
edgeR: differential analysis
of sequence read count data

User’s Guide

Yunshun Chen 1,2, Davis McCarthy 3,4, Pedro Baldoni 1,2, Matthew
Ritchie 1,2, Mark Robinson 5, and Gordon Smyth 1,6

1Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
2Department of Medical Biology, University of Melbourne, Victoria, Australia
3St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
4Melbourne Integrative Genomics, University of Melbourne, Victoria, Australia
5Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of
Zurich, Zurich, Switzerland
6School of Mathematics and Statistics, University of Melbourne, Victoria, Australia

First edition 17 September 2008
Last revised 29 April 2024

Contents

1 Introduction . 8

1.1 Scope . 8

1.2 Citation. 8

1.3 How to get help . 10

1.4 Quick start . 11

1.5 Funding . 11

2 Overview of capabilities . 12

2.1 Terminology . 12

2.2 Aligning reads to a genome . 12

2.3 Producing a table of read counts 12

2.4 Reading the counts from a file 13

2.5 Pseudoalignment and quasi-mapping 13

2.6 The DGEList data class . 13

2.7 Filtering . 14

2.8 Normalization . 15

2.8.1 Normalization is only necessary for sample-specific effects 15

2.8.2 Sequencing depth . 15

2.8.3 Effective library sizes . 16

2.8.4 GC content . 16

2.8.5 Gene length . 17

2.8.6 Model-based normalization, not transformation 17

2

edgeR User’s Guide

2.8.7 Pseudo-counts . 17

2.9 Negative binomial models . 18

2.9.1 Introduction . 18

2.9.2 Biological coefficient of variation (BCV) 18

2.9.3 Estimating BCVs . 19

2.9.4 Quasi negative binomial . 20

2.10 The classic edgeR pipeline: pairwise comparisons between
two or more groups . 20

2.10.1 Estimating dispersions . 20

2.10.2 Testing for DE genes . 21

2.11 More complex experiments (glm functionality) 21

2.11.1 Generalized linear models . 21

2.11.2 Estimating dispersions . 22

2.11.3 Testing for DE genes . 23

2.12 What to do if you have no replicates 24

2.13 Differential expression above a fold-change threshold 25

2.14 Gene ontology (GO) and pathway analysis 26

2.15 Gene set testing . 26

2.16 Clustering, heatmaps etc . 27

2.17 Alternative splicing . 28

2.18 Differential transcript expression 28

2.19 CRISPR-Cas9 and shRNA-seq screen analysis 28

2.20 Bisulfite sequencing and differential methylation analysis 29

3 Specific experimental designs 30

3.1 Introduction . 30

3.2 Two or more groups . 30

3.2.1 Introduction . 30

3.2.2 Classic approach . 31

3.2.3 GLM approach . 32

3.2.4 Questions and contrasts . 33

3

edgeR User’s Guide

3.2.5 A more traditional glm approach. 34

3.2.6 An ANOVA-like test for any differences 35

3.3 Experiments with all combinations of multiple factors 36

3.3.1 Defining each treatment combination as a group 36

3.3.2 Nested interaction formulas . 37

3.3.3 Treatment effects over all times 38

3.3.4 Interaction at any time . 38

3.4 Additive models and blocking . 40

3.4.1 Paired samples . 40

3.4.2 Blocking . 41

3.4.3 Batch effects . 42

3.5 Comparisons both between and within subjects 42

4 Case studies . 45

4.1 RNA-Seq of oral carcinomas vs matched normal tissue 45

4.1.1 Introduction . 45

4.1.2 Reading in the data . 45

4.1.3 Annotation . 46

4.1.4 Filtering and normalization . 47

4.1.5 Data exploration . 47

4.1.6 Design matrix . 48

4.1.7 Dispersion estimation . 49

4.1.8 Differential expression . 49

4.1.9 Gene ontology analysis . 51

4.1.10 Setup . 52

4.2 RNA-Seq of pathogen inoculated arabidopsis with batch effects 53

4.2.1 Introduction . 53

4.2.2 RNA samples . 53

4.2.3 Loading the data . 53

4.2.4 Filtering and normalization . 54

4.2.5 Data exploration . 55

4.2.6 Design matrix . 56

4.2.7 Dispersion estimation . 56

4.2.8 Differential expression . 58

4.2.9 Setup . 59

4

edgeR User’s Guide

4.3 Profiles of Yoruba HapMap individuals 60

4.3.1 Background . 60

4.3.2 Loading the data . 60

4.3.3 Filtering and normalization . 61

4.3.4 Dispersion estimation . 62

4.3.5 Differential expression . 63

4.3.6 Gene set testing . 64

4.3.7 Setup . 66

4.4 RNA-Seq profiles of mouse mammary gland 67

4.4.1 Introduction . 67

4.4.2 Read alignment and processing 67

4.4.3 Count loading and annotation 68

4.4.4 Filtering and normalization . 68

4.4.5 Data exploration . 70

4.4.6 Design matrix . 70

4.4.7 Dispersion estimation . 71

4.4.8 Differential expression . 72

4.4.9 ANOVA-like testing . 75

4.4.10 Gene ontology analysis . 76

4.4.11 Gene set testing . 77

4.4.12 Setup . 78

4.5 Differential splicing analysis of Foxp1-deficient mice 80

4.5.1 Introduction . 80

4.5.2 Read alignment and processing 80

4.5.3 Count loading and annotation 81

4.5.4 Filtering and normalization . 81

4.5.5 Data exploration . 82

4.5.6 Design matrix . 83

4.5.7 Dispersion estimation . 84

4.5.8 Differential expression . 84

4.5.9 Alternative splicing . 85

4.5.10 Setup . 87

4.6 Differential transcript expression of human lung adenocarci-
noma cell lines . 88

4.6.1 Introduction . 88

4.6.2 Read pseudoalignment and processing 89

4.6.3 Count loading and annotation 89

5

edgeR User’s Guide

4.6.4 Filtering and normalization . 90

4.6.5 Data exploration . 90

4.6.6 Design matrix . 91

4.6.7 Dispersion estimation . 91

4.6.8 Differential expression . 93

4.6.9 Setup . 94

4.7 CRISPR-Cas9 knockout screen analysis 96

4.7.1 Introduction . 96

4.7.2 Sequence processing. 96

4.7.3 Filtering and data exploration 96

4.7.4 Design matrix . 98

4.7.5 Differential representation analysis 98

4.7.6 Summarization over multiple sgRNAs targeting the same gene . . . 100

4.7.7 Setup . 101

4.7.8 Acknowledgements . 102

4.8 Bisulfite sequencing of mouse oocytes 102

4.8.1 Introduction . 102

4.8.2 Reading in the data . 103

4.8.3 Filtering and normalization . 105

4.8.4 Data exploration . 106

4.8.5 Design matrix . 107

4.8.6 Differential methylation analysis at CpG loci 108

4.8.7 Summarizing counts in promoter regions 110

4.8.8 Differential methylation in gene promoters 111

4.8.9 Setup . 113

4.9 Time course RNA-seq experiments of Drosophila melanogaster
114

4.9.1 Introduction . 114

4.9.2 DEGList object . 115

4.9.3 Gene annotation . 115

4.9.4 Filtering and normalization . 115

4.9.5 Data exploration . 116

4.9.6 Design matrix . 117

4.9.7 Dispersion estimation . 118

4.9.8 Time course trend analysis . 120

4.9.9 Setup . 122

6

edgeR User’s Guide

4.10 Single cell RNA-seq differential expression with pseudo-bulking
123

4.10.1 Introduction . 123

4.10.2 Create pseudo-bulk samples 125

4.10.3 Filtering and normalization . 126

4.10.4 Data exploration . 126

4.10.5 Design matrix . 127

4.10.6 Dispersion estimation . 128

4.10.7 Marker genes identification . 129

4.10.8 Setup . 132

7

Chapter 1

Introduction

1.1 Scope
This guide provides an overview of the Bioconductor package edgeR for differential expres-
sion analyses of read counts arising from RNA-Seq, SAGE or similar technologies [39]. The
package can be applied to any technology that produces read counts for genomic features.
Of particular interest are summaries of short reads from massively parallel sequencing tech-
nologies such as Illumina™, 454 or ABI SOLiD applied to RNA-Seq, SAGE-Seq or ChIP-Seq
experiments, pooled shRNA-seq or CRISPR-Cas9 genetic screens and bisulfite sequencing
for DNA methylation studies. edgeR provides statistical routines for assessing differential
expression in RNA-Seq experiments or differential marking in ChIP-Seq experiments.
The package implements exact statistical methods for multigroup experiments developed by
Robinson and Smyth [41, 42]. It also implements statistical methods based on generalized
linear models (glms), suitable for multifactor experiments of any complexity, developed by
McCarthy et al. [30], Lund et al. [28], Chen et al. [4] and Lun et al. [27]. Sometimes we
refer to the former exact methods as classic edgeR, and the latter as glm edgeR. However
the two sets of methods are complementary and can often be combined in the course of a
data analysis. Most of the glm functions can be identified by the letters “glm” as part of the
function name. The glm functions can test for differential expression using either likelihood
ratio tests[30, 4] or quasi-likelihood F-tests [28, 27].
A particular feature of edgeR functionality, both classic and glm, are empirical Bayes methods
that permit the estimation of gene-specific biological variation, even for experiments with
minimal levels of biological replication.
edgeR can be applied to differential expression at the gene, exon, transcript or tag level. In
fact, read counts can be summarized by any genomic feature. edgeR analyses at the exon level
are easily extended to detect differential splicing or isoform-specific differential expression.
This guide begins with brief overview of some of the key capabilities of package, and then
gives a number of fully worked case studies, from counts to lists of genes.

1.2 Citation
The edgeR package implements statistical methods from the following publications.

8

edgeR User’s Guide

Robinson, MD, and Smyth, GK (2008). Small sample estimation of negative binomial dis-
persion, with applications to SAGE data. Biostatistics 9, 321–332.

Proposed the idea of sharing information between genes by estimating the negative
binomial variance parameter globally across all genes. This made the use of negative
binomial models practical for RNA-Seq and SAGE experiments with small to moderate
numbers of replicates. Introduced the terminology dispersion for the variance parame-
ter. Proposed conditional maximum likelihood for estimating the dispersion, assuming
common dispersion across all genes. Developed an exact test for differential expression
appropriate for the negative binomially distributed counts. Despite the official publica-
tion date, this was the first of the papers to be submitted and accepted for publication.

Robinson, MD, and Smyth, GK (2007). Moderated statistical tests for assessing differences
in tag abundance. Bioinformatics 23, 2881–2887.

Introduced empirical Bayes moderated dispersion parameter estimation. This is a crucial
improvement on the previous idea of estimating the dispersions from a global model, be-
cause it permits gene-specific dispersion estimation to be reliable even for small samples.
Gene-specific dispersion estimation is necessary so that genes that behave consistently
across replicates should rank more highly than genes that do not.

Robinson, MD, McCarthy, DJ, Smyth, GK (2010). edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

Announcement of the edgeR software package. Introduced the terminology coefficient
of biological variation.

Robinson, MD, and Oshlack, A (2010). A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biology 11, R25.

Introduced the idea of model-based library size normalization (aka “scale normaliza-
tion”) for RNA-Seq data. Proposed the TMM normalization method.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-
4297.

Extended negative binomial differential expression methods to glms, making the meth-
ods applicable to general experiments. Introduced the use of Cox-Reid approximate
conditional maximum likelihood for estimating the dispersion parameters, and used this
for empirical Bayes moderation. Developed fast algorithms for fitting glms to thousands
of genes in parallel. Gives a more complete explanation of the concept of biological co-
efficient of variation.

Lun, ATL, Chen, Y, and Smyth, GK (2016). It’s DE-licious: a recipe for differential expres-
sion analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods in
Molecular Biology 1418, 391–416.

This book chapter explains the glmQLFit and glmQLFTest functions, which are alterna-
tives to glmFit and glmLRT. They replace the chisquare approximation to the likelihood
ratio statistic with a quasi-likelihood F-test, resulting in more conservative and rigorous
type I error rate control.

Chen, Y, Lun, ATL, and Smyth, GK (2014). Differential expression analysis of complex
RNA-seq experiments using edgeR. In: Statistical Analysis of Next Generation Sequence
Data, Somnath Datta and Daniel S Nettleton (eds), Springer, New York.

This book chapter explains the estimateDisp function and the weighted likelihood em-
pirical Bayes method.

9

edgeR User’s Guide

Zhou, X, Lindsay, H, and Robinson, MD (2014). Robustly detecting differential expression
in RNA sequencing data using observation weights. Nucleic Acids Research, 42, e91.

Explains estimateGLMRobustDisp, which is designed to make the downstream tests done
by glmLRT robust to outlier observations.

Dai, Z, Sheridan, JM, Gearing, LJ, Moore, DL, Su, S, Wormald, S, Wilcox, S, O’Connor, L,
Dickins, RA, Blewitt, ME, and Ritchie, ME (2014). edgeR: a versatile tool for the analysis
of shRNA-seq and CRISPR-Cas9 genetic screens. F1000Research 3, 95.

This paper explains the processAmplicons function for obtaining counts from the FASTQ
files of shRNA-seq and CRISPR-Cas9 genetic screens and outlines a general workflow
for analyzing data from such screens.

Chen, Y, Lun, ATL, and Smyth, GK (2016). From reads to genes to pathways: differential
expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
pipeline. F1000Research 5, 1438.

This paper describes a complete workflow of differential expression and pathway analysis
using the edgeR quasi-likelihood pipeline.

Chen, Y, Pal, B, Visvader, JE, and Smyth, GK (2017). Differential methylation analysis
of reduced representation bisulfite sequencing experiments using edgeR. F1000Research 6,
2055.

This paper explains a novel approach of detecting differentially methylated regions
(DMRs) of reduced representation bisulfite sequencing (RRBS) experiments using edgeR.

Chen Y, Chen L, Lun ATL, Baldoni PL, Smyth GK (2024). edgeR 4.0: powerful differential
analysis of sequencing data with expanded functionality and improved support for small counts
and larger datasets. bioRxiv doi: 10.1101/2024.01.21.576131.

Summarizes all the capabilities of the edgeR package with emphasis on recently added
functions.

1.3 How to get help
Most questions about edgeR will hopefully be answered by the documentation or references.
If you’ve run into a question that isn’t addressed by the documentation, or you’ve found
a conflict between the documentation and what the software does, then there is an active
support community that can offer help.
The edgeR authors always appreciate receiving reports of bugs in the package functions or
in the documentation. The same goes for well-considered suggestions for improvements.
All other questions or problems concerning edgeR should be posted to the Bioconductor
support site https://support.bioconductor.org. Please send requests for general assistance
and advice to the support site rather than to the individual authors. Posting questions to
the Bioconductor support site has a number of advantages. First, the support site includes a
community of experienced edgeR users who can answer most common questions. Second, the
edgeR authors try hard to ensure that any user posting to Bioconductor receives assistance.
Third, the support site allows others with the same sort of questions to gain from the answers.
Users posting to the support site for the first time will find it helpful to read the posting guide
at http://www.bioconductor.org/help/support/posting-guide.
The authors do not regularly answer questions posted to other forums, such as Biostars or
SEQAnswers.

10

edgeR User’s Guide

Note that each function in edgeR has its own online help page. For example, a detailed
description of the arguments and output of the estimateDisp function can be read by typing
?estimateDisp or help("estimateDisp") at the Rprompt. If you have a question about any
particular function, reading the function’s help page will often answer the question very
quickly. In any case, it is good etiquette to check the relevant help page first before posting
a question to the support site.

1.4 Quick start
edgeR offers many variants on analyses. The glm approach is more popular than the classic
approach as it offers great flexibilities. There are two testing methods under the glm frame-
work: likelihood ratio tests and quasi-likelihood F-tests. The quasi-likelihood (QL) method
is highly recommended for differential expression analyses of bulk RNA-seq data as it gives
stricter error rate control by accounting for the uncertainty in dispersion estimation. The
likelihood ratio test can be useful in some special cases such as single cell RNA-seq and
datasets with no replicates. The details of these methods are described in Chapter 2.
A typical edgeR QL analysis pipeline might look like the following. Here we assume there are
four RNA-Seq libraries in two groups, and the counts are stored in a tab-delimited text file,
with gene symbols in a column called Symbol.
> x <- read.delim("TableOfCounts.txt",row.names="Symbol")

> group <- factor(c(1,1,2,2))

> y <- DGEList(counts=x,group=group)

> keep <- filterByExpr(y)

> y <- y[keep,,keep.lib.sizes=FALSE]

> y <- normLibSizes(y)

> design <- model.matrix(~group)

> fit <- glmQLFit(y,design)

> qlf <- glmQLFTest(fit,coef=2)

> topTags(qlf)

1.5 Funding
The edgeR project has been supported by the National Health and Medical Research Council
(Discovery grant 1050661) and by the Chan Zuckerberg Initiative (Essential Open Source
Software for Science grants 2019-207283 and 2021-237445).

11

Chapter 2

Overview of capabilities

2.1 Terminology
edgeR performs differential abundance analysis for pre-defined genomic features. Although
not strictly necessary, it usually desirable that these genomic features are non-overlapping.
For simplicity, we will hence-forth refer to the genomic features as “genes”, although they
could in principle be transcripts, exons, general genomic intervals or some other type of
feature. For ChIP-seq experiments, abundance might relate to transcription factor binding
or to histone mark occupancy, but we will henceforth refer to abundance as in terms of gene
expression. In other words, the remainder of this guide will use terminology as for a gene-level
analysis of an RNA-seq experiment, although the methodology is more widely applicable than
that.

2.2 Aligning reads to a genome
The first step in an RNA-seq analysis is usually to align the raw sequence reads to a reference
genome, although there are many variations on this process. Alignment needs to allow for the
fact that reads may span multiple exons which may align to well separated locations on the
genome. We find the Subread-featureCounts pipeline [24, 25] to be very fast and effective for
this purpose, but the STAR-featureCounts, STAR-htseq and Bowtie-TopHat-htseq pipelines
are also popular. Subread and featureCounts are particularly convenient because it they
implemented in the Bioconductor R package Rsubread [26].

2.3 Producing a table of read counts
edgeR works on a table of read counts, with rows corresponding to genes and columns to
independent libraries. The counts represent the total number of reads aligning to each gene
(or other genomic locus).
Such counts can be produced from aligned reads by a variety of short read software tools. We
find the featureCounts function of the Rsubread package [25, 26] to be particularly effective
and convenient, but other tools are available such as findOverlaps in the GenomicRanges
package or the Python software htseq-counts.

12

edgeR User’s Guide

Reads can be counted in a number of ways. When conducting gene-level analyses, the counts
could be for reads mapping anywhere in the genomic span of the gene or the counts could be
for exons only. We usually count reads that overlap any exon for the given gene, including
the UTR as part of the first exon [25].
For data from pooled shRNA-seq or CRISPR-Cas9 genetic screens, the processAmplicons

function [11] can be used to obtain counts directly from FASTQ files.
Note that edgeR is designed to work with actual read counts. We not recommend that
predicted transcript abundances are input the edgeR in place of actual counts.

2.4 Reading the counts from a file
If the table of counts has been written to a file, then the first step in any analysis will usually
be to read these counts into an R session.
If the count data is contained in a single tab-delimited or comma-separated text file with
multiple columns, one for each sample, then the simplest method is usually to read the file
into R using one of the standard R read functions such as read.delim. See the quick start
above, or the case study on LNCaP Cells, or the case study on oral carcinomas later in this
guide for examples.
If the counts for different samples are stored in separate files, then the files have to be read
separately and collated together. The edgeR function readDGE is provided to do this. Files
need to contain two columns, one for the counts and one for a gene identifier.

2.5 Pseudoalignment and quasi-mapping
The kallisto and Salmon software tools align sequence reads to the transcriptome instead of
the reference genome and produce estimated counts per transcript. Output from either tool
can be input to edgeR via the tximport package, which produces gene-level estimated counts
and an associated edgeR offset matrix. Alternatively, kallisto or Salmon output can be read
directly into edgeR using the catchSalmon and catchKallisto functions if the intention is to
conduct a transcript-level analysis.

2.6 The DGEList data class
edgeR stores data in a simple list-based data object called a DGEList. This type of object is
easy to use because it can be manipulated like any list in R. The function readDGE makes a
DGEList object directly. If the table of counts is already available as a matrix or a data.frame,
x say, then a DGEList object can be made by
> y <- DGEList(counts=x)

A grouping factor can be added at the same time:
> group <- c(1,1,2,2)

> y <- DGEList(counts=x, group=group)

13

edgeR User’s Guide

The main components of an DGEList object are a matrix counts containing the integer counts,
a data.frame samples containing information about the samples or libraries, and a optional
data.frame genes containing annotation for the genes or genomic features. The data.frame
samples contains a column lib.size for the library size or sequencing depth for each sample.
If not specified by the user, the library sizes will be computed from the column sums of
the counts. For classic edgeR the data.frame samples must also contain a column group,
identifying the group membership of each sample.

2.7 Filtering
Genes with very low counts across all libraries provide little evidence for differential expression.
In the biological point of view, a gene must be expressed at some minimal level before it is likely
to be translated into a protein or to be biologically important. In addition, the pronounced
discreteness of these counts interferes with some of the statistical approximations that are
used later in the pipeline. These genes should be filtered out prior to further analysis.
As a rule of thumb, genes are dropped if they can’t possibly be expressed in all the samples
for any of the conditions. Users can set their own definition of genes being expressed. Usually
a gene is required to have a count of 5-10 in a library to be considered expressed in that
library. Users should also filter with count-per-million (CPM) rather than filtering on the
counts directly, as the latter does not account for differences in library sizes between samples.
Here is a simple example. Suppose the sample information of a DGEList object y is shown as
follows:
> y$samples

group lib.size norm.factors

Sample1 1 10880519 1

Sample2 1 9314747 1

Sample3 1 11959792 1

Sample4 2 7460595 1

Sample5 2 6714958 1

We filter out lowly expressed genes using the following commands:
> keep <- filterByExpr(y)

> y <- y[keep, , keep.lib.sizes=FALSE]

The filterByExpr function keeps rows that have worthwhile counts in a minumum number
of samples (two samples in this case because the smallest group size is two). The function
accesses the group factor contained in y in order to compute the minimum group size, but
the filtering is performed independently of which sample belongs to which group so that no
bias is introduced. It is recommended to recalculate the library sizes of the DGEList object
after the filtering, although the downstream analysis is robust to whether this is done or not.
The group factor or the experimental design matrix can also be given directly to the filterBy

Expr function by
> keep <- filterByExpr(y, group=group)

if not already set in the DGEList object. More generally, filterByExpr can be used with any
design matrix:

14

edgeR User’s Guide

> keep <- filterByExpr(y, design)

In this form, the design matrix can be completely general, even including continuous covari-
ates.
The filtering should be based on the grouping factors or treatment factors that will be involved
in the differential expression teststested for, rather than on blocking variables that are not
of scientific interest in themselves. For example, consider a paired comparison experiment in
which the same treatment regimes applied to each of a number of subjects or patients:
> design <- model.matrix(~ Patient + Treatment)

In this design, Patient is included in the design matrix to correct for baseline differences
between the Patients, but we will not be testing for differential expression between the
Patients. The filtering should therefore be based soley Treatment rather than on Patient, i.e.,

> keep <- filterByExpr(y, group=Treatment)

rather than
> keep <- filterByExpr(y, design)

2.8 Normalization

2.8.1 Normalization is only necessary for sample-specific effects
edgeR is concerned with differential expression analysis rather than with the quantification of
expression levels. It is concerned with relative changes in expression levels between conditions,
but not directly with estimating absolute expression levels. This greatly simplifies the technical
influences that need to be taken into account, because any technical factor that is unrelated
to the experimental conditions should cancel out of any differential expression analysis. For
example, read counts can generally be expected to be proportional to length as well as to
expression for any transcript, but edgeR does not generally need to adjust for gene length
because gene length has the same relative influence on the read counts for each RNA sample.
For this reason, normalization issues arise only to the extent that technical factors have
sample-specific effects.

2.8.2 Sequencing depth
The most obvious technical factor that affects the read counts, other than gene expression
levels, is the sequencing depth of each RNA sample. edgeR adjusts any differential expression
analysis for varying sequencing depths as represented by differing library sizes. This is part of
the basic modeling procedure and flows automatically into fold-change or p-value calculations.
It is always present, and doesn’t require any user intervention.

15

edgeR User’s Guide

2.8.3 Effective library sizes
The second most important technical influence on differential expression is one that is less
obvious. RNA-seq provides a measure of the relative abundance of each gene in each RNA
sample, but does not provide any measure of the total RNA output on a per-cell basis.
In other words, RNA-seq measure relative expression rather than absolute expression. This
becomes important for differential expression analyses when a small number of genes are very
highly expressed in some samples but not in others. If a small proportion of highly expressed
genes consume a substantial proportion of the total library size for a particular sample, this
will cause the remaining genes to be under-sampled for that sample. Unless this effect is
adjusted for, the remaining genes may falsely appear to be down-regulated in that sample
[40].
The normLibSizes function normalizes the library sizes in such a way to minimize the log-fold
changes between the samples for most genes. The default method for computing these scale
factors uses a trimmed mean of M-values (TMM) between each pair of samples [40]. We
call the product of the original library size and the scaling factor the effective library size,
i.e., the normalized library size. The effective library size replaces the original library size in
all downsteam analyses.
TMM is recommended for most RNA-Seq data where the majority (more than half) of the
genes are believed not differentially expressed between any pair of the samples. If y is a
DGEList object, then the following commands perform the TMM normalization and display
the normalization factors.
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors

Sample1 1 10880519 1.17

Sample2 1 9314747 0.86

Sample3 1 11959792 1.32

Sample4 2 7460595 0.91

Sample5 2 6714958 0.83

The set of all normalization factors for a DGEList multiply to unity, ensuring that the geomet-
ric mean of the effective library sizes is the same as the geometric mean of the original library
sizes. A normalization factor below one indicates that a small number of high count genes
are monopolizing the sequencing, causing the counts for other genes to be lower than would
be usual given the library size. As a result, the library size will be scaled down, analogous
to scaling the counts upwards in that library. Conversely, a factor above one scales up the
library size, analogous to downscaling the counts.

