set1"

[5,] "geneB" "set3"

[6,] "geneC" "set2"

[7,] "geneC" "set3"

[8,] "geneC" "set4"

[9,] "geneD" "set4"

> # Load into correct format:

> myGsc <- loadGSC(genes2genesets)

> # View summary:

> myGsc

First 4 (out of 4) gene set names:

[1] "set1" "set2" "set3" "set4"

First 4 (out of 4) gene names:

[1] "geneA" "geneB" "geneC" "geneD"

Gene set size summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 2.00 2.00 2.25 2.25 3.00

No additional info available.

> # View all gene sets:

> myGsc$gsc

$set1

[1] "geneA" "geneB"

$set2
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[1] "geneA" "geneC"

$set3

[1] "geneA" "geneB" "geneC"

$set4

[1] "geneC" "geneD"

After loading a gene set collection using loadGSC it is always recommended to look at the output
(in this case myGsc) so that the given information was correctly interpreted, i.e. that the gene
sets and genes were not swapped and that the distribution of gene set sizes (number of member
genes) seem valid. Using a two-column mapping of all gene to gene set associations, as in the
above example, is a simple way to load custom gene set collections, however some general formats
are also recognized by loadGSC: gmt, sbml and sif (see loadGSC documentation for more info).
Note that the gene names in the gene set collection have to match the gene names used for the
gene-level statistics, i.e. an appropriate gene-level statistics format for the above example would
be:

> myStats <- c(-1.5,-0.5,1,2)

> names(myStats) <- paste("gene",c("A","B","C","D"),sep="")

> myStats

geneA geneB geneC geneD

-1.5 -0.5 1.0 2.0

Note that although the gene names have to match between the gene-level statistics and the
gene set collection, not all genes have to be represented in both. Only genes that have a gene-
level statistic and belong to at least one gene set are used in the GSA. (Detailed note: Actually,
all given gene-level statistics are used for permutation-based significance estimation, regardless
if they belong to a gene set.)

4.3 Available GSA methods

Once you have gene-level statistics and have loaded a gene set collection using loadGSC you can
perform a GSA using runGSA. This function collects a number of GSA methods into the same
platform, meaning that it is easy to test different methods using the same settings, format and
input. The available GSA methods are:

� Fisher’s combined probability test [4]

� Stouffer’s method [5]

� Reporter features [6, 7]

� Parametric analysis of gene set enrichment (PAGE, also implemented in Bioconductor
package PGSEA) [8]

� Tail strength (also implemented in R package samr) [9]

� Wilcoxon rank-sum test (also used by limma)
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� Gene set enrichment analysis (GSEA, R script also available at www.broadinstitute.org/gsea)
[10, 11]

� Mean (also used by limma and R package GSA)

� Median

� Sum

� Maxmean (also implemented in GSA) [12]

For details on these methods, see corresponding references, R packages and the piano publication
[1] (in particular the supplementary methods). The following GSA methods can only accept p-
values as input: fisher, stouffer, reporter and tailStrength. The following methods can
only accept t-values (or similarly formatted statistic): maxmean, gsea and page.

Each GSA method will calculate a statistic for each gene set in the gene set collection. The
significance (gene set p-values) of these gene set statistics can generally be calculated in three
ways: from a theoretical null distribution, by randomizing the gene labels or by randomizing
the sample labels. For fisher, stouffer, reporter, wilcoxon and page, the gene set p-values
can be calculated from a theoretical null-distribution. For all methods, gene sampling or sample
permutation can be used.

4.4 The runGSA function

The main function of piano is runGSA. This section will go into how to use it and its different
arguments and settings, and describe its output (see also the separate runGSA help documenta-
tion). Additional down-stream functions will be described as they are used in the examples in
section 4.5.