2.8.4 GC content
The GC-content of each gene does not change from sample to sample, so it can be expected
to have little effect on differential expression analyses to a first approximation. Recent pub-
lications, however, have demonstrated that sample-specific effects for GC-content can be
detected [38, 20]. The EDASeq [38] and cqn [20] packages estimate correction factors that
adjust for sample-specific GC-content effects in a way that is compatible with edgeR. In each
case, the observation-specific correction factors can be input into the glm functions of edgeR
as an offset matrix.

16

edgeR User’s Guide

2.8.5 Gene length
Like GC-content, gene length does not change from sample to sample, so it can be expected
to have little effect on differential expression analyses. Nevertheless, sample-specific effects
for gene length have been detected [20], although the evidence is not as strong as for GC-
content.

2.8.6 Model-based normalization, not transformation
In edgeR, normalization takes the form of correction factors that enter into the statistical
model. Such correction factors are usually computed internally by edgeR functions, but it
is also possible for a user to supply them. The correction factors may take the form of
scaling factors for the library sizes, such as computed by normLibSizes, which are then used
to compute the effective library sizes. Alternatively, gene-specific correction factors can be
entered into the glm functions of edgeR as offsets. In the latter case, the offset matrix will
be assumed to account for all normalization issues, including sequencing depth and RNA
composition.
Note that normalization in edgeR is model-based, and the original read counts are not them-
selves transformed. This means that users should not transform the read counts in any way
before inputing them to edgeR. For example, users should not enter RPKM or FPKM val-
ues to edgeR in place of read counts. Such quantities will prevent edgeR from correctly
estimating the mean-variance relationship in the data, which is a crucial to the statistical
strategies underlying edgeR. Similarly, users should not add artificial values to the counts
before inputing them to edgeR.
edgeR is not designed to work with estimated expression levels, for example as might be
output by Cufflinks. edgeR can work with expected counts as output by RSEM, but raw
counts are still preferred.

2.8.7 Pseudo-counts
The classic edgeR functions estimateCommonDisp and exactTest produce a matrix of pseudo-
counts as part of the output object. The pseudo-counts are used internally to speed up
computation of the conditional likelihood used for dispersion estimation and exact tests in the
classic edgeR pipeline. The pseudo-counts represent the equivalent counts would have been
observed had the library sizes all been equal, assuming the fitted model. The pseudo-counts
are computed for a specific purpose, and their computation depends on the experimental
design as well as the library sizes, so users are advised not to interpret the psuedo-counts as
general-purpose normalized counts. They are intended mainly for internal use in the edgeR
pipeline.
Disambiguation. Note that some other software packages use the term pseudo-count to
mean something analogous to prior counts in edgeR, i.e., a starting value that is added to a
zero count to avoid missing values when computing logarithms. In edgeR, a pseudo-count is
a type of normalized count and a prior count is a starting value used to offset small counts.

17

edgeR User’s Guide

2.9 Negative binomial models

2.9.1 Introduction
The starting point for an RNA-Seq experiment is a set of n RNA samples, typically associated
with a variety of treatment conditions. Each sample is sequenced, short reads are mapped to
the appropriate genome, and the number of reads mapped to each genomic feature of interest
is recorded. The number of reads from sample i mapped to gene g will be denoted ygi. The
set of genewise counts for sample i makes up the expression profile or library for that sample.
The expected size of each count is the product of the library size and the relative abundance
of that gene in that sample.

2.9.2 Biological coefficient of variation (BCV)
RNA-Seq profiles are formed from n RNA samples. Let πgi be the fraction of all cDNA
fragments in the ith sample that originate from gene g. Let G denote the total number of
genes, so

∑G
g=1 πgi = 1 for each sample. Let

√
ϕg denote the coefficient of variation (CV)

(standard deviation divided by mean) of πgi between the replicates i. We denote the total
number of mapped reads in library i by Ni and the number that map to the gth gene by ygi.
Then

E(ygi) = µgi = Niπgi.

Assuming that the count ygi follows a Poisson distribution for repeated sequencing runs of
the same RNA sample, a well known formula for the variance of a mixture distribution implies:

var(ygi) = Eπ [var(y|π)] + varπ [E(y|π)] = µgi + ϕgµ
2
gi.

Dividing both sides by µ2
gi gives

CV2(ygi) = 1/µgi + ϕg.

The first term 1/µgi is the squared CV for the Poisson distribution and the second is the
squared CV of the unobserved expression values. The total CV2 therefore is the technical
CV2 with which πgi is measured plus the biological CV2 of the true πgi. In this article, we
call ϕg the dispersion and

√
ϕg the biological CV although, strictly speaking, it captures

all sources of the inter-library variation between replicates, including perhaps contributions
from technical causes such as library preparation as well as true biological variation between
samples.
Two levels of variation can be distinguished in any RNA-Seq experiment. First, the relative
abundance of each gene will vary between RNA samples, due mainly to biological causes.
Second, there is measurement error, the uncertainty with which the abundance of each gene
in each sample is estimated by the sequencing technology. If aliquots of the same RNA
sample are sequenced, then the read counts for a particular gene should vary according to a
Poisson law [29]. If sequencing variation is Poisson, then it can be shown that the squared
coefficient of variation (CV) of each count between biological replicate libraries is the sum of
the squared CVs for technical and biological variation respectively,

Total CV2 = Technical CV2 + Biological CV2.

Biological CV (BCV) is the coefficient of variation with which the (unknown) true abundance
of the gene varies between replicate RNA samples. It represents the CV that would remain
between biological replicates if sequencing depth could be increased indefinitely. The technical

18

edgeR User’s Guide

CV decreases as the size of the counts increases. BCV on the other hand does not. BCV
is therefore likely to be the dominant source of uncertainty for high-count genes, so reliable
estimation of BCV is crucial for realistic assessment of differential expression in RNA-Seq
experiments. If the abundance of each gene varies between replicate RNA samples in such
a way that the genewise standard deviations are proportional to the genewise means, a
commonly occurring property of measurements on physical quantities, then it is reasonable
to suppose that BCV is approximately constant across genes. We allow however for the
possibility that BCV might vary between genes and might also show a systematic trend with
respect to gene expression or expected count.
The magnitude of BCV is more important than the exact probabilistic law followed by the true
gene abundances. For mathematical convenience, we assume that the true gene abundances
follow a gamma distributional law between replicate RNA samples. This implies that the read
counts follow a negative binomial probability law.

2.9.3 Estimating BCVs
When a negative binomial model is fitted, we need to estimate the BCV(s) before we carry out
the analysis. The BCV, as shown in the previous section, is the square root of the dispersion
parameter under the negative binomial model. Hence, it is equivalent to estimating the
dispersion(s) of the negative binomial model.
The parallel nature of sequencing data allows some possibilities for borrowing information
from the ensemble of genes which can assist in inference about each gene individually. The
easiest way to share information between genes is to assume that all genes have the same
mean-variance relationship, in other words, the dispersion is the same for all the genes [42].
An extension to this “common dispersion” approach is to put a mean-dependent trend on a
parameter in the variance function, so that all genes with the same expected count have the
same variance.
However, the truth is that the gene expression levels have non-identical and dependent dis-
tribution between genes, which makes the above assumptions too naive. A more general
approach that allows genewise variance functions with empirical Bayes moderation was in-
troduced several years ago [41] and was extended to generalized linear models and thus more
complex experimental designs [30]. Only when using tagwise dispersion will genes that are
consistent between replicates be ranked more highly than genes that are not. It has been
seen in many RNA-Seq datasets that allowing gene-specific dispersion is necessary in order
that differential expression is not driven by outliers. Therefore, the tagwise dispersions are
strongly recommended in model fitting and testing for differential expression.
In edgeR, we apply an empirical Bayes strategy for squeezing the tagwise dispersions towards
a global dispersion trend or towards a common dispersion value. The amount of squeeze
is determined by the weight given to the global value on one hand and the precision of the
tagwise estimates on the other. The relative weights given to the two are determined the prior
and residual degrees of freedom. By default, the prior degrees of freedom, which determines
the amount of empirical Bayes moderation, is estimated by examining the heteroskedasticity
of the data [4].

19

edgeR User’s Guide

2.9.4 Quasi negative binomial
The NB model can be extended with quasi-likelihood (QL) methods to account for gene-
specific variability from both biological and technical sources [28, 27]. Under the QL frame-
work, the variance of the count ygi is a quadratic function of the mean,

var(ygi) = σ2
g(µgi + ϕµ2

gi),

where ϕ is the NB dispersion parameter and σ2
g is the QL dispersion parameter.

Any increase in the observed variance of ygi will be modelled by an increase in the estimates
for ϕ and/or σ2

g . In this model, the NB dispersion ϕ is a global parameter whereas the QL
is gene-specific, so the two dispersion parameters have different roles. The NB dispersion
describes the overall biological variability across all genes. It represents the observed variation
that is attributable to inherent variability in the biological system, in contrast to the Poisson
variation from sequencing. The QL dispersion picks up any gene-specific variability above
and below the overall level.
The common NB dispersion for the entire data set can be used for the global parameter.
In practice, we use the trended dispersions to account for the empirical mean-variance re-
lationships. Since the NB dispersion under the QL framework reflects the overall biological
variability, it does not make sense to use the tagwise dispersions.
Estimation of the gene-specific QL dispersion is difficult as most RNA-seq data sets have
limited numbers of replicates. This means that there is often little information to stably
estimate the dispersion for each gene. To overcome this, an empirical Bayes (EB) approach
is used whereby information is shared between genes [45, 28, 35]. Briefly, a mean-dependent
trend is fitted to the raw QL dispersion estimates. The raw estimates are then squeezed
towards this trend to obtain moderated EB estimates, which can be used in place of the raw
values for downstream hypothesis testing. This EB strategy reduces the uncertainty of the
estimates and improves testing power.

2.10 The classic edgeR pipeline: pairwise comparisons
between two or more groups

2.10.1 Estimating dispersions
edgeR uses the quantile-adjusted conditional maximum likelihood (qCML) method for exper-
iments with single factor.
Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-likelihood
estimator etc.) using an extensive simulation study, qCML is the most reliable in terms of bias
on a wide range of conditions and specifically performs best in the situation of many small
samples with a common dispersion, the model which is applicable to Next-Gen sequenc-
ing data. We have deliberately focused on very small samples due to the fact that DNA
sequencing costs prevent large numbers of replicates for SAGE and RNA-seq experiments.
The qCML method calculates the likelihood by conditioning on the total counts for each
tag, and uses pseudo counts after adjusting for library sizes. Given a table of counts or a
DGEList object, the qCML common dispersion and tagwise dispersions can be estimated using
the estimateDisp() function. Alternatively, one can estimate the qCML common dispersion
using the estimateCommonDisp() function, and then the qCML tagwise dispersions using the
estimateTagwiseDisp() function.

20

edgeR User’s Guide

However, the qCML method is only applicable on datasets with a single factor design since it
fails to take into account the effects from multiple factors in a more complicated experiment.
When an experiment has more than one factor involved, we need to seek a new way of
estimating dispersions.
Here is a simple example of estimating dispersions using the qCML method. Given a DGEList

object y, we estimate the dispersions using the following commands.
To estimate common dispersion and tagwise dispersions in one run (recommended):
> y <- estimateDisp(y)

Alternatively, to estimate common dispersion:
> y <- estimateCommonDisp(y)

Then to estimate tagwise dispersions:
> y <- estimateTagwiseDisp(y)

Note that common dispersion needs to be estimated before estimating tagwise dispersions if
they are estimated separately.

2.10.2 Testing for DE genes
For all the Next-Gen squencing data analyses we consider here, people are most interested
in finding differentially expressed genes/tags between two (or more) groups. Once negative
binomial models are fitted and dispersion estimates are obtained, we can proceed with testing
procedures for determining differential expression using the exact test.
The exact test is based on the qCML methods. Knowing the conditional distribution for the
sum of counts in a group, we can compute exact p-values by summing over all sums of counts
that have a probability less than the probability under the null hypothesis of the observed
sum of counts. The exact test for the negative binomial distribution has strong parallels with
Fisher’s exact test.
As we dicussed in the previous section, the exact test is only applicable to experiments with
a single factor. The testing can be done by using the function exactTest(), and the function
allows both common dispersion and tagwise dispersion approaches. For example:
> et <- exactTest(y)

> topTags(et)

2.11 More complex experiments (glm functionality)

2.11.1 Generalized linear models
Generalized linear models (GLMs) are an extension of classical linear models to nonnormally
distributed response data [14]. GLMs specify probability distributions according to their
mean-variance relationship, for example the quadratic mean-variance relationship specified
above for read counts. Assuming that an estimate is available for ϕg, so the variance can be
evaluated for any value of µgi, GLM theory can be used to fit a log-linear model

logµgi = xT
i βg + logNi

21

edgeR User’s Guide

for each gene [30]. Here xi is a vector of covariates that specifies the treatment conditions
applied to RNA sample i, and βg is a vector of regression coefficients by which the covariate
effects are mediated for gene g. The quadratic variance function specifies the negative
binomial GLM distributional family. The use of the negative binomial distribution is equivalent
to treating the πgi as gamma distributed.

2.11.2 Estimating dispersions
For general experiments (with multiple factors), edgeR uses the Cox-Reid profile-adjusted
likelihood (CR) method in estimating dispersions [30]. The CR method is derived to overcome
the limitations of the qCML method as mentioned above. It takes care of multiple factors by
fitting generalized linear models (GLM) with a design matrix.
The CR method is based on the idea of approximate conditional likelihood [8]. Given a
table counts or a DGEList object and the design matrix of the experiment, generalized linear
models are fitted. This allows valid estimation of the dispersion, since all systematic sources
of variation are accounted for.
The CR method can be used to calculate a common dispersion for all the tags, trended
dispersion depending on the tag abundance, or separate dispersions for individual tags. These
can be done by calling the function estimateDisp() with a specified design. Alternatively, one
can estimate the common, trended and tagwise dispersions separately using estimateGLMCom

monDisp(), estimateGLMTrendedDisp() and estimateGLMTagwiseDisp(), respectively. The tagwise
dispersion approach is strongly recommended in multi-factor experiment cases.
Here is a simple example of estimating dispersions using the GLM method. Given a DGEList

object y and a design matrix, we estimate the dispersions using the following commands.
To estimate common dispersion, trended dispersions and tagwise dispersions in one run
(recommended):
> y <- estimateDisp(y, design)

Alternatively, one can use the following calling sequence to estimate them one by one. To
estimate common dispersion:
> y <- estimateGLMCommonDisp(y, design)

To estimate trended dispersions:
> y <- estimateGLMTrendedDisp(y, design)

To estimate tagwise dispersions:
> y <- estimateGLMTagwiseDisp(y, design)

Note that we need to estimate either common dispersion or trended dispersions prior to
the estimation of tagwise dispersions. When estimating tagwise dispersions, the empirical
Bayes method is applied to squeeze the tagwise dispersions towards a common dispersion or
towards trended dispersions, whichever exists. If both exist, the default is to use the trended
dispersions.
For more detailed examples, see the case study in Section 4.1 (Tuch’s data), Section 4.2
(arabidopsis data), Section 4.3 (Nigerian data) and Section 4.4 (Fu’s data).

22

edgeR User’s Guide

2.11.3 Testing for DE genes
For general experiments, once dispersion estimates are obtained and negative binomial gen-
eralized linear models are fitted, we can proceed with testing procedures for determining
differential expression using either quasi-likelihood (QL) F-test or likelihood ratio test.
While the likelihood ratio test is a more obvious choice for inferences with GLMs, the QL
F-test is preferred as it reflects the uncertainty in estimating the dispersion for each gene. It
provides more robust and reliable error rate control when the number of replicates is small.
The QL dispersion estimation and hypothesis testing can be done by using the functions
glmQLFit() and glmQLFTest().
Given raw counts, NB dispersion(s) and a design matrix, glmQLFit() fits the negative binomial
GLM for each tag and produces an object of class DGEGLM with some new components. This
DGEGLM object can then be passed to glmQLFTest() to carry out the QL F-test. User can select
one or more coefficients to drop from the full design matrix. This gives the null model against
which the full model is compared. Tags can then be ranked in order of evidence for differential
expression, based on the p-value computed for each tag.
As a brief example, consider a situation in which are three treatment groups, each with two
replicates, and the researcher wants to make pairwise comparisons between them. A QL
model representing the study design can be fitted to the data with commands such as:
> group <- factor(c(1,1,2,2,3,3))

> design <- model.matrix(~group)

> fit <- glmQLFit(y, design)

The fit has three parameters. The first is the baseline level of group 1. The second and third
are the 2 vs 1 and 3 vs 1 differences.
To compare 2 vs 1:
> qlf.2vs1 <- glmQLFTest(fit, coef=2)

> topTags(qlf.2vs1)

To compare 3 vs 1:
> qlf.3vs1 <- glmQLFTest(fit, coef=3)

To compare 3 vs 2:
> qlf.3vs2 <- glmQLFTest(fit, contrast=c(0,-1,1))

The contrast argument in this case requests a statistical test of the null hypothesis that
coefficient3−coefficient2 is equal to zero.
To find genes different between any of the three groups:
> qlf <- glmQLFTest(fit, coef=2:3)

> topTags(qlf)

For more detailed examples, see the case study in Section 4.2 (arabidopsis data), Section 4.3
(Nigerian data) and Section 4.4 (Fu’s data).
Alternatively, one can perform likelihood ratio test to test for differential expression. The
testing can be done by using the functions glmFit() and glmLRT(). To apply the likelihood
ratio test to the above example and compare 2 vs 1:

23

edgeR User’s Guide

> fit <- glmFit(y, design)

> lrt.2vs1 <- glmLRT(fit, coef=2)

> topTags(lrt.2vs1)

Similarly for the other comparisons.
For more detailed examples, see the case study in section 4.1 (Tuch’s data)

2.12 What to do if you have no replicates
edgeR is primarily intended for use with data including biological replication. Nevertheless,
RNA-Seq and ChIP-Seq are still expensive technologies, so it sometimes happens that only
one library can be created for each treatment condition. In these cases there are no replicate
libraries from which to estimate biological variability. In this situation, the data analyst is
faced with the following choices, none of which are ideal. We do not recommend any of
these choices as a satisfactory alternative for biological replication. Rather, they are the best
that can be done at the analysis stage, and options 2–4 may be better than assuming that
biological variability is absent.

1. Be satisfied with a descriptive analysis, that might include an MDS plot and an analysis
of fold changes. Do not attempt a significance analysis. This may be the best advice.

2. Simply pick a reasonable dispersion value, based on your experience with similar data,
and use that for exactTest or glmFit. Typical values for the common BCV (square-root-
dispersion) for datasets arising from well-controlled experiments are 0.4 for human data,
0.1 for data on genetically identical model organisms or 0.01 for technical replicates.
Here is a toy example with simulated data:
> bcv <- 0.2

> counts <- matrix(rnbinom(40,size=1/bcv^2,mu=10), 20,2)

> y <- DGEList(counts=counts, group=1:2)

> et <- exactTest(y, dispersion=bcv^2)

Note that the p-values obtained and the number of significant genes will be very sensi-
tive to the dispersion value chosen, and be aware that less well controlled datasets, with
unaccounted-for batch effects and so on, could have in reality much larger dispersions
than are suggested here. Nevertheless, choosing a nominal dispersion value may be
more realistic than ignoring biological variation entirely.

3. Remove one or more explanatory factors from the linear model in order to create
some residual degrees of freedom. Ideally, this means removing the factors that are
least important but, if there is only one factor and only two groups, this may mean
removing the entire design matrix or reducing it to a single column for the intercept.
If your experiment has several explanatory factors, you could remove the factor with
smallest fold changes. If your experiment has several treatment conditions, you could
try treating the two most similar conditions as replicates. Estimate the dispersion from
this reduced model, then insert these dispersions into the data object containing the
full design matrix, then proceed to model fitting and testing with glmFit and glmLRT.
This approach will only be successful if the number of DE genes is relatively small.
In conjunction with this reduced design matrix, you could try estimateGLMCommonDisp

with method="deviance", robust=TRUE and subset=NULL. This is our current best attempt
at an automatic method to estimate dispersion without replicates, although it will only

24

edgeR User’s Guide

give good results when the counts are not too small and the DE genes are a small
proportion of the whole. Please understand that this is only our best attempt to return
something useable. Reliable estimation of dispersion generally requires replicates.

4. If there exist a sizeable number of control transcripts that should not be DE, then the
dispersion could be estimated from them. For example, suppose that housekeeping is
an index variable identifying housekeeping genes that do not respond to the treatment
used in the experiment. First create a copy of the data object with only one treatment
group:
> y1 <- y

> y1$samples$group <- 1

Then estimate the common dispersion from the housekeeping genes and all the libraries
as one group:
> y0 <- estimateDisp(y1[housekeeping,], trend="none", tagwise=FALSE)

Then insert this into the full data object and proceed:
> y$common.dispersion <- y0$common.dispersion

> fit <- glmFit(y, design)

> lrt <- glmLRT(fit)

and so on. A reasonably large number of control transcripts is required, at least a few
dozen and ideally hundreds.

2.13 Differential expression above a fold-change thresh-
old
All the above testing methods identify differential expression based on statistical significance
regardless of how small the difference might be. On the other hand, one might be more
interested in studying genes of which the expression levels change by a certain amount. A
commonly used approach is to conduct DE tests, apply a fold-change cut-off and then rank
all the genes above that fold-change threshold by p-value. In some other cases genes are first
chosen according to a p-value cut-off and then sorted by their fold-changes. These combina-
tions of p-value and fold-change threshold criteria seem to give more biological meaningful
sets of genes than using either of them alone. However, they are both ad hoc and do not
give meaningful p-values for testing differential expressions relative to a fold-change thresh-
old. They favour lowly expressed but highly variable genes and destroy the control of FDR
in general.
edgeR offers a rigorous statistical test for thresholded hypotheses under the GLM framework.
It is analogous to TREAT [31] but much more powerful than the original TREAT method.
Given a fold-change (or log-fold-change) threshold, the thresholded testing can be done by
calling the function glmTreat() on a DGEGLM object produced by either glmFit() or glmQLFit().
In the example shown in Section 2.11.3, suppose we are detecting genes of which the log2-
fold-changes for 1 vs 2 are significantly greater than 1, i.e., fold-changes significantly greater
than 2, we use the following commands:

25

edgeR User’s Guide

> fit <- glmQLFit(y, design)

> tr <- glmTreat(fit, coef=2, lfc=1)

> topTags(tr)

Note that the fold-change threshold in glmTreat() is not the minimum value of the fold-change
expected to see from the testing results. Genes will need to exceed this threshold by some
way before being declared statistically significant. It is better to interpret the threshold as
“the fold-change below which we are definitely not interested in the gene" rather than “the
fold-change above which we are interested in the gene". In the presence of a huge number
of DE genes, a relatively large fold-change threshold may be appropriate to narrow down the
search to genes of interest. In the lack of DE genes, on the other hand, a small or even no
fold-change threshold shall be used.
For more detailed examples, see the case study in Section 4.4 (Fu’s data).

2.14 Gene ontology (GO) and pathway analysis
The gene ontology (GO) enrichment analysis and the KEGG pathway enrichment analysis
are the common downstream procedures to interpret the differential expression results in
a biological context. Given a set of genes that are up- or down-regulated under a certain
contrast of interest, a GO (or pathway) enrichment analysis will find which GO terms (or
pathways) are over- or under-represented using annotations for the genes in that set.
The GO analysis can be performed using the goana() function in edgeR. The KEGG pathway
analysis can be performed using the kegga() function in edgeR. Both goana() and kegga()

take a DGELRT or DGEExact object. They both use the NCBI RefSeq annotation. Therefore, the
Entrez Gene identifier (ID) should be supplied for each gene as the row names of the input
object. Also users should set species according to the organism being studied. The top set
of most enriched GO terms can be viewed with the topGO() function, and the top set of most
enriched KEGG pathways can be viewed with the topKEGG() function.
Suppose we want to identify GO terms and KEGG pathways that are over-represented in
group 2 compared to group 1 from the previous example in Section 2.11.3 assuming the
samples are collected from mice. We use the following commands:
> qlf <- glmQLFTest(fit, coef=2)

> go <- goana(qlf, species="Mm")

> topGO(go, sort="up")

> keg <- kegga(qlf, species="Mm")

> topKEGG(keg, sort="up")

For more detailed examples, see the case study in Section 4.1 (Tuch’s data) and Section 4.4
(Fu’s data).

2.15 Gene set testing
In addition to the GO and pathway analysis, edgeR offers different types of gene set tests
for RNA-Seq data. These gene set tests are the extensions of the original gene set tests in
limma in order to handle DGEList and DGEGLM objects.

26

edgeR User’s Guide

The roast() function performs ROAST gene set tests [49]. It is a self-contained gene set
test. Given a gene set, it tests whether the majority of the genes in the set are DE across
the comparison of interest.
The mroast() function does ROAST tests for multiple sets, including adjustment for multiple
testing.
The fry() function is a fast version of mroast(). It assumes all the genes in a set have equal
variances. Since edgeR uses the z-score equivalents of NB random deviates for the gene set
tests, the above assumption is always met. Hence, fry() is recommended over roast() and
mroast() in edgeR. It gives the same result as mroast() with an infinite number of rotations.
The camera() function performs a competitive gene set test accounting for inter-gene corre-
lation. It tests whether a set of genes is highly ranked relative to other genes in terms of
differential expression [50].
The romer() function performs a gene set enrichment analysis. It implements a GSEA ap-
proach [47] based on rotation instead of permutation.
Unlike goana() and kegga(), the gene set tests are not limited to GO terms or KEGG pathways.
Any pre-defined gene set can be used, for example MSigDB gene sets. A common application
is to use a set of DE genes that was defined from an analysis of an independent data set.
For more detailed examples, see the case study in Section 4.3 (Nigerian’s data) and Section 4.4
(Fu’s data).