4.4.1 A simple run

The runGSA function has many arguments, but a minimum requirement is only the arguments
geneLevelStats and gsc. Using the gene set collection and gene-level statistics created in the
dummy example in section 4.2, a minimal-input run would be executed like this:

> gsaRes <- runGSA(myStats, gsc=myGsc)

The gene names in myStats have to match the gene names used in myGsc and myGsc has to be
an object of class GSC, as returned by loadGSC.

4.4.2 The output of runGSA

Let’s start with looking at the output of runGSA. First, to get a summary of the GSA run and
results stored in gsaRes (assuming you ran the previous line of code), type :

> gsaRes

Final gene/gene-set association: 4 genes and 4 gene-sets

Details:

Calculating gene set statistics from 4 out of 4 gene-level statistics

Using all 4 gene-level statistics for significance estimation
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Removed 0 genes from GSC due to lack of matching gene statistics

Removed 0 gene sets containing no genes after gene removal

Removed additionally 0 gene sets not matching the size limits

Loaded additional information for 0 gene sets

Gene statistic type: t-like

Method: mean

Gene-set statistic name: mean

Significance: Gene sampling

Adjustment: fdr

Gene set size limit: (1,Inf)

Permutations: 10000

Total run time: 0.03 min

Here we get details of the number of genes and gene sets that were used in the analysis, and a
summary of the settings that were used as well as the total runtime. The full output structure
is a list with the following elements (described in the runGSA help text):

> names(gsaRes)

[1] "geneStatType" "geneSetStat" "signifMethod"

[4] "adjMethod" "info" "gsSizeLim"

[7] "gsStatName" "nPerm" "gseaParam"

[10] "geneLevelStats" "directions" "gsc"

[13] "nGenesTot" "nGenesUp" "nGenesDn"

[16] "statDistinctDir" "statDistinctDirUp" "statDistinctDirDn"

[19] "statNonDirectional" "statMixedDirUp" "statMixedDirDn"

[22] "pDistinctDirUp" "pDistinctDirDn" "pNonDirectional"

[25] "pMixedDirUp" "pMixedDirDn" "pAdjDistinctDirUp"

[28] "pAdjDistinctDirDn" "pAdjNonDirectional" "pAdjMixedDirUp"

[31] "pAdjMixedDirDn" "runtime"

This list contains both the input and settings, as well as the result, in principle everything
associated with the GSA run. We will first focus on the main result statistics. These can be
accessed by using the GSAsummaryTable function. This is essentially a table of the number of
genes in each gene set, the gene set statistics and their p-values (normal and adjusted). What
you will notice is that there are three classes: distinct-directional, mixed-directional and non-
directional.

These directionality classes aim to describe different aspects of direction of change of gene
expression on the gene set level. The non-directional class disregards the direction of change and
simply uses the absolute values of the gene-level statistics to calculate the gene set statistics and
the associated p-values. The distinct-directional class takes direction of change into account, so
that gene sets with genes both significantly up-regulated and significantly down-regulated will
cancel out. Finally, the mixed-directional class considers the up-regulated subset and the down-
regulated subset of a gene set separately. Each subset is scored according to the proportion of
significant genes. Let’s use an example to understand this.

Imagine a small gene set with four genes (all significant) and the following gene-level statis-
tics:

16



[1] -4.0 -3.0 2.0 3.5

Now, the gene set statistic of the distinct-directional class would simply be (if using the mean
method):

> mean(c(-4, -3, 2.5, 4.5))

[1] 0

We immediately see that the genes in the gene set do not change in a distinct direction, they
show equal parts of up- and down-regulation. That is, the gene set as a whole does not show
significant patterns of either distinct down- or up-regulation. However, disregarding the direction
of change, using the non-directional class, the gene set suddenly appears to be highly significant:

> mean(abs(c(-4, -3, 2.5, 4.5)))

[1] 3.5

This is because all genes are displaying changes in expression levels between the compared
conditions (albeit in different directions). Looking at the subsets of up- and down-regulated
genes on their own also reveals that the gene set has significant parts of both up- and down
regulation:

> mean(abs(c(-4, -3)))

[1] 3.5

> mean(abs(c(2.5, 4.5)))

[1] 3.5

By calculating and reporting the gene set statistics for all three directionality classes, we get a
more detailed picture of each gene set.

This is just a dummy example with four genes, but in a real scenario we may end up with a
gene set with the following p-values:

p (non.dir) p (dist.dir.up) p (dist.dir.dn) p (mix.dir.up) p (mix.dir.dn)

0.0001 0.0001 0.9999 0.0001 0.0050

Here we see, due to the low non-directional p-value, that the gene set in general is enriched with
significant genes (disregardful of direction of regulation), that the genes tend to be coordinately
(or distinctly) up-regulated but that also the portion of down-regulated genes are on their own
mostly significant. This is probably due to that the gene set contains many (e.g. 95) genes that
are up-regulated and only a few (e.g. 5) that are down regulated.

Genes (tot) Genes (up) Genes (down)

100 95 5

These 5 genes can still be highly significant although the gene set as a whole shows distinct
patterns of up-regulation. Again, taking all these values in to account, rather than basing our
conclusions on only one of the p-values, we get a better picture of in what way the gene set
is significant. The concept is outlined in Figure 3 and discussed more in detail in the piano

publication [1].
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Figure 3: Conceptual overview of the runGSA workflow.

4.4.3 Adjusting settings

Now that we have an idea of the output (most importantly, p-values for each gene set in each
directionality class), we will focus on the different settings. The default GSA method (i.e. the
method of calculating the gene set statistics from the gene-level statistics) is the mean of the
gene-level statistics. Which method to use is controlled by the geneSetStat argument. Be
aware of that the following GSA methods can only accept p-values as input: fisher, stouffer,
reporter and tailStrength, and that the following methods can only accept t-values (or
similarly formatted statistic): maxmean, gsea and page.

Next, the gene set significance calculation method can be set using the signifMethod. The
default is gene sampling, meaning that the gene-level statistics are randomly grouped into fake
gene sets to generate a background distribution of gene set statistics. The number of time the
genes are randomized is controlled by nPerm. The original gene set statistics are compared to
this background in order to infer the gene set p-values. In a similar manner the sample labels
can be randomized (sample permutation), but this has to be done by the user separately (see the
runGSA help text for more info). For the GSA methods fisher, stouffer, reporter, wilcoxon
and page, the gene set p-values can also be calculated from a theoretical null-distribution.

The gene set p-values are by default adjusted for multiple testing using FDR. Other methods
can be applied through the adjMethod argument.

The gsSizeLim argument can be used to control the smallest and largest gene set sizes
allowed in the analysis. For instance, you may wish to remove gene sets with fewer than five
genes (for which you have gene-level statistics for) from the analysis.

The GSEA method is one of the most popular GSA methods and there is dedicated software
for this (www.broadinstitute.org/gsea). In the statistical formulation there is a user-controlled
parameter that defaults to 1. This can be set through the gseaParam argument. For more info
on this see [11].

4.5 GSA examples

The applications of GSA using piano can be presented using a few examples. Here we will also
introduce the down-stream functions geneSetSummary, GSAsummaryTable and networkPlot.

4.5.1 Example 1: A yeast microarray data set and GO terms

As an example of the seamless integration of the microarray analysis part of piano and the
GSA part, we will start with an example using the data from section 3. At that point we ended
up with an object, pfc, containing p-values and fold-changes from the differential expression
analysis (using the diffExp function):

> # Get the p-values for the contrast aerobic_Clim - anaerobic_Clim

> myPval <- pfc$pValues["aerobic_Clim - anaerobic_Clim"]
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> head(myPval)

aerobic_Clim - anaerobic_Clim

1769308_at 2.662353e-08

1769311_at 3.825827e-01

1769312_at 2.300665e-01

1769313_at 3.335551e-03

1769314_at 7.228196e-05

1769317_at 4.930221e-02

> # Get the fold-changes for the contrast aerobic_Clim - anaerobic_Clim

> myFC <- pfc$foldChanges["aerobic_Clim - anaerobic_Clim"]