2.16 Clustering, heatmaps etc
The function plotMDS draws a multi-dimensional scaling plot of the RNA samples in which
distances correspond to leading log-fold-changes between each pair of RNA samples. The
leading log-fold-change is the average (root-mean-square) of the largest absolute log-fold-
changes between each pair of samples. This plot can be viewed as a type of unsupervised
clustering. The function also provides the option of computing distances in terms of BCV
between each pair of samples instead of leading logFC.
Inputing RNA-seq counts to clustering or heatmap routines designed for microarray data is
not straight-forward, and the best way to do this is still a matter of research. To draw a
heatmap of individual RNA-seq samples, we suggest using moderated log-counts-per-million.
This can be calculated by cpm with positive values for prior.count, for example
> logcpm <- cpm(y, log=TRUE)

where y is the normalized DGEList object. This produces a matrix of log2 counts-per-million
(logCPM), with undefined values avoided and the poorly defined log-fold-changes for low
counts shrunk towards zero. Larger values for prior.count produce stronger moderation of
the values for low counts and more shrinkage of the corresponding log-fold-changes. The
logCPM values can optionally be converted to RPKM or FPKM by subtracting log2 of gene
length, see rpkm().

27

edgeR User’s Guide

2.17 Alternative splicing
edgeR can also be used to analyze RNA-Seq data at the exon level to detect differential
splicing or isoform-specific differential expression. Alternative splicing events are detected by
testing for differential exon usage for each gene, that is testing whether the log-fold-changes
differ between exons for the same gene.
Both exon-level and gene-level tests can be performed simultaneously using the diffSpliceDGE()

function in edgeR. The exon-level test tests for the significant difference between the exon’s
logFC and the overall logFC for the gene. Two testing methods at the gene-level are pro-
vided. The first is to conduct a gene-level statistical test using the exon-level test statistics.
Whether it is a likelihood ratio test or a QL F-test depends on the pipeline chosen. The
second is to convert the exon-level p-values into a genewise p-value by the Simes’ method.
The first method is likely to be powerful for genes in which several exons are differentially
spliced. The Simes’ method is likely to be more powerful when only a minority of the exons
for a gene are differentially spliced.
The top set of most significant spliced genes can be viewed by the topSpliceDGE() function.
The exon-level testing results for a gene of interest can be visualized by the plotSpliceDGE()

function.
For more detailed examples, see the case study in Section 4.5 (Foxp1 data).

2.18 Differential transcript expression
edgeR offers an efficient way to assess differential transcript expression (DTE) [1]. This
strategy is based on the outputs from the lightweight alignment tools kallisto [3] and Salmon
[34]. In particular, the number of reads assigned to each transcript is quantified by kallisto and
Salmon using a probabilistic approach. The read-to-transcript ambiguity is estimated using
bootstrap samples from kallisto and Salmon and interpreted as technical overdispersions.
These technical overdispersions can be incorporated into the downstream DTE analyses by a
count-scaling approach. This allows DTE analyses to be conducted within the current edgeR
framework exactly as for gene-level analyses.
To use edgeR for DTE analyses, users first need to run kallisto or Salmon for pseudo-alignment
and quantification of reads at the transcript level with bootstrap resampling. Then the
transcript-level counts can be imported and the technical overdispersions can be estimated
using the catchKallisto() function or catchSalmon() function.
For more detailed examples, see the case study in Section 4.6 (human lung cell lines data).

2.19 CRISPR-Cas9 and shRNA-seq screen analysis
edgeR can also be used to analyze data from CRISPR-Cas9 and shRNA-seq genetic screens
as described in Dai et al. (2014) [11]. Screens of this kind typically involve the comparison
of two or more cell populations either in the presence or absence of a selective pressure, or as
a time-course before and after a selective pressure is applied. The goal is to identify sgRNAs
(or shRNAs) whose representation changes (either increases or decreases) suggesting that
disrupting the target gene’s function has an effect on the cell.

28

edgeR User’s Guide

To begin, the processAmplicons function can be used to obtain counts for each sgRNA (or
shRNA) in the screen in each sample and organise them in a DGEList for down-stream analysis
using either the classic edgeR or GLM pipeline mentioned above. Next, gene set testing
methods such as camera and roast can be used to summarize results from multiple sgRNAs
or shRNAs targeting the same gene to obtain gene-level results.
For a detailed example, see the case study in Section 4.7 (CRISPR-Cas9 knockout screen
analysis).

2.20 Bisulfite sequencing and differential methylation anal-
ysis
Cytosine methylation is a DNA modification generally associated with transcriptional silencing[43].
edgeR can be used to analyze DNA methylation data generated from bisulfite sequencing
technology[6]. A DNA methylation study often involves comparing methylation levels at
CpG loci between different experimental groups. Differential methylation analyses can be
performed in edgeR for both whole genome bisulfite sequencing (WGBS) and reduced repre-
sentation bisulfite sequencing (RRBS). This is done by considering the observed read counts
of both methylated and unmethylated CpG’s across all the samples. Extra coefficients are
added to the design matrix to represent the methylation levels and the differences of the
methylation levels betweeen groups.
See the case study in Section 4.8 (Bisulfite sequencing of mouse oocytes) for a detailed
worked example of a differential methylation analysis. Another example workflow is given by
Chen et al [6].

29

Chapter 3

Specific experimental designs

3.1 Introduction
In this chapter, we outline the principles for setting up the design matrix and forming contrasts
for some typical experimental designs.
Throughout this chapter we will assume that the read alignment, normalization and dispersion
estimation steps described in the previous chapter have already been completed. We will
assume that a DGEList object y has been created containing the read counts, library sizes,
normalization factors and dispersion estimates.

3.2 Two or more groups

3.2.1 Introduction
The simplest and most common type of experimental design is that in which a number of
experimental conditions are compared on the basis of independent biological replicates of each
condition. Suppose that there are three experimental conditions to be compared, treatments
A, B and C, say. The samples component of the DGEList data object might look like:
> y$samples

group lib.size norm.factors

Sample1 A 100001 1

Sample2 A 100002 1

Sample3 B 100003 1

Sample4 B 100004 1

Sample5 C 100005 1

Note that it is not necessary to have multiple replicates for all the conditions, although it
is usually desirable to do so. By default, the conditions will be listed in alphabetical order,
regardless of the order that the data were read:
> levels(y$samples$group)

[1] "A" "B" "C"

30

edgeR User’s Guide

3.2.2 Classic approach
The classic edgeR approach is to make pairwise comparisons between the groups. For exam-
ple,
> et <- exactTest(y, pair=c("A","B"))

> topTags(et)

will find genes differentially expressed (DE) in B vs A. Similarly
> et <- exactTest(y, pair=c("A","C"))

for C vs A, or
> et <- exactTest(y, pair=c("C","B"))

for B vs C.
Alternatively, the conditions to be compared can be specified by number, so that
> et <- exactTest(y, pair=c(3,2))

is equivalent to pair=c("C","B"), given that the second and third levels of group are B and C

respectively.
Note that the levels of group are in alphabetical order by default, but can be easily changed.
Suppose for example that C is a control or reference level to which conditions A and B are
to be compared. Then one might redefine the group levels, in a new data object, so that C
is the first level:
> y2 <- y

> y2$samples$group <- relevel(y2$samples$group, ref="C")

> levels(y2$samples$group)

[1] "C" "A" "B"

Now
> et <- exactTest(y2, pair=c("A","B"))

would still compare B to A, but
> et <- exactTest(y2, pair=c(1,2))

would now compare A to C.
When pair is not specified, the default is to compare the first two group levels, so
> et <- exactTest(y)

compares B to A, whereas
> et <- exactTest(y2)

compares A to C.

31

edgeR User’s Guide

3.2.3 GLM approach
The glm approach to multiple groups is similar to the classic approach, but permits more
general comparisons to be made. The glm approach requires a design matrix to describe the
treatment conditions. We will usually use the model.matrix function to construct the design
matrix, although it could be constructed manually. There are always many equivalent ways
to define this matrix. Perhaps the simplest way is to define a coefficient for the expression
level of each group:
> design <- model.matrix(~0+group, data=y$samples)

> colnames(design) <- levels(y$samples$group)

> design

A B C

Sample1 1 0 0

Sample2 1 0 0

Sample3 0 1 0

Sample4 0 1 0

Sample5 0 0 1

attr(,"assign")

[1] 1 1 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

Here, the 0+ in the model formula is an instruction not to include an intercept column and
instead to include a column for each group.
One can compare any of the treatment groups using the contrast argument of the glmQLFTest

or glmLRT function. For example,
> fit <- glmQLFit(y, design)

> qlf <- glmQLFTest(fit, contrast=c(-1,1,0))

> topTags(qlf)

will compare B to A. The meaning of the contrast is to make the comparison -1*A + 1*B +

0*C, which is of course is simply B-A.
The contrast vector can be constructed using makeContrasts if that is convenient. The above
comparison could have been made by
> BvsA <- makeContrasts(B-A, levels=design)

> qlf <- glmQLFTest(fit, contrast=BvsA)

One could make three pairwise comparisons between the groups by
> my.contrasts <- makeContrasts(BvsA=B-A, CvsB=C-B, CvsA=C-A, levels=design)

> qlf.BvsA <- glmQLFTest(fit, contrast=my.contrasts[,"BvsA"])

> topTags(qlf.BvsA)

> qlf.CvsB <- glmQLFTest(fit, contrast=my.contrasts[,"CvsB"])

> topTags(qlf.CvsB)

> qlf.CvsA <- glmQLFTest(fit, contrast=my.contrasts[,"CvsA"])

> topTags(qlf.CvsA)

which would compare B to A, C to B and C to A respectively.

32

edgeR User’s Guide

Any comparison can be made. For example,
> qlf <- glmQLFTest(fit, contrast=c(-0.5,-0.5,1))

would compare C to the average of A and B. Alternatively, this same contrast could have
been specified by
> my.contrast <- makeContrasts(C-(A+B)/2, levels=design)

> qlf <- glmQLFTest(fit, contrast=my.contrast)

with the same results.

3.2.4 Questions and contrasts
The glm approach allows an infinite variety of contrasts to be tested between the groups.
This embarassment of riches leads to the question, which specific contrasts should we test?
This answer is that we should form and test those contrasts that correspond to the scientific
questions that we want to answer. Each statistical test is an answer to a particular question,
and we should make sure that our questions and answers match up.
To clarify this a little, we will consider a hypothetical experiment with four groups. The
groups correspond to four different types of cells: white and smooth, white and furry, red
and smooth and red furry. We will think of white and red as being the major group, and
smooth and furry as being a sub-grouping. Suppose the RNA samples look like this:

Sample Color Type Group
1 White Smooth A
2 White Smooth A
3 White Furry B
4 White Furry B
5 Red Smooth C
6 Red Smooth C
7 Red Furry D
8 Red Furry D

To decide which contrasts should be made between the four groups, we need to be clear what
are our scientific hypotheses. In other words, what are we seeking to show?
First, suppose that we wish to find genes that are always higher in red cells than in white
cells. Then we will need to form the four contrasts C-A, C-B, D-A and D-B, and select genes
that are significantly up for all four contrasts.
Or suppose we wish to establish that the difference between Red and White is large compared
to the differences between Furry and Smooth. An efficient way to establish this would be
to form the three contrasts B-A, D-C and (C+D)/2-(A+B)/2. We could confidently make this
assertion for genes for which the third contrast is far more significant than the first two.
Even if B-A and D-C are statistically significant, we could still look for genes for which the fold
changes for (C+D)/2-(A+B)/2 are much larger than those for B-A or D-C.
We might want to find genes that are more highly expressed in Furry cells regardless of color.
Then we would test the contrasts B-A and D-C, and look for genes that are significantly up
for both contrasts.

33

edgeR User’s Guide

Or we want to assert that the difference between Furry over Smooth is much the same
regardless of color. In that case you need to show that the contrast (B+D)/2-(A+C)/2 (the
average Furry effect) is significant for many genes but that (D-C)-(B-A) (the interaction) is
not.

3.2.5 A more traditional glm approach
A more traditional way to create a design matrix in R is to include an intercept term that
represents the first level of the factor. We included 0+ in our model formula above. Had we
omitted it, the design matrix would have had the same number of columns as above, but the
first column would be the intercept term and the meanings of the second and third columns
would change:
> design <- model.matrix(~group, data=y$samples)

> design

(Intercept) groupB groupC

Sample1 1 0 0

Sample2 1 0 0

Sample3 1 1 0

Sample4 1 1 0

Sample5 1 0 1

attr(,"assign")

[1] 0 1 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

Now the first coefficient will measure the baseline logCPM expression level in the first treat-
ment condition (here group A), and the second and third columns are relative to the baseline.
Here the second and third coefficients represent B vs A and C vs A respectively. In other
words, coef=2 now means B-A and coef=3 means C-A, so
> fit <- glmQLFit(y, design)

> qlf <- glmQLFTest(fit, coef=2)

would test for differential expression in B vs A. and
> qlf <- glmQLFTest(fit, coef=3)

would test for differential expression in C vs A.
This parametrization makes good sense when the first group represents a reference or control
group, as all comparison are made with respect to this condition. If we releveled the factor
to make level C the first level (see Section 3.2.2), then the design matrix becomes:
> design2 <- model.matrix(~group, data=y2$samples)

> design2

(Intercept) groupA groupB

Sample1 1 1 0

Sample2 1 1 0

Sample3 1 0 1

Sample4 1 0 1

34

edgeR User’s Guide

Sample5 1 0 0

attr(,"assign")

[1] 0 1 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

Now
> fit2 <- glmQLFit(y, design2)

> qlf <- glmQLFTest(fit2, coef=2)

compares A to C, and
> qlf <- glmQLFTest(fit2, coef=3)

compares B to C. With this parametrization, one could still compare B to A using
> qlf <- glmQLFTest(fit2, contrast=c(0,-1,1))

Note that
> qlf <- glmQLFTest(fit2, coef=1)

should not be used. It would test whether the first coefficient is zero, but it is not meaningful
to compare the logCPM in group A to zero.

3.2.6 An ANOVA-like test for any differences
It might be of interest to find genes that are DE between any of the groups, without specifying
before-hand which groups might be different. This is analogous to a one-way ANOVA test.
In edgeR, this is done by specifying multiple coefficients to glmQLFTest or glmLRT, when the
design matrix includes an intercept term. For example, with fit as defined in the previous
section,
> qlf <- glmQLFTest(fit, coef=2:3)

> topTags(qlf)

will find any genes that differ between any of the treatment conditions A, B or C. Technically,
this procedure tests whether either of the contrasts B-A or C-A are non-zero. Since at least
one of these must be non-zero when differences exist, the test will detect any differences. To
have this effect, the coef argument should specify all the coefficients except the intercept.
Note that this approach does not depend on how the group factor was defined, or how the
design matrix was formed, as long as there is an intercept column. For example
> qlf <- glmQLFTest(fit2, coef=2:3)

gives exactly the same results, even though fit2 and fit were computed using different design
matrices. Here fit2 is as defined in the previous section.

35

edgeR User’s Guide

3.3 Experiments with all combinations of multiple fac-
tors

3.3.1 Defining each treatment combination as a group
We now consider experiments with more than one experimental factor, but in which every
combination of experiment conditions can potentially have a unique effect. For example,
suppose that an experiment has been conducted with an active drug and a placebo, at three
times from 0 hours to 2 hours, with all samples obtained from independent subjects. The
data frame targets describes the treatment conditions applied to each sample:
> targets

Treat Time

Sample1 Placebo 0h

Sample2 Placebo 0h

Sample3 Placebo 1h

Sample4 Placebo 1h

Sample5 Placebo 2h

Sample6 Placebo 2h

Sample7 Drug 0h

Sample8 Drug 0h

Sample9 Drug 1h

Sample10 Drug 1h

Sample11 Drug 2h

Sample12 Drug 2h

As always, there are many ways to setup a design matrix. A simple, multi-purpose approach
is to combine all the experimental factors into one combined factor:
> Group <- factor(paste(targets$Treat,targets$Time,sep="."))

> cbind(targets,Group=Group)

Treat Time Group

Sample1 Placebo 0h Placebo.0h

Sample2 Placebo 0h Placebo.0h

Sample3 Placebo 1h Placebo.1h

Sample4 Placebo 1h Placebo.1h

Sample5 Placebo 2h Placebo.2h

Sample6 Placebo 2h Placebo.2h

Sample7 Drug 0h Drug.0h

Sample8 Drug 0h Drug.0h

Sample9 Drug 1h Drug.1h

Sample10 Drug 1h Drug.1h

Sample11 Drug 2h Drug.2h

Sample12 Drug 2h Drug.2h

Then we can take the same approach as in the previous section on two or more groups. Each
treatment time for each treatment drug is a group:
> design <- model.matrix(~0+Group)

> colnames(design) <- levels(Group)

36

edgeR User’s Guide

> fit <- glmQLFit(y, design)

Then we can make any comparisons we wish. For example, we might wish to make the
following contrasts:
> my.contrasts <- makeContrasts(

+ Drug.1vs0 = Drug.1h-Drug.0h,

+ Drug.2vs0 = Drug.2h-Drug.0h,

+ Placebo.1vs0 = Placebo.1h-Placebo.0h,

+ Placebo.2vs0 = Placebo.2h-Placebo.0h,

+ DrugvsPlacebo.0h = Drug.0h-Placebo.0h,

+ DrugvsPlacebo.1h = (Drug.1h-Drug.0h)-(Placebo.1h-Placebo.0h),

+ DrugvsPlacebo.2h = (Drug.2h-Drug.0h)-(Placebo.2h-Placebo.0h),

+ levels=design)

To find genes responding to the drug at 1 hour:
> qlf <- glmQLFTest(fit, contrast=my.contrasts[,"Drug.1vs0"])

or at 2 hours:
> qlf <- glmQLFTest(fit, contrast=my.contrasts[,"Drug.2vs0"])

To find genes with baseline differences between the drug and the placebo at 0 hours:
> qlf <- glmQLFTest(fit, contrast=my.contrasts[,"DrugvsPlacebo.0h"])

To find genes that have responded differently to the drug and the placebo at 2 hours:
> qlf <- glmQLFTest(fit, contrast=my.contrasts[,"DrugvsPlacebo.2h"])

Of course, it is not compulsory to use makeContrasts to form the contrasts. The coefficients
are the following:
> colnames(fit)

[1] "Drug.0h" "Drug.1h" "Drug.2h" "Placebo.0h" "Placebo.1h" "Placebo.2h"

so
> qlf <- glmQLFTest(fit, contrast=c(-1,0,1,0,0,0))

would find the Drug.2vs0 contrast, and
> qlf <- glmQLFTest(fit, contrast=c(-1,0,1,1,0,-1))

is another way of specifying the DrugvsPlacebo.2h contrast.

3.3.2 Nested interaction formulas
We generally recommend the approach of the previous section, because it is so explicit and
easy to understand. However it may be useful to be aware of more short-hand approach to
form the same contrasts in the previous section using a model formula. First, make sure that
the placebo is the reference level:

37

edgeR User’s Guide

> targets$Treat <- relevel(targets$Treat, ref="Placebo")

Then form the design matrix:
> design <- model.matrix(~Treat + Treat:Time, data=targets)

> fit <- glmQLFit(y, design)

The meaning of this formula is to consider all the levels of time for each treatment drug
separately. The second term is a nested interaction, the interaction of Time within Treat.
The coefficient names are:
> colnames(fit)

[1] "(Intercept)" "TreatDrug" "TreatPlacebo:Time1h"

[4] "TreatDrug:Time1h" "TreatPlacebo:Time2h" "TreatDrug:Time2h"

Now most of the above contrasts are directly available as coefficients:
> qlf <- glmQLFTest(fit, coef=2)

is the baseline drug vs placebo comparison,
> qlf <- glmQLFTest(fit, coef=4)

is the drug effect at 1 hour,
> qlf <- glmQLFTest(fit, coef=6)

is the drug effect at 2 hours, and finally
> qlf <- glmQLFTest(fit, contrast=c(0,0,0,0-1,1))

is the DrugvsPlacebo.2h contrast.

3.3.3 Treatment effects over all times
The nested interaction model makes it easy to find genes that respond to the treatment at
any time, in a single test. Continuing the above example,
> qlf <- glmQLFTest(fit, coef=c(4,6))

finds genes that respond to the treatment at either 1 hour or 2 hours versus the 0 hour
baseline. This is analogous to an ANOVA F -test for a normal linear model.

3.3.4 Interaction at any time
A very traditional approach taken in many statistics textbooks would be to specify our ex-
periment in terms of a factorial model:
> design <- model.matrix(~Treat * Time, data=targets)

which is equivalent to

38

edgeR User’s Guide

> design <- model.matrix(~Treat + Time + Treat:Time, data=targets)

> fit <- glmQLFit(y, design)

While the factorial model has a long history in statistics, the coefficients are more difficult
to interpret than for the design matrices in Sections 3.3.1 or 3.3.2 and the coefficients are
generally less biologically meaningful.
In the factorial model, the coefficient names are:
> colnames(design)

[1] "(Intercept)" "TreatDrug" "Time1h" "Time2h"

[5] "TreatDrug:Time1h" "TreatDrug:Time2h"

Now
> qlf <- glmQLFTest(fit, coef=2)

is again the baseline drug vs placebo comparison at 0 hours, but
> qlf <- glmQLFTest(fit, coef=3)

and
> qlf <- glmQLFTest(fit, coef=4)

are the effects of the reference drug, i.e., the effects of the placebo at 1 hour and 2 hours.
In most experimental studies, none of the above three tests are would be of any particular
scientific interest.
The factorial formula is primarily useful as a way to conduct an overall test for interaction. The
last two coefficients correspond to the interaction contrasts (Drug.1h-Placebo.1h)-(Drug.0h-

Placebo.0h) and (Drug.2h-Placebo.2h)-(Drug.0h-Placebo.0h) respectively, which are the same
as the contrasts DrugvsPlacebo.1h and DrugvsPlacbo.2h defined in Section 3.3.1. Hence
> qlf <- glmQLFTest(fit, coef=5:6)

is useful because it detects genes that respond differently to the drug, relative to the placebo,
at either of the times. In other words, specifying coef=5:6 in the GLM test is a way to test
for interaction between treatment without having to form the interaction contrasts explicitly.
The results will be the same as if we had specified
> qlf <- glmQLFTest(fit, contrast=my.contrasts[,"DrugvsPlacebo.1h","DrugvsPlacebo.2h"])

in Section 3.3.1.

39

edgeR User’s Guide

3.4 Additive models and blocking

3.4.1 Paired samples
Paired samples occur whenever we compare two treatments and each independent subject
in the experiment receives both treatments. Suppose for example that an experiment is
conducted to compare a new treatment (T) with a control (C). Suppose that both the
control and the treatment are administered to each of three patients. This produces the
sample data:

FileName Subject Treatment
File1 1 C
File2 1 T
File3 2 C
File4 2 T
File5 3 C
File6 3 T

This is a paired design in which each subject receives both the control and the active treat-
ment. We can therefore compare the treatment to the control for each patient separately, so
that baseline differences between the patients are subtracted out.
The design matrix is formed from an additive model formula without an interaction term:
> Subject <- factor(targets$Subject)

> Treat <- factor(targets$Treatment, levels=c("C","T"))

> design <- model.matrix(~Subject+Treat)

The omission of an interaction term is characteristic of paired designs. We are not interested
in the effect of the treatment on an individual patient (which is what an interaction term
would examine). Rather we are interested in the average effect of the treatment over a
population of patients.
As always, the dispersion has to be estimated:
> y <- estimateDisp(y,design)

We proceed to fit a linear model and test for the treatment effect. Note that we can omit
the coef argument to glmQLFTest because the treatment effect is the last coefficient in the
model.
> fit <- glmQLFit(y, design)

> qlf <- glmQLFTest(fit)

> topTags(qlf)

This test detects genes that are differentially expressed in response to the active treatment
compared to the control, adjusting for baseline differences between the patients. This test
can be viewed as a generalization of a paired t-test.
See the oral carcinomas case study of Section 4.1 for a fully worked analysis with paired
samples.

40

edgeR User’s Guide

3.4.2 Blocking
Paired samples are a simple example of what is called “blocking” in experimental design. The
idea of blocking is to compare treatments using experimental subjects that are as similar as
possible, so that the treatment difference stands out as clearly as possible.
Suppose for example that we wish to compare three treatments A, B and C using experimental
animals. Suppose that animals from the same litter are appreciably more similar than animals
from different litters. This might lead to an experimental setup like:

FileName Litter Treatment
File1 1 A
File2 1 B
File3 1 C
File4 2 B
File5 2 A
File6 2 C
File7 3 C
File8 3 B
File9 3 A

Here it is the differences between the treatments that are of interest. The differences between
the litters are not of primary interest, nor are we interested in a treatment effect that occurs
for in only one litter, because that would not be reproducible.
We can compare the three treatments adjusting for any baseline differences between the
litters by fitting an additive model:
> Litter <- factor(targets$Litter)

> Treatment <- factor(targets$Treatment)

> design <- model.matrix(~Litter+Treatment)

This creates a design matrix with five columns: three for the litters and two more for the
differences between the treatments.
If fit is the fitted model with this design matrix, then we may proceed as follows. To detect
genes that are differentially expressed between any of the three treatments, adjusting for litter
differences:
> qlf <- glmQLFTest(fit, coef=4:5)

> topTags(qlf)

To detect genes that are differentially expressed in treatment B vs treatment A:
> qlf <- glmQLFTest(fit, coef=4)

> topTags(qlf)

To detect genes that are differentially expressed in treatment C vs treatment A:
> qlf <- glmQLFTest(fit, coef=5)

> topTags(qlf)

To detect genes that are differentially expressed in treatment C vs treatment B:
> qlf <- glmQLFTest(fit, contrast=c(0,0,0,-1,1))

> topTags(qlf)

41

edgeR User’s Guide

The advantage of using litter as a blocking variable in the analysis is that this will make the
comparison between the treatments more precise, if litter-mates are more alike than animals
from different litters. On the other hand, if litter-mates are no more alike than animals
from different litters, which might be so for genetically identical inbred laboratory animals,
then the above analysis is somewhat inefficient because the litter effects are being estimated
unnecessarily. In that case, it would be better to omit litter from the model formula.

3.4.3 Batch effects
Another situation in which additive model formulas are used is when correcting for batch
effects in an experiment. The situation here is analogous to blocking, the only difference
being that the batch effects were probably unintended rather than a deliberate aspect of
the experimental design. The analysis is the same as for blocking. The treatments can be
adjusted for differences between the batches by using an additive model formula of the form:

> design <- model.matrix(~Batch+Treatment)

In this type of analysis, the treatments are compared only within each batch. The analysis is
corrected for baseline differences between the batches.
The Arabidopsis case study in Section 4.2 gives a fully worked example with batch effects.

3.5 Comparisons both between and within subjects
Here is a more complex scenario, posed by a poster to the Bioconductor mailing list. The
experiment has 18 RNA samples collected from 9 subjects. The samples correspond to
3 healthy patients, 3 patients with Disease 1 and 3 patients with Disease 2. Each patient
received two treatments, an active treatment with a hormone and a control treatment without
the hormone. The targets frame looks like this:
> targets

Patient Disease Treatment

1 1 Healthy None

2 1 Healthy Hormone

3 2 Healthy None

4 2 Healthy Hormone

5 3 Healthy None

6 3 Healthy Hormone

7 4 Disease1 None

8 4 Disease1 Hormone

9 5 Disease1 None

10 5 Disease1 Hormone

11 6 Disease1 None

12 6 Disease1 Hormone

13 7 Disease2 None

14 7 Disease2 Hormone

15 8 Disease2 None

16 8 Disease2 Hormone

17 9 Disease2 None

18 9 Disease2 Hormone

42

edgeR User’s Guide

If all the RNA samples were collected from independent subjects, then this would be a
nested factorial experiment, from which we would want to estimate the treatment effect for
each disease group. As it is, however, we have a paired comparison experiment for each
disease group. The feature that makes this experiment complex is that some comparisons
(those between the diseases) are made between patients while other comparisons (hormone
treatment vs no treatment) are made within patients.
This type of experiment is sometimes called a multilevel design or a repeated measures
design. The repeated measures refer to the multiple measurements made on each patient.
The experiment is multilevel in the sense that there are two error levels, one between patients
and one for the repeat measurements within patients. The repeated measurements made on
each patient will typically be more similar to each other than measurements made on different
patients. Hence the variability within patients is typically lower than that between patients.
The easiest way to approach this design is to view it as three paired-comparison experiments,
one for each disease group. We can compare the hormone treatment to the control treatment
separately for each disease group, then contrast how effect the hormone is between the three
disease groups.
For we define the experimental factors:
> Patient <- factor(targets$Patient)

> Disease <- factor(targets$Disease, levels=c("Healthy","Disease1","Disease2"))

> Treatment <- factor(targets$Treatment, levels=c("None","Hormone"))

We need to adjust for baseline differences between the patients, so the first step is to initialize
the design matrix with patient effects:
> design <- model.matrix(~Patient)

Then we define disease-specific treatment effects and append them to the design matrix:
> Healthy.Hormone <- Disease== "Healthy" & Treatment=="Hormone"

> Disease1.Hormone <- Disease=="Disease1" & Treatment=="Hormone"

> Disease2.Hormone <- Disease=="Disease2" & Treatment=="Hormone"

> design <- cbind(design, Healthy.Hormone, Disease1.Hormone, Disease2.Hormone)

After estimating the dispersions (code not shown), we can fit a linear model:
> fit <- glmQLFit(y, design)

To find genes responding to the hormone in Healthy patients:
> qlf <- glmQLFTest(fit, coef="Healthy.Hormone")

> topTags(qlf)

To find genes responding to the hormone in Disease1 patients:
> qlf <- glmQLFTest(fit, coef="Disease1.Hormone")

> topTags(qlf)

To find genes responding to the hormone in Disease2 patients:
> qlf <- glmQLFTest(fit, coef="Disease2.Hormone")

> topTags(qlf)

43

edgeR User’s Guide

To find genes that respond to the hormone in any disease group:
> qlf <- glmQLFTest(fit, coef=10:12)

> topTags(qlf)

To find genes that respond differently to the hormone in Disease1 vs Healthy patients:
> qlf <- glmQLFTest(fit, contrast=c(0,0,0,0,0,0,0,0,0,-1,1,0))

> topTags(qlf)

To find genes that respond differently to the hormone in Disease2 vs Healthy patients:
> qlf <- glmQLFTest(fit, contrast=c(0,0,0,0,0,0,0,0,0,-1,0,1))

> topTags(qlf)

To find genes that respond differently to the hormone in Disease2 vs Disease1 patients:
> qlf <- glmQLFTest(fit, contrast=c(0,0,0,0,0,0,0,0,0,0,-1,1))

> topTags(qlf)

44

Chapter 4

Case studies

4.1 RNA-Seq of oral carcinomas vs matched normal
tissue

4.1.1 Introduction
This section provides a detailed analysis of data from a paired design RNA-seq experiment,
featuring oral squamous cell carcinomas and matched normal tissue from three patients [48].
The aim of the analysis is to detect genes differentially expressed between tumor and normal
tissue, adjusting for any differences between the patients. This provides an example of the
GLM capabilities of edgeR.
RNA was sequenced on an Applied Biosystems SOLiD System 3.0 and reads mapped to
the UCSC hg18 reference genome [48]. Read counts, summarised at the level of refSeq
transcripts, are available in Table S1 of Tuch et al. [48].

4.1.2 Reading in the data
The read counts for the six individual libraries are stored in one tab-delimited file. To make
this file, we downloaded Table S1 from Tuch et al. [48], deleted some unnecessary columns
and edited the column headings slightly:
> rawdata <- read.delim("TableS1.txt", check.names=FALSE, stringsAsFactors=FALSE)

> head(rawdata)

RefSeqID Symbol NbrOfExons 8N 8T 33N 33T 51N 51T

1 NM_182502 TMPRSS11B 10 2592 3 7805 321 3372 9

2 NM_003280 TNNC1 6 1684 0 1787 7 4894 559

3 NM_152381 XIRP2 10 9915 15 10396 48 23309 7181

4 NM_022438 MAL 3 2496 2 3585 239 1596 7

5 NM_001100112 MYH2 40 4389 7 7944 16 9262 1818

6 NM_017534 MYH2 40 4402 7 7943 16 9244 1815

For easy manipulation, we put the data into a DGEList object:

45

edgeR User’s Guide

> library(edgeR)

> y <- DGEList(counts=rawdata[,4:9], genes=rawdata[,1:3])

4.1.3 Annotation
The study by Tuch et al. [48] was undertaken a few years ago, so not all of the RefSeq IDs
provided by match RefSeq IDs currently in use. We retain only those transcripts with IDs in
the current NCBI annotation, which is provided by the org.HS.eg.db package:
> library(org.Hs.eg.db)

> idfound <- y$genes$RefSeqID %in% mappedRkeys(org.Hs.egREFSEQ)

> y <- y[idfound,]

> dim(y)

[1] 15534 6

We add Entrez Gene IDs to the annotation:
> egREFSEQ <- toTable(org.Hs.egREFSEQ)

> head(egREFSEQ)

gene_id accession

1 1 NM_130786

2 1 NP_570602

3 2 NM_000014

4 2 NM_001347423

5 2 NM_001347424

6 2 NM_001347425

> m <- match(y$genes$RefSeqID, egREFSEQ$accession)

> y$genes$EntrezGene <- egREFSEQ$gene_id[m]

Now use the Entrez Gene IDs to update the gene symbols:
> egSYMBOL <- toTable(org.Hs.egSYMBOL)

> head(egSYMBOL)

gene_id symbol

1 1 A1BG

2 2 A2M

3 3 A2MP1

4 9 NAT1

5 10 NAT2

6 11 NATP

> m <- match(y$genes$EntrezGene, egSYMBOL$gene_id)

> y$genes$Symbol <- egSYMBOL$symbol[m]

> head(y$genes)

RefSeqID Symbol NbrOfExons EntrezGene

1 NM_182502 TMPRSS11B 10 132724

2 NM_003280 TNNC1 6 7134

3 NM_152381 XIRP2 10 129446

4 NM_022438 MAL 3 4118

46

edgeR User’s Guide

5 NM_001100112 MYH2 40 4620

6 NM_017534 MYH2 40 4620

4.1.4 Filtering and normalization
Different RefSeq transcripts for the same gene symbol count predominantly the same reads.
So we keep one transcript for each gene symbol. We choose the transcript with highest
overall count:
> o <- order(rowSums(y$counts), decreasing=TRUE)

> y <- y[o,]

> d <- duplicated(y$genes$Symbol)

> y <- y[!d,]

> nrow(y)

[1] 10510

Normally we would also filter lowly expressed genes. For this data, all transcripts already
have at least 50 reads for all samples of at least one of the tissues types.
Recompute the library sizes:
> y$samples$lib.size <- colSums(y$counts)

Use Entrez Gene IDs as row names:
> rownames(y$counts) <- rownames(y$genes) <- y$genes$EntrezGene

> y$genes$EntrezGene <- NULL

TMM normalization is applied to this dataset to account for compositional difference between
the libraries.
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors

8N 1 7987830 1.146

8T 1 7370197 1.086

33N 1 15752765 0.672

33T 1 14042177 0.973

51N 1 21536577 1.032

51T 1 15191722 1.190

4.1.5 Data exploration
The first step of an analysis should be to examine the samples for outliers and for other
relationships. The function plotMDS produces a plot in which distances between samples
correspond to leading biological coefficient of variation (BCV) between those samples:
> plotMDS(y)

47

edgeR User’s Guide

−3 −2 −1 0 1 2

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Leading logFC dim 1 (56%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
18

%
)

8N

8T

33N33T

51N

51T

In the plot, dimension 1 separates the tumor from the normal samples, while dimension 2
roughly corresponds to patient number. This confirms the paired nature of the samples. The
tumor samples appear more heterogeneous than the normal samples.

4.1.6 Design matrix
Before we fit negative binomial GLMs, we need to define our design matrix based on the
experimental design. Here we want to test for differential expression between tumour and
normal tissues within patients, i.e. adjusting for differences between patients. In statistical
terms, this is an additive linear model with patient as the blocking factor:
> Patient <- factor(c(8,8,33,33,51,51))

> Tissue <- factor(c("N","T","N","T","N","T"))

> data.frame(Sample=colnames(y),Patient,Tissue)

Sample Patient Tissue

1 8N 8 N

2 8T 8 T

3 33N 33 N

4 33T 33 T

5 51N 51 N

6 51T 51 T

> design <- model.matrix(~Patient+Tissue)

> rownames(design) <- colnames(y)

> design

(Intercept) Patient33 Patient51 TissueT

8N 1 0 0 0

8T 1 0 0 1

33N 1 1 0 0

33T 1 1 0 1

51N 1 0 1 0

51T 1 0 1 1

48

edgeR User’s Guide

attr(,"assign")

[1] 0 1 1 2

attr(,"contrasts")

attr(,"contrasts")$Patient

[1] "contr.treatment"

attr(,"contrasts")$Tissue

[1] "contr.treatment"

This sort of additive model is appropriate for paired designs, or experiments with batch effects.

4.1.7 Dispersion estimation
We estimate the NB dispersion for the dataset.
> y <- estimateDisp(y, design, robust=TRUE)

> y$common.dispersion

[1] 0.159

The square root of the common dispersion gives the coefficient of variation of biological
variation. Here the common dispersion is found to be 0.159, so the coefficient of biological
variation is around 0.4.
The dispersion estimates can be viewed in a BCV plot:
> plotBCV(y)

4.1.8 Differential expression
Now proceed to determine differentially expressed genes. Fit genewise glms:

49

edgeR User’s Guide

> fit <- glmFit(y, design)

Conduct likelihood ratio tests for tumour vs normal tissue differences and show the top genes:

> lrt <- glmLRT(fit)

> topTags(lrt)

Coefficient: TissueT

RefSeqID Symbol NbrOfExons logFC logCPM LR PValue FDR

5737 NM_001039585 PTGFR 4 -5.18 4.74 98.7 2.98e-23 3.13e-19

5744 NM_002820 PTHLH 4 3.97 6.21 92.1 8.12e-22 4.27e-18

3479 NM_001111283 IGF1 5 -3.99 5.72 86.5 1.39e-20 4.86e-17

1288 NM_033641 COL4A6 45 3.66 5.72 77.5 1.32e-18 3.46e-15

10351 NM_007168 ABCA8 38 -3.98 4.94 75.9 2.98e-18 6.27e-15

5837 NM_005609 PYGM 20 -5.48 5.99 75.4 3.93e-18 6.89e-15

487 NM_004320 ATP2A1 23 -4.62 5.96 74.8 5.20e-18 7.81e-15

27179 NM_014440 IL36A 4 -6.17 5.40 72.2 1.95e-17 2.56e-14

196374 NM_173352 KRT78 9 -4.25 7.61 70.8 3.95e-17 4.61e-14

83699 NM_031469 SH3BGRL2 4 -3.93 5.54 67.8 1.84e-16 1.93e-13

Note that glmLRT has conducted a test for the last coefficient in the linear model, which we
can see is the tumor vs normal tissue effect:
> colnames(design)

[1] "(Intercept)" "Patient33" "Patient51" "TissueT"

The genewise tests are for tumor vs normal differential expression, adjusting for baseline
differences between the three patients. The tests can be viewed as analogous to paired
t-tests. The top DE tags have tiny p-values and FDR values, as well as large fold changes.
Here’s a closer look at the counts-per-million in individual samples for the top genes:
> o <- order(lrt$table$PValue)

> cpm(y)[o[1:10],]

8N 8T 33N 33T 51N 51T

5737 49.70 0.875 27.10 0.878 78.13 2.5435

5744 7.32 95.858 11.80 204.176 6.89 116.3396

3479 50.25 3.124 32.39 1.902 211.65 14.2107

1288 12.12 140.226 6.33 94.443 4.86 56.8427

10351 52.65 3.124 39.48 2.122 79.21 6.0824

5837 152.82 2.750 119.65 1.170 97.70 5.6953

487 107.92 3.124 147.13 3.804 102.83 8.9024

27179 40.09 1.250 172.26 3.292 36.09 0.0553

196374 372.27 20.746 581.55 47.770 145.09 4.5341

83699 96.23 5.124 117.20 5.413 48.20 5.4189

We see that all the top genes have consistent tumour vs normal changes for the three patients.
The total number of differentially expressed genes at 5% FDR is given by:
> summary(decideTests(lrt))

50

edgeR User’s Guide

TissueT

Down 938

NotSig 9241

Up 331

Plot log-fold change against log-counts per million, with DE genes highlighted:
> plotMD(lrt)

> abline(h=c(-1, 1), col="blue")

The blue lines indicate 2-fold changes.

4.1.9 Gene ontology analysis
We perform a gene ontology analysis focusing on the ontology of biological process (BP).
The genes up-regulated in the tumors tend to be associated with cell differentiation, cell
migration and tissue morphogenesis:
> go <- goana(lrt)

> topGO(go, ont="BP", sort="Up", n=30, truncate=30)

Term Ont N Up Down P.Up P.Down

GO:0009888 tissue development BP 1245 82 192 2.66e-11 1.31e-15

GO:0007155 cell adhesion BP 928 66 160 1.56e-10 1.95e-17

GO:0022008 neurogenesis BP 1024 70 114 2.24e-10 6.42e-03

GO:0007399 nervous system development BP 1467 87 154 1.34e-09 1.42e-02

GO:0060429 epithelium development BP 743 54 93 4.66e-09 4.10e-04

GO:0048513 animal organ development BP 1786 98 265 5.57e-09 1.11e-19

GO:0007275 multicellular organism deve... BP 2752 133 323 1.18e-08 2.71e-09

GO:0008544 epidermis development BP 249 27 33 1.86e-08 1.36e-02

GO:0048699 generation of neurons BP 863 58 99 2.03e-08 4.68e-03

GO:0009653 anatomical structure morpho... BP 1636 90 240 2.74e-08 5.56e-17

GO:0048731 system development BP 2321 116 294 2.94e-08 3.35e-12

51

edgeR User’s Guide

GO:0030154 cell differentiation BP 2501 122 318 4.37e-08 1.33e-13

GO:0048869 cellular developmental proc... BP 2502 122 318 4.48e-08 1.41e-13

GO:0030155 regulation of cell adhesion BP 537 41 81 1.12e-07 1.33e-06

GO:0048729 tissue morphogenesis BP 386 33 48 1.64e-07 1.12e-02

GO:0048856 anatomical structure develo... BP 3428 152 417 2.10e-07 1.46e-15

GO:0030182 neuron differentiation BP 815 53 94 2.67e-07 4.98e-03

GO:0016477 cell migration BP 976 60 151 2.72e-07 2.24e-12

GO:0048870 cell motility BP 1047 63 155 2.77e-07 3.80e-11

GO:0043588 skin development BP 220 23 28 4.22e-07 3.48e-02

GO:0009991 response to extracellular s... BP 345 30 31 4.29e-07 5.12e-01

GO:0042127 regulation of cell populati... BP 1015 61 134 4.66e-07 1.18e-06

GO:0008283 cell population proliferati... BP 1216 69 155 6.11e-07 1.31e-06

GO:0031667 response to nutrient levels BP 328 28 28 1.53e-06 6.28e-01

GO:0002009 morphogenesis of an epithel... BP 321 27 34 3.14e-06 1.67e-01

GO:0048598 embryonic morphogenesis BP 363 29 35 3.76e-06 3.39e-01

GO:0009887 animal organ morphogenesis BP 577 39 83 4.90e-06 6.65e-06

GO:0030900 forebrain development BP 238 22 33 5.90e-06 7.12e-03

GO:0007267 cell-cell signaling BP 857 51 110 6.35e-06 4.17e-05

GO:0032502 developmental process BP 3701 155 429 6.54e-06 2.21e-12

4.1.10 Setup
This analysis was conducted on:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] org.Hs.eg.db_3.19.1 AnnotationDbi_1.65.2 IRanges_2.37.1

[4] S4Vectors_0.41.7 Biobase_2.63.1 BiocGenerics_0.49.1

[7] edgeR_4.1.28 limma_3.59.10 knitr_1.46

[10] BiocStyle_2.31.0

52

edgeR User’s Guide

loaded via a namespace (and not attached):

[1] bit_4.0.5 jsonlite_1.8.8 compiler_4.4.0

[4] BiocManager_1.30.22 highr_0.10 crayon_1.5.2

[7] Rcpp_1.0.12 blob_1.2.4 Biostrings_2.71.6

[10] splines_4.4.0 png_0.1-8 yaml_2.3.8

[13] fastmap_1.1.1 statmod_1.5.0 lattice_0.22-6

[16] R6_2.5.1 XVector_0.43.1 GenomeInfoDb_1.39.14

[19] GenomeInfoDbData_1.2.12 DBI_1.2.2 rlang_1.1.3

[22] KEGGREST_1.43.0 cachem_1.0.8 xfun_0.43

[25] bit64_4.0.5 RSQLite_2.3.6 memoise_2.0.1

[28] cli_3.6.2 zlibbioc_1.49.3 digest_0.6.35

[31] grid_4.4.0 locfit_1.5-9.9 GO.db_3.19.1

[34] vctrs_0.6.5 evaluate_0.23 rmarkdown_2.26

[37] httr_1.4.7 pkgconfig_2.0.3 UCSC.utils_0.99.7

[40] tools_4.4.0 htmltools_0.5.8.1

4.2 RNA-Seq of pathogen inoculated arabidopsis with
batch effects

4.2.1 Introduction
This case study re-analyses Arabidopsis thaliana RNA-Seq data described by Cumbie et al.
[10]. Summarized count data is available as a data object in the CRAN package NBPSeq

comparing ∆hrcC challenged and mock-inoculated samples [10]. Samples were collected in
three batches, and adjustment for batch effects proves to be important. The aim of the
analysis therefore is to detect genes differentially expressed in response to ∆hrcC challenge,
while correcting for any differences between the batches.

4.2.2 RNA samples
Pseudomonas syringae is a bacterium often used to study plant reactions to pathogens. In
this experiment, six-week old Arabidopsis plants were inoculated with the ∆hrcC mutant of
P. syringae, after which total RNA was extracted from leaves. Control plants were inoculated
with a mock pathogen.
Three biological replicates of the experiment were conducted at separate times and using
independently grown plants and bacteria.
The six RNA samples were sequenced one per lane on an Illumina Genome Analyzer. Reads
were aligned and summarized per gene using GENE-counter. The reference genome was
derived from the TAIR9 genome release (www.arabidopsis.org).

4.2.3 Loading the data
The data is in the NBPSeq package which does not work in R after version 3.5.0. We loaded
an earlier version of NBPSeq and saved the data in an RDS file. The RDS file is available
here. We then read in the RDS file for our analysis.

53

edgeR User’s Guide

> library(edgeR)

Loading required package: limma

> arab <- readRDS("Data/arab.rds")

> head(arab)

mock1 mock2 mock3 hrcc1 hrcc2 hrcc3

AT1G01010 35 77 40 46 64 60

AT1G01020 43 45 32 43 39 49

AT1G01030 16 24 26 27 35 20

AT1G01040 72 43 64 66 25 90

AT1G01050 49 78 90 67 45 60

AT1G01060 0 15 2 0 21 8

There are two experimental factors, treatment (hrcc vs mock) and the time that each replicate
was conducted:
> Treat <- factor(substring(colnames(arab),1,4))

> Treat <- relevel(Treat, ref="mock")

> Time <- factor(substring(colnames(arab),5,5))

We then create a DGEList object:
> y <- DGEList(counts=arab, group=Treat)

4.2.4 Filtering and normalization
There is no purpose in analysing genes that are not expressed in either experimental condition,
so genes are first filtered on expression levels.
> keep <- filterByExpr(y)

> table(keep)

keep

FALSE TRUE

12292 13930

> y <- y[keep, , keep.lib.sizes=FALSE]

The TMM normalization is applied to account for the compositional biases:
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors

mock1 mock 1882391 0.977

mock2 mock 1870625 1.023

mock3 mock 3227243 0.914

hrcc1 hrcc 2101449 1.058

hrcc2 hrcc 1243266 1.083

hrcc3 hrcc 3494821 0.955

54

edgeR User’s Guide

4.2.5 Data exploration
An MDS plot shows the relative similarities of the six samples.
> plotMDS(y, col=rep(1:2, each=3))

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

Leading logFC dim 1 (38%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
29

%
)

mock1

mock2

mock3

hrcc1

hrcc2

hrcc3

Distances on an MDS plot of a DGEList object correspond to leading log-fold-change between
each pair of samples. Leading log-fold-change is the root-mean-square average of the largest
log2-fold-changes between each pair of samples. Each pair of samples extracted at each time
tend to cluster together, suggesting a batch effect. The hrcc treated samples tend to be
below the mock samples for each time, suggesting a treatment effect within each time. The
two samples at time 1 are less consistent than at times 2 and 3.
To examine further consistency of the three replicates, we compute predictive log2-fold-
changes (logFC) for the treatment separately for the three times.
> design <- model.matrix(~Time+Time:Treat)

> logFC <- predFC(y,design,prior.count=1,dispersion=0.05)

The logFC at the three times are positively correlated with one another, as we would hope:
> cor(logFC[,4:6])

Time1:Treathrcc Time2:Treathrcc Time3:Treathrcc

Time1:Treathrcc 1.000 0.397 0.497

Time2:Treathrcc 0.397 1.000 0.516

Time3:Treathrcc 0.497 0.516 1.000

The correlation is highest between times 2 and 3.