> head(myFC)

aerobic_Clim - anaerobic_Clim

1769308_at 1.8939411

1769311_at -0.1157152

1769312_at 0.1319669

1769313_at 0.3808714

1769314_at 0.5884535

1769317_at -0.3538557

These values are for differentially expressed genes in yeast cultured in aerobic carbon-limited
media compared to anaerobic carbon-limited media. As we see for the five first genes, the IDs
used are the microarray probeset IDs. This is important to keep in mind when we select or gene
set collection. In this example we will use GO terms as gene sets. The biomaRt package is useful
to access available databases:

> library("biomaRt")

> # Select ensembl database and S. cerevisiae dataset:

> ensembl <- useMart("ENSEMBL_MART_ENSEMBL", dataset="scerevisiae_gene_ensembl" ,host="www.ensembl.org")

> # Map Yeast 2.0 microarray probeset IDs to GO:

> mapGO <- getBM(attributes=c('affy_yeast_2', 'name_1006'),

+ #filters = 'affy_yeast_2',

+ #values = rownames(myPval),

+ mart = ensembl)

> # Remove blanks ("")

> mapGO <- mapGO[mapGO[,2]!="",]

> # Check the 10 first rows to see what we got:

> mapGO[1:10,]

Now that we have a mapping between our probeset IDs and GO terms we can load it into the
correct format using loadGSC:

> myGsc <- loadGSC(mapGO)

We have all our input data and can move on with the runGSA function:

> gsaRes <- runGSA(myPval,myFC,gsc=myGsc,gsSizeLim=c(5,300))
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Checking arguments...done!

Calculating gene set statistics...done!

Calculating gene set significance...done!

Adjusting for multiple testing...done!

> gsaRes

Final gene/gene-set association: 4257 genes and 981 gene sets

Details:

Calculating gene set statistics from 4257 out of 5705 gene-level statistics

Using all 5705 gene-level statistics for significance estimation

Removed 0 genes from GSC due to lack of matching gene statistics

Removed 0 gene sets containing no genes after gene removal

Removed additionally 2783 gene sets not matching the size limits

Loaded additional information for 0 gene sets

Gene statistic type: p-like

Method: mean

Gene-set statistic name: mean

Significance: Gene sampling

Adjustment: fdr

Gene set size limit: (5,300)

Permutations: 10000

Total run time: 4.75 min

Here we limit the analysis to gene sets with at least 5 genes and at most 300 genes. We can save
the results to a file (e.g. for editing in Microsoft Excel):

> GSAsummaryTable(gsaRes, save=TRUE, file="gsaResTab.xls")

To get info on a specific gene set:

> gs <- geneSetSummary(gsaRes, "oxidoreductase activity")

> gs$stats

Name Value

1 Genes (tot) 243.00000

2 Stat (dist.dir.up) 0.47973

3 p (dist.dir.up) 0.03510

4 p adj (dist.dir.up) 0.40038

5 Stat (dist.dir.dn) 0.52027

6 p (dist.dir.dn) 0.96490

7 p adj (dist.dir.dn) 1.00000

8 Stat (non-dir) 0.15741

9 p (non-dir) 0.00000

10 p adj (non-dir) 0.00000

11 Genes (up) 127.00000

12 Stat (mix.dir.up) 0.15511

13 p (mix.dir.up) 0.00130
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Figure 4: The figure produced by networkPlot.