55

edgeR User’s Guide

4.2.6 Design matrix
Before we fit GLMs, we need to define our design matrix based on the experimental design.
We want to test for differential expressions between ∆hrcC challenged and mock-inoculated
samples within batches, i.e. adjusting for differences between batches. In statistical terms,
this is an additive linear model. So the design matrix is created as:
> design <- model.matrix(~Time+Treat)

> rownames(design) <- colnames(y)

> design

(Intercept) Time2 Time3 Treathrcc

mock1 1 0 0 0

mock2 1 1 0 0

mock3 1 0 1 0

hrcc1 1 0 0 1

hrcc2 1 1 0 1

hrcc3 1 0 1 1

attr(,"assign")

[1] 0 1 1 2

attr(,"contrasts")

attr(,"contrasts")$Time

[1] "contr.treatment"

attr(,"contrasts")$Treat

[1] "contr.treatment"

4.2.7 Dispersion estimation
Estimate the genewise dispersion estimates over all genes, allowing for a possible abundance
trend. The estimation is also robustified against potential outlier genes.
> y <- estimateDisp(y, design, robust=TRUE)

> y$common.dispersion

[1] 0.0638

> plotBCV(y)

56

edgeR User’s Guide

The square root of dispersion is the coefficient of biological variation (BCV). The common
BCV is on the high side, considering that this is a designed experiment using genetically
identical plants. The trended dispersion shows a decreasing trend with expression level. At
low logCPM, the dispersions are very large indeed.
Note that only the trended dispersion is used under the quasi-likelihood (QL) pipeline. The
tagwise and common estimates are shown here but will not be used further.
The QL dispersions can be estimated using the glmQLFit function, and then be visualized with
the plotQLDisp function.
> fit <- glmQLFit(y, design, robust=TRUE)

> plotQLDisp(fit)

57

edgeR User’s Guide

4.2.8 Differential expression
Now we test for significant differential expression in each gene using the QL F-test.
First we check whether there was a genuine need to adjust for the experimental times. We
do this by testing for differential expression between the three times. There is considerable
differential expression, justifying our decision to adjust for the batch effect:
> qlf <- glmQLFTest(fit, coef=2:3)

> topTags(qlf)

Coefficient: Time2 Time3

logFC.Time2 logFC.Time3 logCPM F PValue FDR

AT3G33004 4.85 -1.795 5.67 114.2 1.52e-09 1.27e-05

AT5G31702 5.88 -2.611 5.98 122.6 1.82e-09 1.27e-05

AT2G11230 3.53 -1.566 5.64 101.6 3.31e-09 1.54e-05

AT2G07782 3.52 -1.650 5.32 95.3 5.12e-09 1.78e-05

AT2G18193 3.11 -2.425 5.11 86.4 9.43e-09 2.53e-05

AT2G23910 3.64 -0.410 5.17 85.0 1.09e-08 2.53e-05

AT5G54830 3.12 -0.393 6.11 81.8 1.39e-08 2.77e-05

AT2G27770 2.52 -1.592 5.46 76.4 2.19e-08 3.82e-05

AT4G05635 3.21 -2.469 4.80 68.2 4.60e-08 7.12e-05

AT1G05680 2.13 -1.315 6.02 65.5 5.93e-08 8.27e-05

> FDR <- p.adjust(qlf$table$PValue, method="BH")

> sum(FDR < 0.05)

[1] 1707

Now conduct QL F-tests for the pathogen effect and show the top genes. By default, the
test is for the last coefficient in the design matrix, which in this case is the treatment effect:

> qlf <- glmQLFTest(fit)

> topTags(qlf)

Coefficient: Treathrcc

logFC logCPM F PValue FDR

AT2G19190 4.48 7.38 295 5.47e-11 7.47e-07

AT2G39530 4.32 6.71 264 1.20e-10 7.47e-07

AT3G46280 4.77 8.10 252 1.61e-10 7.47e-07

AT1G51800 3.95 7.71 231 2.90e-10 8.24e-07

AT2G39380 4.92 5.77 232 2.96e-10 8.24e-07

AT5G48430 6.29 6.74 223 3.75e-10 8.70e-07

AT3G55150 5.75 4.91 191 4.54e-10 9.04e-07

AT1G51850 5.28 5.42 201 6.30e-10 1.10e-06

AT5G64120 3.69 9.70 199 8.08e-10 1.10e-06

AT2G44370 5.40 5.20 191 8.35e-10 1.10e-06

Here’s a closer look at the individual counts-per-million for the top genes. The top genes are
very consistent across the three replicates:
> top <- rownames(topTags(qlf))

> cpm(y)[top,]

mock1 mock2 mock3 hrcc1 hrcc2 hrcc3

58

edgeR User’s Guide

AT2G19190 16.853 12.54 13.22 341.7 262.2 344.9

AT2G39530 7.067 9.41 13.22 158.3 197.6 238.8

AT3G46280 19.028 17.77 18.30 385.3 385.5 806.4

AT1G51800 29.357 17.25 30.50 362.8 358.0 455.8

AT2G39380 2.175 3.14 4.75 91.7 86.9 132.8

AT5G48430 4.349 4.70 0.00 189.3 323.9 122.9

AT3G55150 0.544 1.05 1.36 43.2 66.9 63.2

AT1G51850 1.087 1.05 3.73 78.2 57.9 107.0

AT5G64120 135.369 119.68 104.05 1342.5 1692.8 1606.2

AT2G44370 2.175 1.05 1.69 57.1 69.1 84.5

The total number of genes significantly up-regulated or down-regulated at 5% FDR is sum-
marized as follows:
> summary(decideTests(qlf))

Treathrcc

Down 1019

NotSig 11930

Up 981

We can plot all the logFCs against average count size, highlighting the DE genes:
> plotMD(qlf)

> abline(h=c(-1,1), col="blue")

The blue lines indicate 2-fold up or down.

4.2.9 Setup
This analysis was conducted on:
> sessionInfo()

59

edgeR User’s Guide

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_4.1.28 limma_3.59.10 knitr_1.46 BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] digest_0.6.35 fastmap_1.1.1 xfun_0.43

[4] lattice_0.22-6 splines_4.4.0 htmltools_0.5.8.1

[7] rmarkdown_2.26 cli_3.6.2 grid_4.4.0

[10] statmod_1.5.0 compiler_4.4.0 highr_0.10

[13] tools_4.4.0 evaluate_0.23 Rcpp_1.0.12

[16] yaml_2.3.8 locfit_1.5-9.9 BiocManager_1.30.22

[19] rlang_1.1.3

4.3 Profiles of Yoruba HapMap individuals

4.3.1 Background
RNA-Seq profiles were made of cell lines derived from lymphoblastoid cells from 69 different
Yoruba individuals from Ibadan, Nigeria [36] [37]. The profiles were generated as part of
the International HapMap project [21]. RNA from each individual was sequenced on at least
two lanes of an Illumina Genome Analyser 2, and mapped reads to the human genome using
MAQ v0.6.8.
The study group here is essentially an opportunity sample and the individuals are likely to be
genetically diverse. In this analysis we look at genes that are differentially expressed between
males and female.

4.3.2 Loading the data
Read counts summarized by Ensembl gene identifiers are available in the tweeDEseqCount-
Data package:

60

edgeR User’s Guide

> library(tweeDEseqCountData)

> data(pickrell1)

> Counts <- exprs(pickrell1.eset)

> dim(Counts)

[1] 38415 69

> Counts[1:5,1:5]

NA18486 NA18498 NA18499 NA18501 NA18502

ENSG00000127720 6 32 14 35 14

ENSG00000242018 20 21 24 22 16

ENSG00000224440 0 0 0 0 0

ENSG00000214453 0 0 0 0 0

ENSG00000237787 0 0 1 0 0

In this analysis we will compare female with male individuals.
> Gender <- pickrell1.eset$gender

> table(Gender)

Gender

female male

40 29

> rm(pickrell1.eset)

Annotation for each Ensemble gene is also available from the tweeDEseqCountData package:

> data(annotEnsembl63)

> annot <- annotEnsembl63[,c("Symbol","Chr")]

> annot[1:5,]

Symbol Chr

ENSG00000252775 U7 5

ENSG00000207459 U6 5

ENSG00000252899 U7 5

ENSG00000201298 U6 5

ENSG00000222266 U6 5

> rm(annotEnsembl63)

Form a DGEList object combining the counts and associated annotation:
> library(edgeR)

> y <- DGEList(counts=Counts, genes=annot[rownames(Counts),])

4.3.3 Filtering and normalization
Keep genes that are expressed in a worthwhilte number of samples:
> isexpr <- filterByExpr(y, group=Gender)

> table(isexpr)

isexpr

61

edgeR User’s Guide

FALSE TRUE

20226 18189

Keep only genes with defined annotation, and recompute library sizes:
> hasannot <- rowSums(is.na(y$genes))==0

> y <- y[isexpr & hasannot, , keep.lib.sizes=FALSE]

> dim(y)

[1] 17517 69

The library sizes vary from about 5 million to over 15 million:
> barplot(y$samples$lib.size*1e-6, names=1:69, ylab="Library size (millions)")

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

Li
br

ar
y

si
ze

 (
m

ill
io

ns
)

0
4

8
12

Apply TMM normalization to account for the composition biases:
> y <- normLibSizes(y)

> head(y$samples)

group lib.size norm.factors

NA18486 1 7750614 0.929

NA18498 1 13614927 1.096

NA18499 1 8570996 0.958

NA18501 1 8596932 1.194

NA18502 1 13377004 0.942

NA18504 1 9883172 0.983

4.3.4 Dispersion estimation
We are interested in the differences between male and female. Hence, we create a design
matrix using the gender factor. We estimate the NB dispersion using estimateDisp. The
estimation is robustified against potential outlier genes. Note that this step is now optional
as all the NB dispersion estimates will not be used further under the latest quasi-likelihood
(QL) pipeline.
> design <- model.matrix(~Gender)

> y <- estimateDisp(y, design, robust=TRUE)

> plotBCV(y)

62

edgeR User’s Guide

We then estimate the QL dispersions using glmQLFit. The large number of cases and the high
variability means that the QL dispersions are not squeezed very heavily from the raw values:

> fit <- glmQLFit(y, design, robust=TRUE)

> plotQLDisp(fit)

4.3.5 Differential expression
Now find genes differentially expressed between male and females. Positive log-fold-changes
mean higher expression in males. The highly ranked genes are mostly on the X or Y chromo-
somes. Top ranked is the famous XIST gene, which is known to be expressed only in females.

63

edgeR User’s Guide

> qlf <- glmQLFTest(fit)

> topTags(qlf, n=15)

Coefficient: Gendermale

Symbol Chr logFC logCPM F PValue FDR

ENSG00000229807 XIST X -9.49 7.249 1441 2.58e-51 4.53e-47

ENSG00000233864 TTTY15 Y 4.85 1.254 742 1.17e-49 1.03e-45

ENSG00000131002 CYorf15B Y 5.63 2.056 770 1.98e-49 1.16e-45

ENSG00000099749 CYorf15A Y 4.29 1.757 1082 9.03e-48 3.96e-44

ENSG00000165246 NLGN4Y Y 5.11 1.675 422 1.64e-37 5.74e-34

ENSG00000157828 RPS4Y2 Y 3.18 4.208 611 7.38e-37 2.15e-33

ENSG00000198692 EIF1AY Y 2.36 3.247 401 4.22e-31 1.06e-27

ENSG00000183878 UTY Y 1.86 3.137 273 3.45e-26 7.56e-23

ENSG00000243209 AC010889.1 Y 2.65 0.797 250 1.94e-25 3.77e-22

ENSG00000213318 RP11-331F4.1 16 3.67 3.688 242 1.56e-24 2.73e-21

ENSG00000129824 RPS4Y1 Y 2.53 5.401 236 2.07e-24 3.30e-21

ENSG00000012817 KDM5D Y 1.47 4.949 232 3.24e-24 4.73e-21

ENSG00000146938 NLGN4X X 3.95 1.047 194 6.62e-24 8.92e-21

ENSG00000067048 DDX3Y Y 1.62 5.621 188 9.43e-22 1.18e-18

ENSG00000232928 RP13-204A15.4 X 1.44 3.558 117 1.01e-16 1.18e-13

> summary(decideTests(qlf))

Gendermale

Down 49

NotSig 17447

Up 21

4.3.6 Gene set testing
The tweeDEseqCountData package includes a list of genes belonging to the male-specific
region of chromosome Y, and a list of genes located in the X chromosome that have been
reported to escape X-inactivation. We expect genes in the first list to be up-regulated in
males, whereas genes in the second list should be up-regulated in females.
> data(genderGenes)

> Ymale <- rownames(y) %in% msYgenes

> Xescape <- rownames(y) %in% XiEgenes

Roast gene set tests by fry() confirm that the male-specific genes are significantly up as a
group in our comparison of males with females, whereas the X genes are significantly down
as a group [49].
> index <- list(Y=Ymale, X=Xescape)

> fry(y, index=index, design=design)

NGenes Direction PValue FDR PValue.Mixed FDR.Mixed

Y 12 Up 1.00e-45 2.01e-45 6.70e-11 6.70e-11

X 47 Down 6.93e-17 6.93e-17 1.26e-68 2.53e-68

A barcode plot can be produced to visualize the results. Genes are ranked from left to right
by increasing log-fold-change in the background of the barcode plot. Genes in the set of
msYgenes are represented by red bars whereas genes in the set of XiEgenes are represented by

64

edgeR User’s Guide

blue bars. The line above the barcode shows the relative local enrichment of the vertical
bars in each part of the plot. This particular plot suggests that the male-specific genes tend
to have large positive log-fold-changes, whereas the X genes tend to have large negative
log-fold-changes.
> barcodeplot(qlf$table$logFC, index[[1]], index[[2]])

Statistic

D
ow

n

U
p

−
9.

49
4

−
0.

20
6

−
0.

12
0

−
0.

06
4

−
0.

02
5

 0
.0

09

 0
.0

43

 0
.0

78

 0
.1

22

 0
.1

94

 5
.6

30

0
6.

6
3.

6
0

E
nr

ic
hm

en
t

E
nr

ic
hm

en
t

The results from competitive camera gene sets tests are even more convincing [50]. The
positive intergene correlations here show that the genes in each set tend to be biologically
correlated:
> camera(y, index, design)

NGenes Direction PValue FDR

Y 12 Up 1.32e-295 2.65e-295

X 47 Down 7.38e-25 7.38e-25

See where the X and Y genes fall on the MA plot:
> with(qlf$table, plot(logCPM,logFC,pch=16,cex=0.2))

> with(qlf$table, points(logCPM[Ymale],logFC[Ymale],pch=16,col="red"))

> with(qlf$table, points(logCPM[Xescape],logFC[Xescape],pch=16,col="dodgerblue"))

> legend("bottomleft",legend=c("Ymale genes","Xescape genes"),

+ pch=16,col=c("red","dodgerblue"))

65

edgeR User’s Guide

4.3.7 Setup
This analysis was conducted on:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_4.1.28 limma_3.59.10

[3] tweeDEseqCountData_1.41.0 Biobase_2.63.1

[5] BiocGenerics_0.49.1 knitr_1.46

[7] BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] digest_0.6.35 fastmap_1.1.1 xfun_0.43

[4] lattice_0.22-6 splines_4.4.0 htmltools_0.5.8.1

66

edgeR User’s Guide

[7] rmarkdown_2.26 cli_3.6.2 grid_4.4.0

[10] statmod_1.5.0 compiler_4.4.0 highr_0.10

[13] tools_4.4.0 evaluate_0.23 Rcpp_1.0.12

[16] yaml_2.3.8 locfit_1.5-9.9 BiocManager_1.30.22

[19] rlang_1.1.3

4.4 RNA-Seq profiles of mouse mammary gland

4.4.1 Introduction
The RNA-Seq data of this case study is described in Fu et al. [17]. The sequence and count
data are publicly available from the Gene Expression Omnibus (GEO) at the series accession
number GSE60450. This study examines the expression profiles of basal stem-cell enriched
cells (B) and committed luminal cells (L) in the mammary gland of virgin, pregnant and
lactating mice. Six groups are present, with one for each combination of cell type and mouse
status. Each group contains two biological replicates. This is summarized in the table below,
where the basal and luminal cell types are abbreviated with B and L respectively.
> targets <- read.delim("targets.txt", header=TRUE)

> targets

FileName GEOAccession CellType Status

1 SRR1552450.fastq GSM1480297 B virgin

2 SRR1552451.fastq GSM1480298 B virgin

3 SRR1552452.fastq GSM1480299 B pregnant

4 SRR1552453.fastq GSM1480300 B pregnant

5 SRR1552454.fastq GSM1480301 B lactate

6 SRR1552455.fastq GSM1480302 B lactate

7 SRR1552444.fastq GSM1480291 L virgin

8 SRR1552445.fastq GSM1480292 L virgin

9 SRR1552446.fastq GSM1480293 L pregnant

10 SRR1552447.fastq GSM1480294 L pregnant

11 SRR1552448.fastq GSM1480295 L lactate

12 SRR1552449.fastq GSM1480296 L lactate

The name of the file containing the read sequences for each library is also shown. Each file
is downloaded from the Sequence Read Archive and has an accession number starting with
SRR, e.g., SRR1552450 for the first library in targets.

4.4.2 Read alignment and processing
Prior to read alignment, these files are converted into the FASTQ format using the fastq-dump

utility from the SRA Toolkit. See https://www.ncbi.nlm.nih.gov/books/NBK158900 for how to
download and use the SRA Toolkit.
Before the differential expression analysis can proceed, these reads must be aligned to the
mouse genome and counted into annotated genes. This can be achieved with functions in the
Rsubread package [24]. We assume that an index of the mouse genome is already available -

67

edgeR User’s Guide

if not, this can be constructed from a FASTA file of the genome sequence with the buildindex

command. In this example, we assume that the prefix for the index files is mm10. The reads
in each FASTQ file are then aligned to the mouse genome, as shown below.
> library(Rsubread)

> output.files <- sub(".fastq", ".bam", targets$FileName)

> align("mm10", readfile1=targets$FileName, phredOffset=33,

+ input_format="FASTQ", output_file=output.files)

This produces a set of BAM files, where each file contains the read alignments for each library.
The mapped reads can be counted into mouse genes by using the featureCounts function. It
uses the exon intervals defined in the NCBI annotation of the mm10 genome.
> fc <- featureCounts(output.files, annot.inbuilt="mm10")

> colnames(fc$counts) <- 1:12

> head(fc$counts)

1 2 3 4 5 6 7 8 9 10 11 12

497097 438 300 65 237 354 287 0 0 0 0 0 0

100503874 1 0 1 1 0 4 0 0 0 0 0 0

100038431 0 0 0 0 0 0 0 0 0 0 0 0

19888 1 1 0 0 0 0 10 3 10 2 0 0

20671 106 182 82 105 43 82 16 25 18 8 3 10

27395 309 234 337 300 290 270 560 464 489 328 307 342

The row names of the matrix represent the Entrez gene identifiers for each gene. In the
output from featureCounts, the column names of fc$counts are the output file names from
align. Here, we simplify them for brevity.

4.4.3 Count loading and annotation
We create a DGEList object as follows
> group <- factor(paste0(targets$CellType, ".", targets$Status))

> y <- DGEList(fc$counts, group=group)

> colnames(y) <- targets$GEO

Human-readable gene symbols can also be added to complement the Entrez identifiers for
each gene, using the annotation in the org.Mm.eg.db package.
> require(org.Mm.eg.db)

> Symbol <- mapIds(org.Mm.eg.db, keys=rownames(y), keytype="ENTREZID",

+ column="SYMBOL")

> y$genes <- data.frame(Symbol=Symbol)

4.4.4 Filtering and normalization
Here, a gene is only retained if it is expressed at a minimum level:
> keep <- filterByExpr(y)

> summary(keep)

68

edgeR User’s Guide

Mode FALSE TRUE

logical 11210 15969

> y <- y[keep, , keep.lib.sizes=FALSE]

TMM normalization is performed to eliminate composition biases between libraries.
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors

GSM1480297 B.virgin 23219195 1.238

GSM1480298 B.virgin 21769326 1.214

GSM1480299 B.pregnant 24092719 1.125

GSM1480300 B.pregnant 22657703 1.071

GSM1480301 B.lactate 21522881 1.036

GSM1480302 B.lactate 20009184 1.087

GSM1480291 L.virgin 20385437 1.368

GSM1480292 L.virgin 21699830 1.365

GSM1480293 L.pregnant 22236469 1.004

GSM1480294 L.pregnant 21983364 0.923

GSM1480295 L.lactate 24720123 0.529

GSM1480296 L.lactate 24653390 0.535

The performance of the TMM normalization procedure can be examined using mean-difference
(MD) plots. This visualizes the library size-adjusted log-fold change between two libraries
(the difference) against the average log-expression across those libraries (the mean). The fol-
lowing MD plot is generated by comparing sample 1 against an artificial library constructed
from the average of all other samples.
> plotMD(cpm(y, log=TRUE), column=1)

> abline(h=0, col="red", lty=2, lwd=2)

69

edgeR User’s Guide

Ideally, the bulk of genes should be centred at a log-fold change of zero. This indicates that
any composition bias between libraries has been successfully removed. This quality check
should be repeated by constructing a MD plot for each sample.

4.4.5 Data exploration
The data can be explored by generating multi-dimensional scaling (MDS) plots. This visu-
alizes the differences between the expression profiles of different samples in two dimensions.

> points <- c(0,1,2,15,16,17)

> colors <- rep(c("blue", "darkgreen", "red"), 2)

> plotMDS(y, col=colors[group], pch=points[group])

> legend("topleft", legend=levels(group), pch=points, col=colors, ncol=2)

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Leading logFC dim 1 (65%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
17

%
)

B.lactate
B.pregnant
B.virgin

L.lactate
L.pregnant
L.virgin

Replicate samples from the same group cluster together in the plot, while samples from
different groups form separate clusters. This indicates that the differences between groups
are larger than those within groups, i.e., differential expression is greater than the variance
and can be detected. The distance between basal samples on the left and luminal cells on
the right is about 6 units, corresponding to a leading fold change of about 64-fold (26 = 64)
between basal and luminal. The expression differences between virgin, pregnant and lactating
are greater for luminal cells than for basal.

4.4.6 Design matrix
The experimental design for this study can be parametrized with a one-way layout, whereby
one coefficient is assigned to each group. The design matrix contains the predictors for each
sample and and is constructed using the code below.
> design <- model.matrix(~ 0 + group)

> colnames(design) <- levels(group)

> design

B.lactate B.pregnant B.virgin L.lactate L.pregnant L.virgin

70

edgeR User’s Guide

1 0 0 1 0 0 0

2 0 0 1 0 0 0

3 0 1 0 0 0 0

4 0 1 0 0 0 0

5 1 0 0 0 0 0

6 1 0 0 0 0 0

7 0 0 0 0 0 1

8 0 0 0 0 0 1

9 0 0 0 0 1 0

10 0 0 0 0 1 0

11 0 0 0 1 0 0

12 0 0 0 1 0 0

attr(,"assign")

[1] 1 1 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

4.4.7 Dispersion estimation
The NB dispersions are estimated using the estimateDisp function. This returns the DGEList

object with additional entries for the estimated NB dispersions for all gene. Note that this
step is now optional as all the NB dispersion estimates will not be used further under the
latest quasi-likelihood (QL) pipeline. These estimates can be visualized with plotBCV, which
shows the root-estimate, i.e., the biological coefficient of variation for each gene.
> y <- estimateDisp(y, design, robust=TRUE)

> y$common.dispersion

[1] 0.0134

> plotBCV(y)

71

edgeR User’s Guide

Under the latest QL pipeline, technical and biological variation can be estimated simultane-
ously in the glmQLFit function. This returns a DGEGLM object containing the estimated values
of the GLM coefficients for each gene, an overall estimate of the squared biological coefficient
of variation, as well as the fitted mean-QL dispersion trend, the squeezed QL estimates and
the prior degrees of freedom (df). These can be visualized with the plotQLDisp function.
> fit <- glmQLFit(y, design, robust=TRUE)

> fit$dispersion

[1] 0.0125

> head(fit$coefficients)

B.lactate B.pregnant B.virgin L.lactate L.pregnant L.virgin

497097 -11.14 -12.02 -11.23 -19.0 -19.03 -19.0

20671 -12.77 -12.52 -12.15 -14.5 -14.30 -14.1

27395 -11.27 -11.30 -11.53 -10.6 -10.87 -10.9

18777 -10.15 -10.21 -10.77 -10.1 -10.39 -10.4

21399 -9.89 -9.74 -9.79 -10.2 -9.97 -10.0

58175 -16.16 -14.85 -15.99 -13.3 -12.29 -12.1

> plotQLDisp(fit)

Setting robust=TRUE in glmQLFit is strongly recommended [35]. Setting robust=TRUE in estimate

Disp has no effect on the downstream analysis, but is nevertheless very useful as it identifies
genes that are outliers from the mean-NB dispersion trend.

4.4.8 Differential expression
We test for significant differential expression in each gene, using the QL F-test. The contrast
of interest can be specified using the makeContrasts function. Here, genes are tested for DE
between the basal pregnant and lactating groups. This is done by defining the null hypothesis
as B.pregnant - B.lactate = 0.

72

edgeR User’s Guide

> con <- makeContrasts(B.pregnant - B.lactate, levels=design)

> qlf <- glmQLFTest(fit, contrast=con)

The top set of most significant genes can be examined with topTags. Here, a positive log-fold
change represents genes that are up in B.pregnant over B.lactate. Multiplicity correction is
performed by applying the Benjamini-Hochberg method on the p-values, to control the false
discovery rate (FDR).
> topTags(qlf)

Coefficient: -1*B.lactate 1*B.pregnant

Symbol logFC logCPM F PValue FDR

211577 Mrgprf -5.15 2.74 478 4.02e-13 6.42e-09

140474 Muc4 7.17 6.05 336 2.85e-11 1.70e-07

12992 Csn1s2b -6.09 10.18 429 3.20e-11 1.70e-07

24117 Wif1 1.82 6.76 292 7.47e-11 2.98e-07

226101 Myof -2.32 6.44 319 1.99e-10 5.44e-07

381290 Atp2b4 -2.14 6.14 318 2.05e-10 5.44e-07

21953 Tnni2 -5.76 3.86 355 3.31e-10 7.55e-07

231830 Micall2 2.25 5.18 279 4.58e-10 9.14e-07

14585 Gfra1 2.26 2.73 197 6.55e-10 1.16e-06

78896 Ecrg4 2.81 6.68 230 7.44e-10 1.19e-06

The top gene Csn1s2b has a large negative log2-fold-change, showing that it is far more
highly expressed in lactating than pregnant mice. This gene is known to be a major source
of protein in milk.
The total number of DE genes in each direction at a FDR of 5% can be examined with de

cideTests. There are in fact nearly 4500 DE genes an FDR cut-off of 5% in this comparison:

> summary(decideTests(qlf))

-1*B.lactate 1*B.pregnant

Down 2618

NotSig 10543

Up 2808

The differential expression test results can be visualized using an MD plot. The log-fold
change for each gene is plotted against the average abundance, i.e., logCPM in the result table
above. Significantly DE genes at a FDR of 5% are highlighted.
> plotMD(qlf)

73

edgeR User’s Guide

We use glmTreat to narrow down the list of DE genes and focus on genes that are more
biologically meaningful. We test whether the differential expression is significantly above a
log2-fold-change of log2 1.2, i.e., a fold-change of 1.2.
> tr <- glmTreat(fit, contrast=con, lfc=log2(1.2))

> topTags(tr)

Coefficient: -1*B.lactate 1*B.pregnant

Symbol logFC unshrunk.logFC logCPM PValue FDR

211577 Mrgprf -5.15 -5.16 2.74 4.56e-13 7.28e-09

140474 Muc4 7.17 7.34 6.05 3.22e-11 1.81e-07

12992 Csn1s2b -6.09 -6.09 10.18 3.41e-11 1.81e-07

24117 Wif1 1.82 1.82 6.76 1.48e-10 5.90e-07

226101 Myof -2.32 -2.32 6.44 2.85e-10 7.97e-07

381290 Atp2b4 -2.14 -2.15 6.14 3.11e-10 7.97e-07

21953 Tnni2 -5.76 -5.76 3.86 3.49e-10 7.97e-07

231830 Micall2 2.25 2.25 5.18 6.72e-10 1.34e-06

78896 Ecrg4 2.81 2.81 6.68 9.54e-10 1.55e-06

14585 Gfra1 2.26 2.27 2.73 1.09e-09 1.55e-06

Around 3000 genes are detected as DE with fold-change significantly above 1.2 at an FDR
cut-off of 5%.
> summary(decideTests(tr))

-1*B.lactate 1*B.pregnant

Down 1541

NotSig 12580

Up 1848

The test results are visualized in the following smear plot. Genes that are significantly DE
above a fold-change of 1.2 at an FDR of 5% are highlighted in red.
> plotMD(tr)

74

edgeR User’s Guide

4.4.9 ANOVA-like testing
The differential expression analysis of two-group comparison can be easily extended to com-
parisons between three or more groups. This is done by creating a matrix of contrasts, where
which each column represents a contrast between two groups of interest. In this manner,
users can perform a one-way analysis of variance (ANOVA) for each gene.
As an example, suppose we want to compare the three groups in the luminal population,
i.e., virgin, pregnant and lactating. An appropriate contrast matrix can be created as shown
below, to make pairwise comparisons between all three groups.
> con <- makeContrasts(

+ L.PvsL = L.pregnant - L.lactate,

+ L.VvsL = L.virgin - L.lactate,

+ L.VvsP = L.virgin - L.pregnant, levels=design)

The QL F-test is then applied to identify genes that are DE among the three groups. This
combines the three pairwise comparisons into a single F-statistic and p-value. The top set of
significant genes can be displayed with topTags.
> anov <- glmQLFTest(fit, contrast=con)

> topTags(anov)

Coefficient: LR test on 2 degrees of freedom

Symbol logFC.L.PvsL logFC.L.VvsL logFC.L.VvsP logCPM F PValue

19242 Ptn -1.54 7.26 8.80 7.97 2429 3.09e-17

13645 Egf -5.36 -7.22 -1.86 3.67 1183 3.21e-15

12992 Csn1s2b -8.55 -11.36 -2.81 10.18 1148 3.68e-15

52150 Kcnk6 -2.42 -7.00 -4.58 5.91 1003 8.63e-15

83492 Gsdmc -4.84 -11.35 -6.51 3.16 463 8.85e-15

15439 Hp 1.08 5.42 4.34 4.93 1004 9.24e-15

14183 Fgfr2 -1.15 3.95 5.10 7.38 959 1.15e-14

11941 Atp2b2 -7.37 -10.56 -3.19 6.60 1138 1.45e-14

17068 Ly6d 3.42 9.24 5.82 4.68 884 1.60e-14

75

edgeR User’s Guide

20856 Stc2 -1.81 3.19 5.01 6.10 901 1.71e-14

FDR

19242 4.93e-13

13645 1.96e-11

12992 1.96e-11

52150 2.46e-11

83492 2.46e-11

15439 2.46e-11

14183 2.59e-11

11941 2.59e-11

17068 2.59e-11

20856 2.59e-11

Note that the three contrasts of pairwise comparisons are linearly dependent. Constructing
the contrast matrix with any two of the contrasts would be sufficient to specify an ANOVA
test. For instance, the contrast matrix shown below produces the same test results but with
a different column of log-fold changes.
> con <- makeContrasts(

+ L.PvsL = L.pregnant - L.lactate,

+ L.VvsP = L.virgin - L.pregnant, levels=design)

4.4.10 Gene ontology analysis
Further analyses are required to interpret the differential expression results in a biological
context. One common downstream procedure is a gene ontology (GO) enrichment analysis.
Suppose we want to identify GO terms that are over-represented in the basal lactating group
compared to the basal pregnancy group. This can be achieved by applying the goana function
to the differential expression results of that comparison. The top set of most enriched GO
terms can be viewed with the topGO function.
> con <- makeContrasts(B.lactate - B.pregnant, levels=design)

> qlf <- glmQLFTest(fit, contrast=con)

> go <- goana(qlf, species = "Mm")

> topGO(go, n=30, truncate=30)

Term Ont N Up Down P.Up P.Down

GO:0022613 ribonucleoprotein complex b... BP 428 25 211 1.000 2.07e-52

GO:0042254 ribosome biogenesis BP 313 10 172 1.000 2.41e-51

GO:1990904 ribonucleoprotein complex CC 694 45 277 1.000 9.84e-46

GO:0022626 cytosolic ribosome CC 125 2 88 1.000 1.04e-38

GO:0006364 rRNA processing BP 213 5 121 1.000 2.59e-38

GO:0016072 rRNA metabolic process BP 248 11 132 1.000 1.46e-37

GO:0030684 preribosome CC 110 1 79 1.000 7.06e-36

GO:0002181 cytoplasmic translation BP 142 6 89 1.000 4.70e-33

GO:0003723 RNA binding MF 1029 118 324 1.000 2.04e-29

GO:0003735 structural constituent of r... MF 163 1 92 1.000 4.14e-29

GO:0044391 ribosomal subunit CC 196 1 102 1.000 3.25e-28

GO:0022625 cytosolic large ribosomal s... CC 63 0 51 1.000 6.74e-28

GO:0005840 ribosome CC 241 7 115 1.000 2.68e-27

GO:0042274 ribosomal small subunit bio... BP 102 1 66 1.000 5.12e-26

76

edgeR User’s Guide

GO:0006412 translation BP 604 62 212 1.000 5.84e-26

GO:0043043 peptide biosynthetic proces... BP 626 66 217 1.000 9.82e-26

GO:0006396 RNA processing BP 871 76 276 1.000 1.63e-25

GO:0034660 ncRNA metabolic process BP 581 55 205 1.000 1.87e-25

GO:0032991 protein-containing complex CC 5023 782 1116 0.993 8.84e-25

GO:0034470 ncRNA processing BP 392 20 154 1.000 9.57e-25

GO:0005730 nucleolus CC 853 118 268 0.990 3.67e-24

GO:0032040 small-subunit processome CC 73 1 52 1.000 8.87e-24

GO:0140236 translation at presynapse BP 47 0 40 1.000 9.27e-24

GO:0006518 peptide metabolic process BP 770 85 246 1.000 2.54e-23

GO:0140242 translation at postsynapse BP 48 0 40 1.000 4.62e-23

GO:0140241 translation at synapse BP 48 0 40 1.000 4.62e-23

GO:0043604 amide biosynthetic process BP 727 82 234 1.000 1.09e-22

GO:1901566 organonitrogen compound bio... BP 1471 171 396 1.000 5.60e-21

GO:0070013 intracellular organelle lum... CC 4090 636 917 0.986 2.22e-20

GO:0031974 membrane-enclosed lumen CC 4090 636 917 0.986 2.22e-20

The row names of the output are the universal identifiers of the GO terms, with one term per
row. The Term column gives the names of the GO terms. These terms cover three domains
- biological process (BP), cellular component (CC) and molecular function (MF), as shown
in the Ont column. The N column represents the total number of genes that are annotated
with each GO term. The Up and Down columns represent the number of genes with the GO
term that are significantly up- and down-regulated in this differential expression comparison,
respectively. The P.Up and P.Down columns contain the p-values for over-representation of the
GO term across the set of up- and down-regulated genes, respectively. The output table is
sorted by the minimum of P.Up and P.Down by default.
The goana function uses the NCBI RefSeq annotation. Therefore, the Entrez Gene identifier
(ID) should be supplied for each gene as the row names of qlf.

4.4.11 Gene set testing
Another downstream step uses the rotation gene set test (ROAST) [49]. Given a set of
genes, we can test whether the majority of the genes in the set are DE across the contrast
of interest. It is useful when the specified set contains all genes involved in some pathway or
process.
In our case study, suppose we are interested in two GO terms related to cytokinesis. Each
term will be used to define a set containing all genes that are annotated with that term. The
names of these terms can be viewed as shown below.
> library(GO.db)

> cyt.go <- c("GO:0032465", "GO:0000281")

> term <- select(GO.db, keys=cyt.go, columns="TERM")

> term

GOID TERM

1 GO:0032465 regulation of cytokinesis

2 GO:0000281 mitotic cytokinesis

We construct a list of two components, each of which is a vector of Entrez Gene IDs for all
genes annotated with one of the GO terms. We then convert the Gene IDs into row indices
of the fit object using the function ids2indices.

77

edgeR User’s Guide

> Rkeys(org.Mm.egGO2ALLEGS) <- cyt.go

> ind <- ids2indices(as.list(org.Mm.egGO2ALLEGS), row.names(fit))

We proceed to run ROAST on the defined gene sets for the contrast of interest. Suppose
the comparison of interest is between the virgin and lactating groups in the basal population.
We use fry to test for multiple gene sets.
> con <- makeContrasts(B.virgin-B.lactate, levels=design)

> fr <- fry(y, index=ind, design=design, contrast=con)

> fr

NGenes Direction PValue FDR PValue.Mixed FDR.Mixed

GO:0032465 75 Up 0.00231 0.00364 8.60e-06 1.08e-05

GO:0000281 80 Up 0.00364 0.00364 1.08e-05 1.08e-05

Each row corresponds to a single gene set, i.e., GO term. The NGenes column gives the
number of genes in each set. The net direction of change is determined from the significance
of changes in each direction, and is shown in the Direction column. The PValue provides
evidence for whether the majority of genes in the set are DE in the specified direction, whereas
the PValue.Mixed tests for differential expression in any direction. FDRs are computed from
the corresponding p-values across all sets.
A barcode plot can be produced with the barcodeplot function to visualize the results for any
particular set. In this case, visualization is performed for the gene set defined by GO:0032465.
Here, genes are represented by bars and are ranked from left to right by increasing log-fold
change. This forms the barcode-like pattern. The line above the barcode shows the relative
local enrichment of the vertical bars in each part of the plot. This particular plot suggests
that most genes in this set are up-regulated in the virgin group compared to the lactating
group.
> res <- glmQLFTest(fit, contrast=con)

> barcodeplot(res$table$logFC, ind[[1]], main=names(ind)[1])

GO:0032465

Statistic

D
ow

n

U
p

−
8.

88
6

−
0.

98
7

−
0.

57
9

−
0.

34
0

−
0.

16
3

−
0.

00
2

 0
.1

67

 0
.3

87

 0
.6

95

 1
.2

81

10
.5

60

0
1.

8
E

nr
ic

hm
en

t

4.4.12 Setup
This analysis was conducted on:

78

edgeR User’s Guide

> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] GO.db_3.19.1 org.Mm.eg.db_3.19.1 AnnotationDbi_1.65.2

[4] IRanges_2.37.1 S4Vectors_0.41.7 Biobase_2.63.1

[7] BiocGenerics_0.49.1 knitr_1.46 BiocStyle_2.31.0

[10] edgeR_4.1.32 limma_3.59.10

loaded via a namespace (and not attached):

[1] bit_4.0.5 jsonlite_1.8.8 compiler_4.4.0

[4] BiocManager_1.30.22 highr_0.10 crayon_1.5.2

[7] Rcpp_1.0.12 blob_1.2.4 Biostrings_2.71.6

[10] splines_4.4.0 png_0.1-8 yaml_2.3.8

[13] fastmap_1.1.1 statmod_1.5.0 lattice_0.22-6

[16] R6_2.5.1 XVector_0.43.1 GenomeInfoDb_1.39.14

[19] GenomeInfoDbData_1.2.12 DBI_1.2.2 rlang_1.1.3

[22] KEGGREST_1.43.0 cachem_1.0.8 xfun_0.43

[25] bit64_4.0.5 RSQLite_2.3.6 memoise_2.0.1

[28] cli_3.6.2 zlibbioc_1.49.3 digest_0.6.35

[31] grid_4.4.0 locfit_1.5-9.9 vctrs_0.6.5

[34] evaluate_0.23 rmarkdown_2.26 httr_1.4.7

[37] pkgconfig_2.0.3 UCSC.utils_0.99.7 tools_4.4.0

[40] htmltools_0.5.8.1

79

edgeR User’s Guide

4.5 Differential splicing analysis of Foxp1-deficient mice

4.5.1 Introduction
The RNA-Seq data of this case study was from Fu et al [16]. This study concerned the
role of Foxp1 deletion in cellular differentiation and development in mouse mammary gland.
RNA-seq profiles of the basal and luminal cell populations of mice with Foxp1 knock-out
and control were generated. In particular, the following two exons of the Foxp1 gene were
silenced in the knock-out samples [16].

No. Exon Start End Length
14 ENSMUSE00000499236 98,945,426 98,945,347 80
15 ENSMUSE00001069281 98,944,720 98,944,619 102

The RNA-Seq data of the 12 samples are available on the GEO repository as series GSE118617.
Each combination of cell type (basal and luminal) and genotype (control and Foxp1 knock-
out) comprises of three biological samples. The details of the samples are shown in the target
file below.
> targets <- read.delim("targets.txt", header=TRUE)

> targets

Samples GSM SRR Description

1 Basal-CT-1 GSM3335607 SRR7701128 Basal Control Rep1

2 Basal-KO-1 GSM3335608 SRR7701129 Basal Foxp1-knockout Rep1

3 Basal-CT-2 GSM3335609 SRR7701130 Basal Control Rep2

4 Basal-KO-2 GSM3335610 SRR7701131 Basal Foxp1-knockout Rep2

5 Basal-CT-3 GSM3335611 SRR7701132 Basal Control Rep3

6 Basal-KO-3 GSM3335612 SRR7701133 Basal Foxp1-knockout Rep3

7 Lum-CT-1 GSM3335613 SRR7701134 Luminal Control Rep1

8 Lum-KO-1 GSM3335614 SRR7701135 Luminal Foxp1-knockout Rep1

9 Lum-CT-2 GSM3335615 SRR7701136 Luminal Control Rep2

10 Lum-KO-2 GSM3335616 SRR7701137 Luminal Foxp1-knockout Rep2

11 Lum-CT-3 GSM3335617 SRR7701138 Luminal Control Rep3

12 Lum-KO-3 GSM3335618 SRR7701139 Luminal Foxp1-knockout Rep3

4.5.2 Read alignment and processing
We use Rsubread[24] for read alignment and count quantification. The FASTQ files of the
12 samples were first downloaded using the SRA Toolkit. Then an index file of the mouse
reference genome (GRCm39) was built in Rsubread using the FASTA files downloaded from
the GENCODE database https://www.gencodegenes.org/mouse/. For more details of building
index, please check out the Rsubread user’s guide.
Assuming the index of the mouse genome (mm39) is already available, we performed read
alignment as follows.
> library(Rsubread)

> file <- dir(pattern="*.fastq.gz")

80

edgeR User’s Guide

> bam <- gsub(".fastq.gz$", ".bam", file)

> align(index="mm39", readfile1=file, input_format="gzFASTQ", output_file=bam)

Next we counted the number of reads overlapping each annotated exon of each gene. We
use featureCounts in Rsubread with the mouse mm39 inbuilt annotation.
> Foxp1 <- featureCounts(bam, isPairedEnd=FALSE, annot.inbuilt="mm39",

+ useMetaFeatures=FALSE, allowMultiOverlap=TRUE)

4.5.3 Count loading and annotation
We create a DGEList object as follows
> library(edgeR)

> y <- DGEList(counts=Foxp1$counts, genes=Foxp1$annotation)

> dim(y)

[1] 285931 12

> head(y$genes)

GeneID Chr Start End Strand Length

1 100009600 chr9 20973689 20974013 - 325

2 100009600 chr9 20974190 20974283 - 94

3 100009600 chr9 20974610 20974692 - 83

4 100009600 chr9 20977320 20977673 - 354

5 100009600 chr9 20978236 20978389 - 154

6 100009609 chr7 84589377 84590296 - 920

The annotation includes Entrez ID and the length, chromosome and start and stop position
of each exon. Mouse gene symbols were added to the exon annotation, using the annotation
in the org.Mm.eg.db package.
> require(org.Mm.eg.db)

> Symbol <- mapIds(org.Mm.eg.db, keys=rownames(y), keytype="ENTREZID",

+ column="SYMBOL")

> y$genes$Symbol <- Symbol

> head(y$genes)

GeneID Chr Start End Strand Length Symbol

1 100009600 chr9 20973689 20974013 - 325 Zglp1

2 100009600 chr9 20974190 20974283 - 94 Zglp1

3 100009600 chr9 20974610 20974692 - 83 Zglp1

4 100009600 chr9 20977320 20977673 - 354 Zglp1

5 100009600 chr9 20978236 20978389 - 154 Zglp1

6 100009609 chr7 84589377 84590296 - 920 Vmn2r65

4.5.4 Filtering and normalization
The lowly expressed exons were filtered out prior to the downstream analysis.
> group <- gsub("-[1-3]$", "", colnames(y))

> group <- factor(gsub("-", "_", group))

81

edgeR User’s Guide

> y$samples$group <- group

> keep <- filterByExpr(y, group=group)

> table(keep)

keep

FALSE TRUE

179116 106815

> y <- y[keep, , keep.lib.sizes=FALSE]

TMM normalization is performed to eliminate composition biases between libraries.
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors

Basal-CT-1 Basal_CT 10679016 0.982

Basal-KO-1 Basal_KO 11291378 0.895

Basal-CT-2 Basal_CT 11731453 1.014

Basal-KO-2 Basal_KO 11164225 1.025

Basal-CT-3 Basal_CT 10846137 1.055

Basal-KO-3 Basal_KO 10965059 0.941

Lum-CT-1 Lum_CT 11537126 0.977

Lum-KO-1 Lum_KO 10560091 0.999

Lum-CT-2 Lum_CT 10236505 1.108

Lum-KO-2 Lum_KO 10577400 1.076

Lum-CT-3 Lum_CT 10672170 0.974

Lum-KO-3 Lum_KO 16388823 0.972

4.5.5 Data exploration
The data can be explored by generating multi-dimensional scaling (MDS) plots. This visu-
alizes the differences between the expression profiles of different samples in two dimensions.

> plotMDS(y, col=c(1:4)[group])

82

edgeR User’s Guide

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Leading logFC dim 1 (55%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
14

%
)

Basal−CT−1

Basal−KO−1

Basal−CT−2

Basal−KO−2

Basal−CT−3

Basal−KO−3

Lum−CT−1

Lum−KO−1

Lum−CT−2

Lum−KO−2

Lum−CT−3

Lum−KO−3

The MDS plot shows the basal and luminal samples are well separated in the first dimension,
whereas the control and Foxp1 knock-out samples are separated in the second dimension.

4.5.6 Design matrix
Since there are four groups of samples in this RNA-seq experiment, a design matrix is created
as follows:
> design <- model.matrix(~ 0 + group)

> colnames(design) <- gsub("group", "", colnames(design))

> design

Basal_CT Basal_KO Lum_CT Lum_KO

1 1 0 0 0

2 0 1 0 0

3 1 0 0 0

4 0 1 0 0

5 1 0 0 0

6 0 1 0 0

7 0 0 1 0

8 0 0 0 1

9 0 0 1 0

10 0 0 0 1

11 0 0 1 0

12 0 0 0 1

attr(,"assign")

[1] 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

83

edgeR User’s Guide

4.5.7 Dispersion estimation
Under the current QL pipeline, technical and biological variation can be estimated simulta-
neously in the glmQLFit function. The QL dispersion estimates can be visualized with the
plotQLDisp function.
> fit <- glmQLFit(y, design, robust=TRUE)

> plotQLDisp(fit)

4.5.8 Differential expression
We test for differentially expressed exons between the Foxp1-KO and the control in the
luminal population using the QL F-test. The contrast of interest can be constructed using
the makeContrasts function.
> contr <- makeContrasts(Lum_KO - Lum_CT, levels=design)

> qlf <- glmQLFTest(fit, contrast=contr)

The top set of most significant exons can be examined with topTags. Here, a positive log-fold
change represents exons that are up in Foxp1-KO over control. Multiplicity correction is
performed by applying the Benjamini-Hochberg method on the p-values, to control the false
discovery rate (FDR).
> topTags(qlf)

Coefficient: -1*Lum_CT 1*Lum_KO

GeneID Chr Start End Strand Length Symbol logFC logCPM

50518.1 50518 chr2 154887532 154887701 + 170 a 9.98 3.38

12837 12837 chr16 57444619 57449180 - 4562 Col8a1 -5.09 4.62

12990.8 12990 chr5 87830048 87830437 + 390 Csn1s1 -5.67 2.07

50518 50518 chr2 154855490 154855561 + 72 a 7.22 2.52

12990.7 12990 chr5 87828679 87828821 + 143 Csn1s1 -7.89 1.28

112422 112422 chr4 147696393 147698505 - 2113 Zfp979 -5.64 1.13

494504.4 494504 chr18 63084901 63086886 + 1986 Apcdd1 3.88 4.68

84

edgeR User’s Guide

494504.2 494504 chr18 63069977 63070508 + 532 Apcdd1 4.23 2.53

50518.3 50518 chr2 154892548 154892932 + 385 a 7.23 4.04

27220.1 27220 chr13 100036465 100036587 - 123 Cartpt 7.84 1.37

F PValue FDR

50518.1 283.1 6.82e-12 5.69e-07

12837 315.5 1.06e-11 5.69e-07

12990.8 179.0 5.36e-11 1.91e-06

50518 135.7 1.39e-10 3.19e-06

12990.7 134.2 1.59e-10 3.19e-06

112422 196.3 1.79e-10 3.19e-06

494504.4 188.9 4.46e-10 6.80e-06

494504.2 172.6 8.96e-10 1.20e-05

50518.3 123.7 3.50e-09 4.03e-05

27220.1 83.7 4.39e-09 4.03e-05

The total number of DE exons in each direction at a FDR of 5% can be examined with
decideTests.
> is.de <- decideTests(qlf, p.value=0.05)

> summary(is.de)

-1*Lum_CT 1*Lum_KO

Down 300

NotSig 105230

Up 1285

4.5.9 Alternative splicing
We detect alternative splicing by testing for differential exon usage between Foxp1-KO and
control in the luminal population.
> sp <- diffSpliceDGE(fit, contrast=contr, geneid="GeneID", exonid="Start")

Total number of exons: 106815

Total number of genes: 14816

Number of genes with 1 exon: 3646

Mean number of exons in a gene: 7

Max number of exons in a gene: 106

The top differentially used exons are shown below:
> topSpliceDGE(sp, test="exon")

GeneID Chr Start End Strand Length Symbol logFC exon.F

49046 108655 chr6 98921580 98921681 - 102 Foxp1 -2.665 121.9

49047 108655 chr6 98922308 98922387 - 80 Foxp1 -3.056 120.4

122564 208263 chr1 155895714 155895769 - 56 Tor1aip1 5.000 87.4

140297 22228 chr7 100145293 100145414 + 122 Ucp2 -1.493 38.0

100766 17758 chr9 109831814 109834852 + 3039 Map4 -1.279 32.9

184802 319448 chr14 72937689 72941443 - 3755 Fndc3a -1.380 29.6

264648 74383 chr3 89906896 89907560 - 665 Ubap2l 0.918 27.0

9807 102436 chr9 123283775 123283944 + 170 Lars2 2.509 29.6

9548 102103 chr8 41494510 41494968 - 459 Mtus1 1.664 28.4

85

edgeR User’s Guide

9791 102436 chr9 123200920 123201168 + 249 Lars2 2.324 28.7

P.Value FDR

49046 1.35e-21 1.07e-16

49047 2.08e-21 1.07e-16

122564 6.71e-15 2.31e-10

140297 2.89e-08 7.44e-04

100766 4.18e-08 8.62e-04

184802 1.39e-07 2.38e-03

264648 4.42e-07 6.52e-03

9807 6.18e-07 7.85e-03

9548 6.85e-07 7.85e-03

9791 8.47e-07 8.74e-03

The successful elimination of the two targeted exons is demonstrated by the fact that the
two specific exons of the Foxp1 gene rank as the top two exons with the greatest difference
in usage.
Two different methods can be used to examine the differential splicing results at the gene
level: the Simes’ method and the gene-level F-test. The Simes’ method is likely to be more
powerful when only a minority of the exons for a gene are differentially spliced. The F-tests
are likely to be powerful for genes in which several exons are differentially spliced.
The top spliced genes under the Simes’ method are shown below:
> topSpliceDGE(sp, test="Simes")

GeneID Chr Strand Symbol NExons P.Value FDR

49079 108655 chr6 - Foxp1 20 1.97e-20 2.20e-16

122571 208263 chr1 - Tor1aip1 11 6.71e-14 3.75e-10

140303 22228 chr7 + Ucp2 9 2.31e-07 8.59e-04

100783 17758 chr9 + Map4 21 8.35e-07 2.33e-03

9811 102436 chr9 + Lars2 9 3.39e-06 6.71e-03

184804 319448 chr14 - Fndc3a 27 3.61e-06 6.71e-03

9555 102103 chr8 - Mtus1 11 6.85e-06 1.09e-02

264677 74383 chr3 - Ubap2l 29 1.24e-05 1.73e-02

255693 72181 chr4 - Nsun4 7 2.41e-05 2.99e-02

114280 194401 chr6 - Mical3 28 3.20e-05 3.57e-02

The top spliced genes identified by F-tests are shown below:
> topSpliceDGE(sp, test="gene")

GeneID Chr Strand Symbol NExons gene.F P.Value FDR

49079 108655 chr6 - Foxp1 20 14.35 5.02e-26 5.61e-22

9811 102436 chr9 + Lars2 9 20.00 5.64e-16 3.15e-12

122571 208263 chr1 - Tor1aip1 11 9.88 5.83e-11 2.17e-07

216231 57738 chr16 - Slc15a2 20 4.49 3.96e-08 1.11e-04

69092 12095 chr3 - Bglap3 6 9.67 1.20e-06 2.67e-03

9555 102103 chr8 - Mtus1 11 5.48 2.33e-06 4.34e-03

127951 213006 chr1 - Mfsd4a 4 10.23 2.87e-05 4.59e-02

140303 22228 chr7 + Ucp2 9 4.80 7.99e-05 1.12e-01

255693 72181 chr4 - Nsun4 7 5.49 1.42e-04 1.76e-01

148866 227746 chr2 - Rabepk 9 4.38 2.15e-04 2.41e-01

86

edgeR User’s Guide

As expected, the Foxp1 gene appears as the top gene under both gene-level tests.
We plot all the exons for the top two most differentially spliced genes. Exons that are
individually significant are highlighted.
> par(mfrow=c(1,2))

> plotSpliceDGE(sp, geneid="Foxp1", genecol="Symbol")

> plotSpliceDGE(sp, geneid="Tor1aip1", genecol="Symbol")

−
3.