14 p adj (mix.dir.up) 0.10140

15 Genes (dn) 116.00000

16 Stat (mix.dir.dn) 0.15992

17 p (mix.dir.dn) 0.00250

18 p adj (mix.dir.dn) 0.10083

For this particular gene set we can see that it is enriched by significant genes (p-value in the
non-directional class is low). However, the gene set as a whole is not regulated in a distinct
direction (p-values in the distinct-directional class are not significant), although we see that both
the subsets of up-regulated and down-regulated genes are slightly significant (mixed-directional
class). This makes sense since roughly half of the genes are up-regulated and the other half are
down-regulated (127 and 116 genes, respectively).

If we want to visualize the results we can use the function networkPlot (Figure 4):

> nw <- networkPlot(gsaRes,class="non")

Here we select the gene sets that are significant (p<0.001) in the non-directional class (i.e. GO
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terms that are enriched with significant genes, but may contain a mix of up- and down-regulated
genes). The network plot shows the relation between gene sets by connecting those that share
member genes. The thickness of the edges correspond to the number of shared genes. The size
of the nodes correspond to the size of the gene sets. We can see that the GO term we checked
in detail above (oxidoreductase activity) is included in the plot and that it is highly overlapping
with the GO term oxidation-reduction process. We can access the full names of all gene sets
included in the plot through the returned object:

> nw$geneSets

4.5.2 Example 2: Reporter metabolites

An alternative to using GO terms as gene sets is to use so called Reporter Metabolites [6].
Here, a genome-scale metabolic network reconstruction is used to group genes into sets so that
genes that belong to the same gene set are coding for enzymes that catalyze reactions where a
specific metabolite takes part. In other words, each gene set is named after a specific metabolite
and contains the enzyme coding genes that catalyze reactions in which the metabolite takes
part. Enriched, or significant, gene sets (Reporter Metabolites) can be interpreted as metabolic
hotspots, or metabolites around which important transcriptional changes occur. We can use the
loadGSC function to load a gene set collection from a genome-scale metabolic model:

> # An example usage:

> myGsc <- loadGSC("myModel.xml")

In order to save time and space (since the model file size can be large and the extraction of gene
sets can take a while), we have already loaded the gene to gene set associations from two S.
cerevisiae metabolic networks [13, 14] and included them in piano. Let’s load:

> # To load iTO977:

> metMap <- system.file("extdata", "probe2metabolites_iTO977.txt.gz",

+ package="piano")

> # To load iIN800:

> metMap <- system.file("extdata", "probe2metabolites_iIN800.txt.gz",

+ package="piano")

> # Convert into piano format:

> metMap <- read.delim(metMap)

> myGsc <- loadGSC(metMap)

Again, we will use the gene-level statistics (p-values and fold-changes) from section 3:

> gsaRes <- runGSA(myPval,myFC,gsc=myGsc,

+ geneSetStat="reporter",

+ signifMethod="nullDist", nPerm=1000,

+ gsSizeLim=c(5,100))

Checking arguments...done!

Calculating gene set statistics...done!

Calculating gene set significance...done!

Adjusting for multiple testing...done!

> gsaRes
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Final gene/gene-set association: 643 genes and 163 gene-sets

Details:

Calculating gene set statistics from 643 out of 5705 gene-level statistics

Removed 0 genes from GSC due to lack of matching gene statistics

Removed 0 gene sets containing no genes after gene removal

Removed additionally 656 gene sets not matching the size limits

Loaded additional information for 0 gene sets

Gene statistic type: p-like

Method: reporter

Gene-set statistic name: Z

Significance: Theoretical null distribution

Adjustment: fdr

Gene set size limit: (5,100)

Permutations: 1000

Total run time: 0.08 min

Here we decrease the number of permutations to 1000 and only include gene sets that contain
between 5 and 100 genes (this is only to make the example run faster). As you can see, we
choose the gene set statistics to be calculated according to the Reporter features algorithm
(geneSetStat="reporter"). This is the original algorithm for calculating Reporter Metabolites
[6] (but of course other GSA methods can be used as well).

Now, we will use the network plot again, but with some different settings than those in the
previous example:

> nw <- networkPlot(gsaRes, class="distinct", direction="both",

+ significance=0.005, label="numbers")

Here we plot the gene sets that are significant (p<0.005) in either the up-regulated or down-
regulated distinct-directional class. Instead of using the gene set names (metabolites in this
case) as node labels, we use numbers instead, in order to make it less messy (Figure 5). In order
to map the numbers to the names we can type:

> nw$geneSets

1 2

"adenosine[c]" "2-oxoglutarate[c]"

3 4

"L-glutamine[c]" "acetate[c]"

5 6

"AMP[c]" "diphosphate[c]"

7 8

"GTP[c]" "IMP[c]"

9 10

"AMP[m]" "L-asparagine[c]"

11 12

"L-histidine[c]" "L-methionine[c]"

13 14

"L-cysteine[c]" "diphosphate[m]"
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Figure 5: The figure produced by networkPlot.

15 16

"hydrogen peroxide[c]" "malate[c]"

17 18

"isocitrate[c]" "homocysteine[c]"

19 20

"glycerone phosphate[c]" "glyoxylate[c]"

21 22

"succinate[c]" "dolichyl phosphate[c]"

23 24

"glutathione[c]" "xanthosine 5-phosphate[c]"

25 26

"6-phospho-D-gluconate[c]" "3-phospho-D-glycerate[c]"

If we wish to get a list of all gene sets that are significant above some cutoff we can use the
GSAsummaryTable function:

> gsaResTab <- GSAsummaryTable(gsaRes)

> # Which columns contain p-values:

> grep("p \\(",colnames(gsaResTab),value=TRUE)

[1] "p (dist.dir.up)" "p (dist.dir.dn)" "p (non-dir.)" "p (mix.dir.up)"

[5] "p (mix.dir.dn)"
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> grep("p \\(",colnames(gsaResTab))

[1] 4 7 10 14 18

We see that the p-values in the non-directional class (significant gene sets if enriched by signifi-
cant genes, disregardful of up- or down-regulation) are found in column 10. To get a list of gene
sets with non-directional p<0.0001:

> ii <- which(gsaResTab[,10]<0.0001)

> gsaResTab$Name[ii]

[1] "L-glutamate[c]"

[2] "L-tyrosine[c]"

[3] "CO2[c]"

[4] "ethanol[c]"

[5] "NAD(+)[c]"

[6] "NADH[c]"

[7] "H(+)[e]"

[8] "L-glutamate[e]"

[9] "L-tyrosine[e]"

[10] "L-valine[e]"

[11] "L-valine[c]"

[12] "L-serine[e]"

[13] "L-alanine[e]"

[14] "L-alanine[c]"

[15] "L-histidine[c]"

[16] "L-isoleucine[e]"

[17] "L-isoleucine[c]"

[18] "L-leucine[e]"

[19] "L-leucine[c]"

[20] "L-methionine[e]"

[21] "L-phenylalanine[e]"

[22] "L-phenylalanine[c]"

[23] "L-cysteine[e]"

[24] "L-cysteine[c]"

[25] "L-tryptophan[e]"

[26] "isocitrate[c]"

[27] "glyoxylate[c]"

[28] "succinate[c]"

[29] "beta-D-fructofuranose 6-phosphate[c]"

To get a list of gene sets that are significant (p<0.0001) in at least one directionality class:

> # Get minimum p-value for each gene set:

> minPval <- apply(gsaResTab[,c(4,7,10,14,18)],1,min,na.rm=TRUE)

> # Select significant gene sets:

> ii <- which(minPval<0.0001)

> gsaResTabSign <- gsaResTab[ii,c(1,4,7,10,14,18)]

> # Look at the first 10 gene sets:

> gsaResTabSign[1:10,]

25



Figure 6: Multiple results from different GSA runs can be combined using the consensusScores function.

Name p (dist.dir.up) p (dist.dir.dn) p (non-dir.)