0
−

2.
0

−
1.

0
0.

0
0.

5

Foxp1

lo
gF

C
 (

th
is

 e
xo

n
vs

 th
e

av
er

ag
e)

98
90

23
03

98
91

22
35

98
91

66
80

98
91

84
97

98
92

15
80

98
92

23
08

98
92

24
95

98
93

12
82

98
94

29
88

98
95

50
94

98
98

01
61

98
98

68
65

98
99

23
85

98
99

34
89

99
05

28
15

99
13

98
00

99
23

73
06

99
28

53
05

99
41

21
77

99
49

75
58

Exon Start

0
1

2
3

4
5

Tor1aip1

lo
gF

C
 (

th
is

 e
xo

n
vs

 th
e

av
er

ag
e)

15
58

80
34

5

15
58

89
06

4

15
58

93
25

7

15
58

93
96

4

15
58

95
71

4

15
58

98
04

6

15
58

98
89

5

15
59

06
13

3

15
59

07
16

0

15
59

09
47

2

15
59

11
50

4

Exon Start

We can see that the two Foxp1 exons with start positions of 98921580 and 98922308 are
significantly down in the Foxp1 KO samples compared to the control.

4.5.10 Setup
This analysis was conducted on:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

87

edgeR User’s Guide

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] org.Mm.eg.db_3.19.1 AnnotationDbi_1.65.2 IRanges_2.37.1

[4] S4Vectors_0.41.7 Biobase_2.63.1 BiocGenerics_0.49.1

[7] edgeR_4.1.28 limma_3.59.10 knitr_1.46

[10] BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] bit_4.0.5 jsonlite_1.8.8 compiler_4.4.0

[4] BiocManager_1.30.22 highr_0.10 crayon_1.5.2

[7] Rcpp_1.0.12 blob_1.2.4 Biostrings_2.71.6

[10] splines_4.4.0 png_0.1-8 yaml_2.3.8

[13] fastmap_1.1.1 statmod_1.5.0 lattice_0.22-6

[16] R6_2.5.1 XVector_0.43.1 GenomeInfoDb_1.39.14

[19] GenomeInfoDbData_1.2.12 DBI_1.2.2 rlang_1.1.3

[22] KEGGREST_1.43.0 cachem_1.0.8 xfun_0.43

[25] bit64_4.0.5 RSQLite_2.3.6 memoise_2.0.1

[28] cli_3.6.2 zlibbioc_1.49.3 digest_0.6.35

[31] grid_4.4.0 locfit_1.5-9.9 vctrs_0.6.5

[34] evaluate_0.23 rmarkdown_2.26 httr_1.4.7

[37] pkgconfig_2.0.3 UCSC.utils_0.99.7 tools_4.4.0

[40] htmltools_0.5.8.1

4.6 Differential transcript expression of human lung ade-
nocarcinoma cell lines

4.6.1 Introduction
We use the RNA-Seq data of the human lung adenocarninoma cell lines experiment from
Dong et al [12] as a case study for a differential expression analysis at the transcript-level
with edgeR . The DTE analysis focuses on the Illumina™short read RNA-Seq samples of
cell lines NCI-H1975 and HCC827, for which three biological replicates were sequenced with
paired-end sequencing protocol. Data for all six samples are available on the GEO repository
as series GSE172421. The details of the samples are shown in the target file below.
> targets <- read.delim("targets.txt", header=TRUE)

> targets

Group Replicate Sample GSM

1 H1975 1 H1975.1 GSM5255695

2 H1975 2 H1975.2 GSM5255696

3 H1975 3 H1975.3 GSM5255697

4 HCC827 1 HCC827.1 GSM5255704

5 HCC827 2 HCC827.2 GSM5255705

6 HCC827 3 HCC827.3 GSM5255706

88

edgeR User’s Guide

4.6.2 Read pseudoalignment and processing
We use Salmon[34] for pseudoalignment and quantification of sequence reads at the transcript-
level. The FASTQ files of the six samples were first downloaded using the SRA Toolkit. Then,
a transcriptome index based on the human GENCODE annotation (version 33) for the human
reference genome build hg38 was created with Salmon and used during read quantification.
For more details on the creation of the transcriptome index and read pseudoalignment, please
consult the Salmon’s documentation.
Assuming the quantification files from Salmon have been generated, we use catchSalmon to
import transcript-level counts and estimate the associated mapping ambiguity overdispersion
[1].
> library(edgeR)

> quant <- dirname(list.files(".","quant.sf",recursive = TRUE,full.names = TRUE))

> catch <- catchSalmon(paths = quant)

4.6.3 Count loading and annotation
To account for the mapping ambiguity resulting from the assignment of reads to transcripts,
we divide the transcript-level counts by the estimated mapping ambiguity overdispersion
associated to each transcript. Information about the samples are brought in from the targets
file. Then, a DGEList object can be created as follows.
> scaled.counts <- catch$counts/catch$annotation$Overdispersion

> samples <- targets[match(colnames(scaled.counts),targets$GSM),]

> y <- DGEList(counts = scaled.counts,

+ samples = samples,

+ group = samples$Group,

+ genes = catch$annotation)

> dim(y)

[1] 227063 6

> head(y$genes)

Length EffectiveLength Overdispersion

ENST00000456328.2 1657 1466 4.85

ENST00000450305.2 632 441 2.16

ENST00000488147.1 1351 1160 3.40

ENST00000619216.1 68 68 2.16

ENST00000473358.1 712 521 1.00

ENST00000469289.1 535 345 2.16

For the Ensembl-oriented GENCODE annotation, information about the transcripts can be
easily obtained from the AnnotationHub package and added to the DGEList object. Transcript
information might include the transcript biotype as well as the associated gene symbol. The
relevant AnnotationHub ID for the specific GENCODE annotation version 33 used in this case
study is AH78783 (Ensembl annotation version 99) and used below.
> require(AnnotationHub)

> ah <- AnnotationHub()

> edb <- ah[['AH78783']]

> edb.info <- select(edb,keys(edb),c("TXIDVERSION","TXBIOTYPE","SYMBOL"))

89

edgeR User’s Guide

> edb.info <- edb.info[match(rownames(y),edb.info$TXIDVERSION),]

>

> y$genes <- cbind(y$genes,edb.info[,-c(1,2)])

> head(y$genes)

Length EffectiveLength Overdispersion

ENST00000456328.2 1657 1466 4.85

ENST00000450305.2 632 441 2.16

ENST00000488147.1 1351 1160 3.40

ENST00000619216.1 68 68 2.16

ENST00000473358.1 712 521 1.00

ENST00000469289.1 535 345 2.16

TXBIOTYPE SYMBOL

ENST00000456328.2 processed_transcript DDX11L1

ENST00000450305.2 transcribed_unprocessed_pseudogene DDX11L1

ENST00000488147.1 unprocessed_pseudogene WASH7P

ENST00000619216.1 miRNA MIR6859-1

ENST00000473358.1 lncRNA MIR1302-2HG

ENST00000469289.1 lncRNA MIR1302-2HG

4.6.4 Filtering and normalization
Lowly expressed transcripts are filtered out prior to the downstream analysis.
> keep <- filterByExpr(y)

> table(keep)

keep

FALSE TRUE

196325 30738

> y <- y[keep, , keep.lib.sizes=FALSE]

After scaling counts by the estimated mapping ambiguity overdispersion, scaling factors can
computed using the TMM method to convert the resulting library sizes to effective library
sizes.
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors Group Replicate Sample GSM

GSM5255695 H1975 15361370 1.140 H1975 1 H1975.1 GSM5255695

GSM5255696 H1975 16622853 1.160 H1975 2 H1975.2 GSM5255696

GSM5255697 H1975 13842625 1.159 H1975 3 H1975.3 GSM5255697

GSM5255704 HCC827 15911639 0.916 HCC827 1 HCC827.1 GSM5255704

GSM5255705 HCC827 67664442 0.814 HCC827 2 HCC827.2 GSM5255705

GSM5255706 HCC827 14668555 0.875 HCC827 3 HCC827.3 GSM5255706

4.6.5 Data exploration
Analogous to a DGE analysis, MDS plots can also be used to visualize differences between
the expression profiles of different samples with transcript-level counts.

90

edgeR User’s Guide

> plotMDS(y,col = c(1:2)[y$samples$group],labels = y$samples$Sample,xlim = c(-4,4))

−4 −2 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Leading logFC dim 1 (89%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
4%

)

H1975.1H1975.2H1975.3

HCC827.1

HCC827.2

HCC827.3

The MDS plot shows that cell lines are well separated in the first dimension.

4.6.6 Design matrix
The design matrix used to assess DTE between cell lines NCI-H1975 and HCC827 is then
created below.
> design <- model.matrix(~ 0 + group,data = y$samples)

> colnames(design) <- gsub("group", "", colnames(design))

> design

H1975 HCC827

GSM5255695 1 0

GSM5255696 1 0

GSM5255697 1 0

GSM5255704 0 1

GSM5255705 0 1

GSM5255706 0 1

attr(,"assign")

[1] 1 1

attr(,"contrasts")

attr(,"contrasts")$group

[1] "contr.treatment"

4.6.7 Dispersion estimation
We estimate NB dispersions using the estimateDisp function and visualize the estimated
values with plotBCV.

91

edgeR User’s Guide

> y <- estimateDisp(y, design, robust=TRUE)

> y$common.dispersion

[1] 0.0147

> plotBCV(y)

Note that this NB dispersion estimation step is now optional as all the NB dispersion estimates
will not be used further under the latest quasi-likelihood (QL) pipeline.
For DTE analyses, we still recommend using the quasi-likelihood (QL) pipeline for stricter
error rate control by accounting for the uncertainty associated with the dispersion estimation.
To this end, we estimate QL dispersions via glmQLFit and visualize the estimated values with
plotQLDisp.
> fit <- glmQLFit(y, design, robust=TRUE)

> plotQLDisp(fit)

92

edgeR User’s Guide

4.6.8 Differential expression
Differentially expressed transcripts are tested between cell lines NCI-H1975 and HCC827 using
the QL F-test. We use the makeContrasts function to create the relevant contrast.
> contr <- makeContrasts(HCC827 - H1975, levels=design)

> qlf <- glmQLFTest(fit, contrast=contr)

The total number of DE transcripts up- and down-regulated at a FDR of 5% can be examined
with decideTests. We use the default Benjamini-Hochberg method to adjust p-values for
multiple testing.
> is.de <- decideTests(qlf, p.value=0.05)

> summary(is.de)

-1*H1975 1*HCC827

Down 11049

NotSig 9464

Up 10225

The top set of most significant differentially expressed transcripts can be examined with top

Tags, with a positive log-fold change representing up-regulation in expression levels in HCC827
over H1975.
> tt <- topTags(qlf,n = Inf)

> head(tt)

Coefficient: -1*H1975 1*HCC827

Length EffectiveLength Overdispersion TXBIOTYPE

ENST00000306061.10 704 513 1.18 protein_coding

ENST00000488803.1 879 688 1.28 processed_pseudogene

ENST00000223095.5 3156 2965 1.00 protein_coding

ENST00000372431.8 1889 1698 5.43 protein_coding

ENST00000311852.11 3701 3510 1.66 protein_coding

93

edgeR User’s Guide

ENST00000511685.6 10923 10732 1.34 protein_coding

SYMBOL logFC logCPM F PValue FDR

ENST00000306061.10 MT1E -12.09 6.66 2425 2.13e-23 6.54e-19

ENST00000488803.1 RPS2P5 12.43 8.15 2913 3.40e-22 5.22e-18

ENST00000223095.5 SERPINE1 -8.45 8.42 2959 1.00e-21 1.03e-17

ENST00000372431.8 PLTP -11.27 5.12 1629 4.64e-21 3.09e-17

ENST00000311852.11 MMP14 -8.84 6.85 2496 5.02e-21 3.09e-17

ENST00000511685.6 TENM3 -10.29 4.35 1255 3.12e-20 1.42e-16

We can see that the top set of most significant DE transcripts includes several transcripts
with associated protein-coding biotype.
In addition, our DE analysis at the transcript-level reveals several interesting genes with con-
trasting up- and down-regulation of their associated transcripts between cell lines. Such genes
include the BCL2L1 gene, for which one of its protein-coding transcripts (ENST00000376062.6)
is down-regulated in contrast to the remaining up-regulated transcripts in the HCC827 cell
line.
> tt$table[tt$table$SYMBOL == 'BCL2L1',]

Length EffectiveLength Overdispersion TXBIOTYPE SYMBOL

ENST00000307677.5 2574 2383 5.15 protein_coding BCL2L1

ENST00000456404.5 914 723 3.30 protein_coding BCL2L1

ENST00000376062.6 2578 2387 9.67 protein_coding BCL2L1

ENST00000422920.1 1157 966 2.17 protein_coding BCL2L1

ENST00000376055.8 2383 2192 10.14 protein_coding BCL2L1

logFC logCPM F PValue FDR

ENST00000307677.5 1.293 6.0551 82.01 3.43e-08 2.30e-07

ENST00000456404.5 2.934 -0.0296 35.24 1.20e-05 3.76e-05

ENST00000376062.6 -0.798 3.6044 25.35 8.16e-05 2.10e-04

ENST00000422920.1 0.244 3.5633 2.51 1.30e-01 1.67e-01

ENST00000376055.8 0.320 -0.0820 1.06 3.17e-01 3.70e-01

4.6.9 Setup
This analysis was conducted on:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

94

edgeR User’s Guide

tzcode source: internal

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] ensembldb_2.27.1 AnnotationFilter_1.27.0 GenomicFeatures_1.55.4

[4] AnnotationDbi_1.65.2 Biobase_2.63.1 GenomicRanges_1.55.4

[7] GenomeInfoDb_1.39.14 IRanges_2.37.1 S4Vectors_0.41.7

[10] AnnotationHub_3.11.5 BiocFileCache_2.11.2 dbplyr_2.5.0

[13] BiocGenerics_0.49.1 edgeR_4.1.28 limma_3.59.10

[16] knitr_1.46 BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] tidyselect_1.2.1 dplyr_1.1.4

[3] blob_1.2.4 filelock_1.0.3

[5] Biostrings_2.71.6 bitops_1.0-7

[7] lazyeval_0.2.2 fastmap_1.1.1

[9] RCurl_1.98-1.14 GenomicAlignments_1.39.5

[11] XML_3.99-0.16.1 digest_0.6.35

[13] mime_0.12 lifecycle_1.0.4

[15] ProtGenerics_1.35.4 statmod_1.5.0

[17] KEGGREST_1.43.0 RSQLite_2.3.6

[19] magrittr_2.0.3 compiler_4.4.0

[21] rlang_1.1.3 tools_4.4.0

[23] utf8_1.2.4 yaml_2.3.8

[25] rtracklayer_1.63.3 S4Arrays_1.3.7

[27] bit_4.0.5 curl_5.2.1

[29] DelayedArray_0.29.9 abind_1.4-5

[31] BiocParallel_1.37.1 withr_3.0.0

[33] purrr_1.0.2 grid_4.4.0

[35] fansi_1.0.6 SummarizedExperiment_1.33.3

[37] cli_3.6.2 rmarkdown_2.26

[39] crayon_1.5.2 generics_0.1.3

[41] httr_1.4.7 rjson_0.2.21

[43] DBI_1.2.2 cachem_1.0.8

[45] splines_4.4.0 zlibbioc_1.49.3

[47] parallel_4.4.0 BiocManager_1.30.22

[49] XVector_0.43.1 restfulr_0.0.15

[51] matrixStats_1.3.0 vctrs_0.6.5

[53] Matrix_1.7-0 jsonlite_1.8.8

[55] bit64_4.0.5 locfit_1.5-9.9

[57] glue_1.7.0 codetools_0.2-20

[59] BiocVersion_3.19.1 BiocIO_1.13.0

[61] UCSC.utils_0.99.7 tibble_3.2.1

[63] pillar_1.9.0 rappdirs_0.3.3

[65] htmltools_0.5.8.1 GenomeInfoDbData_1.2.12

[67] R6_2.5.1 evaluate_0.23

[69] lattice_0.22-6 highr_0.10

[71] png_0.1-8 Rsamtools_2.19.4

95

edgeR User’s Guide

[73] memoise_2.0.1 Rcpp_1.0.12

[75] SparseArray_1.3.5 xfun_0.43

[77] MatrixGenerics_1.15.1 pkgconfig_2.0.3

4.7 CRISPR-Cas9 knockout screen analysis

4.7.1 Introduction
Dai et al. (2014) [11] describe the use of edgeR to analyze data from pooled genetic screens
utilizing either shRNAs or CRISPR-Cas9 to disrupt gene expression in a population of cells.
In this case study we analyze data from a pooled screen that uses CRISPR-Cas9 (clustered
regularly interspaced short palindromic repeats-associated nuclease Cas9) knockout technol-
ogy. In this example, a library of around 64,000 sgRNAs (as used in Shalem et al. 2014 [44])
were screened to look for genes that may lead to resistance from a particular drug. This
unpublished data set has been anonymised.

4.7.2 Sequence processing
Multiple single guide RNAs (sgRNAs) per gene (generally between 3-6) were included in the
screen. Below we read in the raw sequences from the paired end fastq files screen4_R1.fastq
and screen4_R2.fastq using the processAmplicons function in edgeR. This screen employed
a dual indexing strategy where the first 8 bases from each pair of reads contained an index
sequence that uniquely identifies which sample a particular sgRNA sequence originated from.
Matches between sample indexes and sgRNAs listed in the files Samples4.txt and sgRNAs4.txt
are identified by processAmplicons to produce a DGEList of counts.
> library(edgeR)

> sampleanno <- read.table("Samples4.txt", header=TRUE, sep="\t")

> sgseqs <- read.table("sgRNAs4.txt", header=TRUE, sep="\t")

> x <- processAmplicons("screen4_R1.fastq", readfile2="screen4_R2.fastq",

+ barcodefile="Samples4.txt", hairpinfile="sgRNAs4.txt",

+ verbose=TRUE)

Note that this dual indexing strategy requires an additional column named ‘SequencesRev’ in
the file that contains the sample annotation information. Also, readFile2 must be specified.
The output DGEList is available here.

4.7.3 Filtering and data exploration
We next filter out sgRNAs and samples with low numbers of reads. Need a CPM greater
than 5 in 15 or more samples to keep sgRNAs, and at least 100,000 reads to keep a given
sample.
> table(x$samples$group)

Drug NoDrug

40 32

96

edgeR User’s Guide

> selr <- rowSums(cpm(x$counts)>5)>=15

> selc <- colSums(x$counts)>=100000

> x <- x[selr,selc]

We plot number of sgRNAs that could be matched per sample and total for each sgRNA
across all samples .
> cols <- as.numeric(x$samples$group)+2

> par(mfrow=c(2,1))

> barplot(colSums(x$counts), las=2, main="Counts per index",

+ col=cols, cex.names=0.5, cex.axis=0.8)

> legend("topright", legend=c("Control", "Drug"), col=c(3,4), pch=15)

> barplot(rowSums(x$counts), las=2, main="Counts per sgRNA",

+ axisnames=FALSE, cex.axis=0.8)

A multidimensional scaling plot was generated to assess the consistency between replicate
samples. There is a clear separation between the two infections, indicating the need to
incorporate an effect for this in the GLM.
> cols2 <- x$samples$Infection

> par(mfrow=c(1,2))

> plotMDS(x, col=cols, main="MDS Plot: drug treatment colours")

> legend("topleft", legend=c("Control", "Drug"), col=c(3,4), pch=15)

> plotMDS(x, col=cols2, main="MDS Plot: infection colours")

> legend("topleft", legend=c("Inf#1", "Inf#2"), col=c(1,2), pch=15)

97

edgeR User’s Guide

4.7.4 Design matrix
A design matrix is set up for the GLM analysis, and the sgRNA-specific variation is estimated
and plotted (while taking into account both drug treatment and infection number).
> treatment <- relevel(as.factor(x$samples$group), "NoDrug")

> infection <- as.factor(x$samples$Infection)

> des <- model.matrix(~treatment+infection)

> des[1:5,]

(Intercept) treatmentDrug infection2

1 1 0 0

2 1 0 0

3 1 0 0

4 1 0 0

5 1 0 0

> colnames(des)[2:3] <- c("Drug", "Infection2")

4.7.5 Differential representation analysis
We use the function glmQLFit to fit the sgRNA-specific models and glmQLFTest to do the
testing between the drug treated and control samples. The top ranked sgRNAs are listed
using the topTags function.
> fit <- glmQLFit(x, des)

> qlf <- glmQLFTest(fit, coef=2)

> topTags(qlf)

Coefficient: Drug

ID Sequences Gene logFC logCPM F PValue

sgRNA4070 sgRNA4070 GTTGTGCTCAGTACTGACTT 1252 2.95 7.99 1064 6.03e-73

sgRNA816 sgRNA816 TCCGAACTCCCCCTTCCCGA 269 4.36 7.31 981 2.02e-70

98

edgeR User’s Guide

sgRNA6351 sgRNA6351 AAAAACGTATCTATTTTTAC 1957 3.45 6.32 598 1.73e-58

sgRNA12880 sgRNA12880 CTGCACCGAAGAGAGCTGCT 3979 2.85 7.02 499 3.32e-51

sgRNA38819 sgRNA38819 TACGTTGTCGGGCGCCGCCA 11531 2.47 6.52 302 8.27e-39

sgRNA52924 sgRNA52924 CCACCGCGTTCCACTTCTTG 16395 2.81 6.62 261 1.47e-35

sgRNA23015 sgRNA23015 CAATTTGATCTCTTCTACTG 6714 2.99 4.80 250 1.27e-34

sgRNA62532 sgRNA62532 AAACACGTCCAGTGCAGCCC 19612 2.75 4.88 245 3.44e-34

sgRNA47062 sgRNA47062 GACCTACCTGCGGAGTCAGA 14328 2.39 5.33 236 3.82e-34

sgRNA3887 sgRNA3887 AACGCTGGACTCGAATGGCC 1194 2.26 5.31 234 3.25e-33

FDR

sgRNA4070 3.40e-68

sgRNA816 5.69e-66

sgRNA6351 3.25e-54

sgRNA12880 4.68e-47

sgRNA38819 9.33e-35

sgRNA52924 1.38e-31

sgRNA23015 1.02e-30

sgRNA62532 2.39e-30

sgRNA47062 2.39e-30

sgRNA3887 1.83e-29

sgRNAs with FDR < 0.0001 [2] and log-fold-change ≥ 1 are highlighted on a plot of log-
fold-change versus log-counts-per-millions by the plotSmear function. Since this is a positive
screen, we highlight over-represented sgRNAs (i.e. those with positive log-fold-changes) as
the model is parameterized to compare drug treatment versus control (coefficient 2 in the
design matrix).
> thresh <- 0.0001

> lfc <- 1

> top4 <- topTags(qlf, n=Inf)

> top4ids <- top4$table[top4$table$FDR<thresh & top4$table$logFC>=lfc,1]

> plotSmear(qlf, de.tags=top4ids, pch=20, cex=0.6,

+ main="Drug treatment vs Control")

Warning in plot.xy(xy.coords(x, y), type = type, ...): "panel.first" is not a graphical

parameter

> abline(h=c(-1, 0, 1), col=c("dodgerblue","yellow","dodgerblue"), lty=2)

99

edgeR User’s Guide

4.7.6 Summarization over multiple sgRNAs targeting the same gene
We finish this analysis by summarising data across multiple sgRNAs that target the same
gene in order to get a gene-by-gene ranking, rather than a sgRNA-specific one. The camera
gene-set test [50] is used for this purpose. For this analysis, the collection of sgRNAs that
target a specific gene can be regarded as a ‘set’. In the code below, we restrict our analysis to
genes with more than 3 sgRNAs. A barcode plot, highlighting the rank of sgRNAs for a given
gene relative to the entire data set is generated for the top-ranked gene (19612). Abundance
of sgRNAs targeting this gene tend to increase with drug treatment at 0.05 FDR.
> genesymbols <- x$genes[,3]

> genesymbollist <- list()

> unq <- unique(genesymbols)

> unq <- unq[!is.na(unq)]

> for(i in unq) {

+ sel <- genesymbols==i & !is.na(genesymbols)

+ if(sum(sel)>3)

+ genesymbollist[[i]] <- which(sel)

+ }

> x$common.dispersion <- fit$dispersion

> camera.res <- camera(x, index=genesymbollist, des, contrast=2)

> camera.res[1:10,]

NGenes Direction PValue FDR

19612 5 Up 9.24e-07 0.0051

8808 4 Up 6.92e-05 0.1607

8370 4 Up 8.75e-05 0.1607

10386 4 Up 2.02e-04 0.2788

4086 4 Up 2.99e-04 0.3294

10784 4 Up 3.89e-04 0.3571

2005 4 Up 6.82e-04 0.4981

11531 4 Up 7.23e-04 0.4981

4635 5 Up 9.56e-04 0.5200

100

edgeR User’s Guide

1874 4 Up 9.95e-04 0.5200

We make a barcode plot for an example (Gene 19612) that ranks highly.
> barcodeplot(qlf$table$logFC,index=genesymbollist[[19612]],

+ main="Barcodeplot for Gene 19612",

+ labels=c("Negative logFC", "Positive logFC"),

+ quantile=c(-0.5,0.5))

Barcodeplot for Gene 19612

Statistic

N
eg

at
iv

e
lo

gF
C

P
os

iti
ve

 lo
gF

C

−
2.

35

−
0.

46

−
0.

30

−
0.

19

−
0.

10

−
0.

03

 0
.0

6

 0
.1

5

 0
.2

6

 0
.4

2

 4
.3

6

0
5.

2
E

nr
ic

hm
en

t

The raw data from this example and several other case studies for this technology can be
found at https://bioinf.wehi.edu.au/shRNAseq/.