13 L-glutamate[c] 0.28666000 7.1334e-01 5.1944e-06

14 2-oxoglutarate[c] 0.00005445 9.9995e-01 2.9012e-04

15 L-tyrosine[c] 0.79939000 2.0061e-01 6.8549e-07

21 CO2[c] 0.45229000 5.4761e-01 4.0322e-05

30 AMP[c] 1.00000000 2.0995e-06 1.3857e-03

31 diphosphate[c] 1.00000000 2.4328e-07 8.0949e-04

33 IMP[c] 0.99994000 5.8821e-05 1.1121e-03

42 ethanol[c] 0.51965000 4.8035e-01 8.7027e-05

43 NAD(+)[c] 0.09722500 9.0274e-01 4.6449e-10

45 NADH[c] 0.28037000 7.1955e-01 2.7628e-11

p (mix.dir.up) p (mix.dir.dn)

13 4.7907e-04 5.1660e-03

14 7.7379e-04 1.5155e-01

15 2.9033e-03 3.0943e-05

21 2.2635e-04 3.6501e-02

30 3.0464e-01 1.1493e-04

31 6.4917e-01 1.0148e-06

33 2.5631e-01 5.3193e-04

42 1.5419e-03 4.5035e-03

43 1.7411e-07 3.0098e-04

45 5.9424e-07 2.4374e-05

4.6 Consensus scoring of gene sets

When you are familiar with running different GSAs using runGSA, you may ask yourself which
settings are the best. We will let you decide on that matter, but offer here a new approach to
combine the results from different runs of GSA into a consensus result (Figure 6). This approach
is discussed in detail in the piano publication [1] and will not be further presented here, except
for some examples of how to apply it.

In order to compute consensus scores we first need to run multiple GSAs. Let’s use the
p-values and t-values as gene-level statistics from the example in section 3:
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> myTval <- pfc$resTable[["aerobic_Clim - anaerobic_Clim"]]$t

> names(myTval) <- pfc$resTable[["aerobic_Clim - anaerobic_Clim"]]$ProbesetID

Now we will run multiple GSAs with different settings, using the GO gene sets from one of the
previous examples:

> myGsc <- loadGSC(mapGO)

> gsaRes1 <- runGSA(myTval,geneSetStat="mean",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

> gsaRes2 <- runGSA(myTval,geneSetStat="median",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

> gsaRes3 <- runGSA(myTval,geneSetStat="sum",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

> gsaRes4 <- runGSA(myTval,geneSetStat="maxmean",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

> gsaRes5 <- runGSA(myPval,myFC,geneSetStat="fisher",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

> gsaRes6 <- runGSA(myPval,myFC,geneSetStat="stouffer",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

> gsaRes7 <- runGSA(myPval,myFC,geneSetStat="tailStrength",gsc=myGsc,

+ nPerm=1000,gsSizeLim=c(10,800))

Once we have several GSA results that we wish to combine we can use the consensusHeatmap

function:

> resList <- list(gsaRes1,gsaRes2,gsaRes3,gsaRes4,gsaRes5,gsaRes6,gsaRes7)

> names(resList) <- c("mean","median","sum","maxmean","fisher",

+ "stouffer","tailStrength")

> ch <- consensusHeatmap(resList,cutoff=30,method="mean")

Figure 7 shows the resulting plot with the gene set consensus scores. In this case, the consensus
score is the mean rank given each gene set by the different GSA runs. This means that a low
score (e.g. 1) is a gene set that is ranked high by most of the GSA methods. To also get an idea
of the significance level of the consensus scored gene sets, the median p-values can be accessed
through:

> ch$pMat

We can see from the heatmap that the gene sets clustered at the upper part are showing patterns
of mostly down-regulation whereas the gene sets in the lower part are showing patterns of mainly
up-regulation. Please see [1] for more information about the consensus scoring approach.
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Figure 7: Heatmap of consensus scores.
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