4.7.7 Setup
This analysis was conducted on:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

101

edgeR User’s Guide

[1] edgeR_4.1.30 limma_3.59.10 knitr_1.46 BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] digest_0.6.35 fastmap_1.1.1 xfun_0.43

[4] lattice_0.22-6 splines_4.4.0 htmltools_0.5.8.1

[7] rmarkdown_2.26 cli_3.6.2 grid_4.4.0

[10] statmod_1.5.0 compiler_4.4.0 highr_0.10

[13] tools_4.4.0 evaluate_0.23 Rcpp_1.0.12

[16] yaml_2.3.8 locfit_1.5-9.9 BiocManager_1.30.22

[19] rlang_1.1.3

4.7.8 Acknowledgements
Thanks to Dr Sam Wormald from the WEHI for providing the data set used in this case
study.

4.8 Bisulfite sequencing of mouse oocytes

4.8.1 Introduction
The bisulfite sequencing (BS-seq) data of this case study is described in Gahurova et al. [18].
The sequence and count data are publicly available from the Gene Expression Omnibus (GEO)
at the series accession number GSE86297.
This study investigates the onset and progression of de novo methylation. Growing oocytes
from pre-pubertal mouse ovaries (post-natal days 7-18) isolated and sorted into the following,
non-overlapping size categories: 40-45, 50-55 and 60-65µm with two biological replicates in
each. Methylation maps were generated by bisulfite conversion of oocyte DNA and Illumina
sequencing. Reduced representation bisulfite sequencing (RRBS [32]) was applied for focusing
coverage of CGIs and other GC-rich sequences in all three size classes of oocytes. RRBS reads
were trimmed to remove poor quality calls and adapters using Trim Galore and mapped to the
mouse genome GRCm38 assembly by Bismark [22]. This is summarized in the table below.
> library(edgeR)

> targets <- read.delim("targets.txt", stringsAsFactors=FALSE)

> targets

GEO Sample Group File

1 GSM2299710 40-45um-A 40um GSM2299710_RRBS_40-45oocyte_LibA.cov.txt.gz

2 GSM2299711 40-45um-B 40um GSM2299711_RRBS_40-45oocyte_LibB.cov.txt.gz

3 GSM2299712 50-55um-A 50um GSM2299712_RRBS_50-55oocyte_LibA.cov.txt.gz

4 GSM2299713 50-55um-B 50um GSM2299713_RRBS_50-55oocyte_LibB.cov.txt.gz

5 GSM2299714 60-65um-A 60um GSM2299714_RRBS_60-65oocyte_LibA.cov.txt.gz

6 GSM2299715 60-65um-B 60um GSM2299715_RRBS_60-65oocyte_LibB.cov.txt.gz

102

edgeR User’s Guide

4.8.2 Reading in the data
The Bismark outputs of the data include one coverage file of the methylation in CpG context
for each sample. The coverage file for each of the six samples is available for download at
GEO. The first six rows of the coverage output for the first sample are shown below.
> s1 <- read.delim(file="GSM2299710_RRBS_40-45oocyte_LibA.cov.txt.gz",

+ header=FALSE, nrows=6)

> s1

V1 V2 V3 V4 V5 V6

1 6 3121266 3121266 0.00 0 17

2 6 3121296 3121296 0.00 0 17

3 6 3179319 3179319 1.28 1 77

4 6 3180316 3180316 4.55 1 21

5 6 3182928 3182928 4.33 22 486

6 6 3182937 3182937 5.37 61 1074

The six columns (from left to right) represent: chromosome, start position, end posi-
tion, methylation proportion in percentage, number of methylated C’s and number of un-
methylated C’s. Since the start and end positions of a CpG site from Bismark are the same,
we can keep only one of them. The last two columns of counts are we will use for the analysis.
We read in the coverage files of all six samples using readBismark2DGE. A DGEList object
is created using the count table, and the chromosome number and positions are used for
annotation.
> files <- targets$File

> yall <- readBismark2DGE(files, sample.names=targets$Sample)

The edgeRpackage stores the counts and associated annotation in a DGEList object. There
is a row for each CpG locus found in any of the files. There are columns of methylated and
unmethylated counts for each sample. The chromosomes and genomic loci are stored in the
genes component.
> yall

An object of class "DGEList"

$counts

40-45um-A-Me 40-45um-A-Un 40-45um-B-Me 40-45um-B-Un 50-55um-A-Me

6-3121266 0 17 0 4 0

6-3121296 0 17 0 4 0

6-3179319 1 77 0 76 2

6-3180316 1 21 0 0 1

6-3182928 22 486 8 953 7

50-55um-A-Un 50-55um-B-Me 50-55um-B-Un 60-65um-A-Me 60-65um-A-Un

6-3121266 17 0 0 3 3

6-3121296 16 0 0 0 6

6-3179319 52 0 7 10 43

6-3180316 7 0 0 2 4

6-3182928 714 32 1190 10 618

60-65um-B-Me 60-65um-B-Un

6-3121266 0 11

103

edgeR User’s Guide

6-3121296 0 11

6-3179319 3 30

6-3180316 1 0

6-3182928 12 651

2271667 more rows ...

$samples

group lib.size norm.factors

40-45um-A-Me 1 1231757 1

40-45um-A-Un 1 36263318 1

40-45um-B-Me 1 1719267 1

40-45um-B-Un 1 55600556 1

50-55um-A-Me 1 2691638 1

7 more rows ...

$genes

Chr Locus

6-3121266 6 3121266

6-3121296 6 3121296

6-3179319 6 3179319

6-3180316 6 3180316

6-3182928 6 3182928

2271667 more rows ...

> dim(yall)

[1] 2271672 12

We remove the mitochondrial genes as they are usually of less interest.
> table(yall$genes$Chr)

6 9 17 1 3 13 10 2 4 5 11

111377 120649 101606 140819 108466 95196 116980 173357 157628 159979 161754

18 16 7 8 14 19 X 12 15 Y MT

71737 70964 140225 130786 84974 70614 58361 95580 99646 662 312

> yall <- yall[yall$genes$Chr!="MT",]

For convenience, we sort the DGEList so that all loci are in genomic order, from chromosome
1 to chromosome Y.
> ChrNames <- c(1:19,"X","Y")

> yall$genes$Chr <- factor(yall$genes$Chr, levels=ChrNames)

> o <- order(yall$genes$Chr, yall$genes$Locus)

> yall <- yall[o,]

We now annotate the CpG loci with the identity of the nearest gene. We search for the gene
transcriptional start site (TSS) closest to each our CpGs:
> TSS <- nearestTSS(yall$genes$Chr, yall$genes$Locus, species="Mm")

> yall$genes$EntrezID <- TSS$gene_id

> yall$genes$Symbol <- TSS$symbol

104

edgeR User’s Guide

> yall$genes$Strand <- TSS$strand

> yall$genes$Distance <- TSS$distance

> yall$genes$Width <- TSS$width

> head(yall$genes)

Chr Locus EntrezID Symbol Strand Distance Width

1-3003886 1 3003886 497097 Xkr4 - -667612 457017

1-3003899 1 3003899 497097 Xkr4 - -667599 457017

1-3020877 1 3020877 497097 Xkr4 - -650621 457017

1-3020891 1 3020891 497097 Xkr4 - -650607 457017

1-3020946 1 3020946 497097 Xkr4 - -650552 457017

1-3020988 1 3020988 497097 Xkr4 - -650510 457017

Here EntrezID, Symbol, Strand and Width are the Entrez Gene ID, symbol, strand and width of
the nearest gene. Distance is the genomic distance from the CpG to the TSS. Positive values
means the TSS is downstream of the CpG and negative values means the TSS is upstream.

4.8.3 Filtering and normalization
We now turn to statistical analysis of differential methylation. Our first analysis will be for
individual CpG loci.
CpG loci that have low coverage are removed prior to downstream analysis as they provide
little information for assessing methylation levels. We sum up the counts of methylated and
unmethylated reads to get the total read coverage at each CpG site for each sample:
> Methylation <- gl(2,1,ncol(yall), labels=c("Me","Un"))

> Me <- yall$counts[, Methylation=="Me"]

> Un <- yall$counts[, Methylation=="Un"]

> Coverage <- Me + Un

> head(Coverage)

40-45um-A-Me 40-45um-B-Me 50-55um-A-Me 50-55um-B-Me 60-65um-A-Me

1-3003886 0 0 0 0 3

1-3003899 0 0 0 0 3

1-3020877 84 77 114 21 86

1-3020891 84 78 116 21 86

1-3020946 146 369 210 165 195

1-3020988 38 91 60 94 50

60-65um-B-Me

1-3003886 0

1-3003899 0

1-3020877 57

1-3020891 57

1-3020946 168

1-3020988 25

As a conservative rule of thumb, we require a CpG site to have a total count (both methylated
and unmethylated) of at least 8 in every sample before it is considered in the study.
> HasCoverage <- rowSums(Coverage >= 8) == 6

105

edgeR User’s Guide

This filtering criterion could be relaxed somewhat in principle but the number of CpGs kept
in the analysis is large enough for our purposes.
We also filter out CpGs that are never methylated or always methylated as they provide no
information about differential methylation:
> HasBoth <- rowSums(Me) > 0 & rowSums(Un) > 0

> table(HasCoverage, HasBoth)

HasBoth

HasCoverage FALSE TRUE

FALSE 1601772 295891

TRUE 118785 254912

The DGEList object is subsetted to retain only the non-filtered loci:
> y <- yall[HasCoverage & HasBoth,, keep.lib.sizes=FALSE]

A key difference between BS-seq and other sequencing data is that the pair of libraries
holding the methylated and unmethylated reads for a particular sample are treated as a unit.
To ensure that the methylated and unmethylated reads for the same sample are treated on
the same scale, we need to set the library sizes to be equal for each pair of libraries. We set
the library sizes for each sample to be the average of the total read counts for the methylated
and unmethylated libraries:
> TotalLibSize <- 0.5 * y$samples$lib.size[Methylation=="Me"] +

+ 0.5 * y$samples$lib.size[Methylation=="Un"]

> y$samples$lib.size <- rep(TotalLibSize, each=2)

> y$samples

group lib.size norm.factors

40-45um-A-Me 1 10427408 1

40-45um-A-Un 1 10427408 1

40-45um-B-Me 1 19792269 1

40-45um-B-Un 1 19792269 1

50-55um-A-Me 1 11322495 1

50-55um-A-Un 1 11322495 1

50-55um-B-Me 1 12632062 1

50-55um-B-Un 1 12632062 1

60-65um-A-Me 1 9487110 1

60-65um-A-Un 1 9487110 1

60-65um-B-Me 1 10231167 1

60-65um-B-Un 1 10231167 1

Other normalization methods developed for RNA-seq data are not required for BS-seq data.

4.8.4 Data exploration
The data can be explored by generating multi-dimensional scaling (MDS) plots on the methy-
lation level (M-value) of the CpG sites. The M-value is calcualted by the log of the ratio of
methylated and unmethylated C’s, which is equivalent to the difference between methylated
and unmethylated C’s on the log-scale [13]. A prior count of 2 is added to avoid logarithms
of zero.

106

edgeR User’s Guide

> Me <- y$counts[, Methylation=="Me"]

> Un <- y$counts[, Methylation=="Un"]

> M <- log2(Me + 2) - log2(Un + 2)

> colnames(M) <- targets$Sample

Here M contains the empirical logit methylation level for each CpG site in each sample. We
have used a prior count of 2 to avoid logarithms of zero.
Now we can generate a multi-dimensional scaling (MDS) plot to explore the overall differences
between the methylation levels of the different samples.
> plotMDS(M, col=rep(1:3, each=2), main="M-values")

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2

M−values

Leading logFC dim 1 (60%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
20

%
) 40−45um−A

40−45um−B

50−55um−A

50−55um−B

60−65um−A60−65um−B

Replicate samples cluster together within the 40-45 and 60-65µm categories but are far apart
in the 50-55µm group. The plot also indicates a huge difference in methylation level between
the 40-45 and 60-65µm groups.

4.8.5 Design matrix
One aim of this study is to identify differentially methylated (DM) loci between the different
cell populations. In edgeR, this can be done by fitting linear models under a specified design
matrix and testing for corresponding coefficients or contrasts. A basic sample-level design
matrix can be made as follows:
> designSL <- model.matrix(~0+Group, data=targets)

> designSL

Group40um Group50um Group60um

1 1 0 0

2 1 0 0

3 0 1 0

4 0 1 0

5 0 0 1

6 0 0 1

107

edgeR User’s Guide

attr(,"assign")

[1] 1 1 1

attr(,"contrasts")

attr(,"contrasts")$Group

[1] "contr.treatment"

The we expand this to the full design matrix modeling the sample and methylation effects:
> design <- modelMatrixMeth(designSL)

> design

Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Group40um Group50um

1 1 0 0 0 0 0 1 0

2 1 0 0 0 0 0 0 0

3 0 1 0 0 0 0 1 0

4 0 1 0 0 0 0 0 0

5 0 0 1 0 0 0 0 1

6 0 0 1 0 0 0 0 0

7 0 0 0 1 0 0 0 1

8 0 0 0 1 0 0 0 0

9 0 0 0 0 1 0 0 0

10 0 0 0 0 1 0 0 0

11 0 0 0 0 0 1 0 0

12 0 0 0 0 0 1 0 0

Group60um

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 1

10 0

11 1

12 0

The first six columns represent the sample coverage effects. The last three columns represent
the methylation levels (in logit units) in the three groups.

4.8.6 Differential methylation analysis at CpG loci
For simplicity, we only consider the CpG methylation in chromosome 1. We subset the
coverage files so that they only contain methylation information of the first chromosome.
> y1 <- y[y$genes$Chr==1,]

Then we proceed to testing for differentially methylated CpG sites between different groups.
We fit quasi NB GLM for all the CpG loci using the glmQLFit function.

108

edgeR User’s Guide

> fit <- glmQLFit(y1, design)

We identify differentially methylated CpG loci between the 40-45 and 60-65µm group using
the likelihood-ratio test. The contrast corresponding to this comparison is constructed using
the makeContrasts function.
> contr <- makeContrasts(

+ Group60vs40 = Group60um - Group40um, levels=design)

> qlf <- glmQLFTest(fit, contrast=contr)

The top set of most significant DMRs can be examined with topTags. Here, positive log-fold
changes represent CpG sites that have higher methylation level in the 60-65µm group com-
pared to the 40-45µm group. Multiplicity correction is performed by applying the Benjamini-
Hochberg method on the p-values, to control the false discovery rate (FDR).
> topTags(qlf)

Coefficient: -1*Group40um 1*Group60um

Chr Locus EntrezID Symbol Strand Distance Width logFC

1-120170060 1 120170060 73103 3110009E18Rik + -48873 67003 7.86

1-183357406 1 183357406 338366 Mia3 - -12159 43330 8.40

1-131987595 1 131987595 212980 Slc45a3 + -16986 12364 10.74

1-120169950 1 120169950 73103 3110009E18Rik + -48763 67003 9.23

1-172206570 1 172206570 18611 Pea15a - -234 10077 10.10

1-183357373 1 183357373 338366 Mia3 - -12192 43330 7.35

1-169954561 1 169954561 15490 Hsd17b7 - -14644 19669 12.22

1-92943747 1 92943747 100037260 9430060I03Rik - -6843 17048 9.57

1-153126749 1 153126749 16782 Lamc2 - -59698 63692 8.22

1-36500213 1 36500213 94218 Cnnm3 + 11654 16370 9.95

logCPM F PValue FDR

1-120170060 4.54 40.2 2.28e-10 3.25e-06

1-183357406 4.28 38.3 6.07e-10 4.32e-06

1-131987595 2.70 33.5 7.33e-09 3.48e-05

1-120169950 3.47 32.3 1.31e-08 4.53e-05

1-172206570 2.71 31.7 1.84e-08 4.53e-05

1-183357373 4.15 31.6 1.91e-08 4.53e-05

1-169954561 2.36 28.9 7.63e-08 1.39e-04

1-92943747 2.36 28.7 8.66e-08 1.39e-04

1-153126749 3.29 28.5 9.41e-08 1.39e-04

1-36500213 2.20 28.3 1.06e-07 1.39e-04

The total number of DMRs in each direction at a FDR of 5% can be examined with decide

Tests.
> summary(decideTests(qlf))

-1*Group40um 1*Group60um

Down 0

NotSig 13242

Up 993

109

edgeR User’s Guide

The differential methylation results can be visualized using an MD plot. The difference of
the M-value for each CpG site is plotted against the average abundance of that CpG site.
Significantly DMRs at a FDR of 5% are highlighted.
> plotMD(qlf)

It can be seen that most of the DMRs have higher methylation levels in 60-65µm group
compared to the 40-45µm group. This is consistent with the findings in Gahurova et al. [18].

4.8.7 Summarizing counts in promoter regions
It is usually of great biological interest to examine the methylation level within the gene
promoter regions. For simplicity, we define the promoter of a gene as the region from 2kb
upstream to 1kb downstream of the transcription start site of that gene. We then subset the
CpGs to those contained in a promoter region.
> InPromoter <- yall$genes$Distance >= -1000 & yall$genes$Distance <= 2000

> yIP <- yall[InPromoter,,keep.lib.sizes=FALSE]

We compute the total counts for each gene promoter:
> ypr <- rowsum(yIP, yIP$genes$EntrezID, reorder=FALSE)

> ypr$genes$EntrezID <- NULL

The integer matrix ypr$counts contains the total numbers of methylated and unmethylated
CpGs observed within the promoter of each gene.
Filtering is performed in the same way as before. We sum up the read counts of both
methylated and unmethylated Cs at each gene promoter within each sample.
> Mepr <- ypr$counts[,Methylation=="Me"]

> Unpr <- ypr$counts[,Methylation=="Un"]

> Coveragepr <- Mepr + Unpr

110

edgeR User’s Guide

Since each row represents a 3,000-bps-wide promoter region that contains multiple CpG sites,
we would expect less filtering than before.
> HasCoveragepr <- rowSums(Coveragepr >= 8) == 6

> HasBothpr <- rowSums(Mepr) > 0 & rowSums(Unpr) > 0

> table(HasCoveragepr, HasBothpr)

HasBothpr

HasCoveragepr FALSE TRUE

FALSE 3656 3053

TRUE 85 15043

> ypr <- ypr[HasCoveragepr & HasBothpr,,keep.lib.sizes=FALSE]

Same as before, we do not perform normalization but set the library sizes for each sample to
be the average of the total read counts for the methylated and unmethylated libraries.
> TotalLibSizepr <- 0.5 * ypr$samples$lib.size[Methylation=="Me"] +

+ 0.5 * ypr$samples$lib.size[Methylation=="Un"]

> ypr$samples$lib.size <- rep(TotalLibSizepr, each=2)

> ypr$samples

group lib.size norm.factors

40-45um-A-Me 1 8015762 1

40-45um-A-Un 1 8015762 1

40-45um-B-Me 1 11768442 1

40-45um-B-Un 1 11768442 1

50-55um-A-Me 1 9989109 1

50-55um-A-Un 1 9989109 1

50-55um-B-Me 1 8506420 1

50-55um-B-Un 1 8506420 1

60-65um-A-Me 1 8089503 1

60-65um-A-Un 1 8089503 1

60-65um-B-Me 1 6500102 1

60-65um-B-Un 1 6500102 1

4.8.8 Differential methylation in gene promoters
We fit quasi NB GLMs for all the gene promoters using glmQLFit.
> fitpr <- glmQLFit(ypr, design)

Then we can proceed to testing for differential methylation in gene promoter regions between
different populations. Suppose the comparison of interest is the same as before. The same
contrast can be used for the testing.
> qlfpr <- glmQLFTest(fitpr, contrast=contr)

The top set of most differentially methylated gene promoters can be viewed with topTags:
> topTags(qlfpr, n=20)

Coefficient: -1*Group40um 1*Group60um

Chr Symbol Strand logFC logCPM F PValue FDR

111

edgeR User’s Guide

237336 10 Tbpl1 - 7.07 7.69 126.9 5.43e-12 4.78e-08

30841 5 Kdm2b - 6.64 7.64 125.2 6.35e-12 4.78e-08

109934 11 Abr - 5.20 8.15 105.1 4.71e-11 2.30e-07

15552 4 Htr1d + 7.02 6.96 102.3 6.40e-11 2.30e-07

210274 7 Shank2 + 7.32 6.56 100.7 7.65e-11 2.30e-07

78102 15 8430426J06Rik - 7.78 5.53 93.3 1.78e-10 4.05e-07

246257 11 Ovca2 - 7.62 6.60 91.6 2.11e-10 4.05e-07

69727 5 Usp46 - 5.95 7.49 91.5 2.21e-10 4.05e-07

20410 14 Sorbs3 - 6.43 6.92 90.7 2.42e-10 4.05e-07

101100 6 Ttll3 + 7.70 6.40 89.3 2.90e-10 4.36e-07

217198 11 Plekhh3 - 6.95 6.76 86.8 3.92e-10 5.24e-07

212307 18 Mapre2 + 6.36 6.96 86.3 4.18e-10 5.24e-07

72446 2 Prr5l - 7.34 6.54 82.3 6.73e-10 7.79e-07

83397 10 Akap12 + 6.44 6.76 81.7 7.48e-10 8.04e-07

102465670 11 Mir7115 + 8.18 4.51 80.9 8.33e-10 8.35e-07

114483644 17 Mir3083b + 8.80 5.81 76.9 9.17e-10 8.62e-07

18611 1 Pea15a - 7.21 5.79 78.8 1.10e-09 9.37e-07

16905 3 Lmna - 6.02 6.79 78.4 1.16e-09 9.37e-07

54397 17 Ppt2 - 5.97 6.86 77.8 1.25e-09 9.37e-07

100038353 18 Gm10532 + 7.76 4.79 77.5 1.28e-09 9.37e-07

The total number of DM gene promoters identified at an FDR of 5% can be shown with
decideTests.
> summary(decideTests(qlfpr))

-1*Group40um 1*Group60um

Down 1

NotSig 14426

Up 616

The differential methylation results can be visualized with an MD plot.
> plotMD(qlfpr)

112

edgeR User’s Guide

4.8.9 Setup
This analysis was conducted on:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] knitr_1.46 BiocStyle_2.31.0 edgeR_4.1.28 limma_3.59.10

loaded via a namespace (and not attached):

[1] utf8_1.2.4 RSQLite_2.3.6 lattice_0.22-6

[4] hms_1.1.3 digest_0.6.35 magrittr_2.0.3

[7] evaluate_0.23 grid_4.4.0 fastmap_1.1.1

[10] blob_1.2.4 jsonlite_1.8.8 AnnotationDbi_1.65.2

[13] GenomeInfoDb_1.39.14 DBI_1.2.2 BiocManager_1.30.22

[16] httr_1.4.7 fansi_1.0.6 UCSC.utils_0.99.7

[19] Biostrings_2.71.6 cli_3.6.2 rlang_1.1.3

[22] crayon_1.5.2 XVector_0.43.1 Biobase_2.63.1

[25] splines_4.4.0 bit64_4.0.5 cachem_1.0.8

[28] yaml_2.3.8 tools_4.4.0 parallel_4.4.0

[31] tzdb_0.4.0 memoise_2.0.1 GenomeInfoDbData_1.2.12

[34] locfit_1.5-9.9 BiocGenerics_0.49.1 vctrs_0.6.5

[37] R6_2.5.1 png_0.1-8 stats4_4.4.0

[40] lifecycle_1.0.4 zlibbioc_1.49.3 KEGGREST_1.43.0

[43] S4Vectors_0.41.7 IRanges_2.37.1 bit_4.0.5

[46] vroom_1.6.5 pkgconfig_2.0.3 pillar_1.9.0

[49] glue_1.7.0 Rcpp_1.0.12 statmod_1.5.0

[52] xfun_0.43 tibble_3.2.1 tidyselect_1.2.1

[55] highr_0.10 org.Mm.eg.db_3.19.1 htmltools_0.5.8.1

[58] rmarkdown_2.26 readr_2.1.5 compiler_4.4.0

113

edgeR User’s Guide

4.9 Time course RNA-seq experiments of Drosophila
melanogaster

4.9.1 Introduction
The data for this case study was generated by Graveley et al. [19] and was previously analyzed
by Law et al. [23] using polynomial regression. Here we reanalyze the data using smoothing
splines to illustrate a general approach that can be taken to time-course data with many time
points. The approach taken here does not require biological replicates at each time point
— we can instead estimate the magnitude of biological variation from the smoothness or
otherwise of the time-course expression trend for each gene.
Graveley et al. conducted RNA-seq to examine the dynamics of gene expression throughout
developmental stages of the common fruit fly (Drosophila melanogaster). 30 whole-animal
samples representing 27 distinct stages of development were used for sequencing. These
included 12 embryonic samples collected at 2-hour intervals from 0–2 hours to 22–24 hours
and also six larval, six pupal and three sexed adult stages at 1, 5 and 30 days after eclosion.
Each biological sample was sequenced several times and we view these as technical replicates.
Here we analyze only the data from the 12 embryonic stages.
RNA-seq read counts for this data are available from the ReCount [15] at . http://bowtie-bio.
sourceforge.net. The table of read counts can be read into R directly from the ReCount
website by
> CountFile <- paste("http://bowtie-bio.sourceforge.net/recount",

+ "countTables",

+ "modencodefly_count_table.txt", sep="/")

> Counts <- read.delim(CountFile, row.names=1)

The sample information can be read by
> SampleFile <- paste("http://bowtie-bio.sourceforge.net/recount",

+ "phenotypeTables",

+ "modencodefly_phenodata.txt", sep="/")

> Samples <- read.delim(SampleFile, row.names=1, sep=" ", stringsAsFactors=FALSE)

The data has 127 columns of counts but only 30 biologically independent samples:
> dim(Counts)

[1] 14869 147

We therefore sum the technical replicates to get total genewise read counts for each biological
sample:
> PooledCounts <- sumTechReps(Counts, ID=Samples$stage)

> dim(PooledCounts)

[1] 14869 30

> colnames(PooledCounts)

[1] "Embryos0002" "Embryos0204" "Embryos0406"

[4] "Embryos0608" "Embryos0810" "Embryos1012"

114

edgeR User’s Guide

[7] "Embryos1214" "Embryos1416" "Embryos1618"

[10] "Embryos1820" "Embryos2022" "Embryos2224"

[13] "L1Larvae" "L2Larvae" "L3Larvae12hrpostmolt"

[16] "L3LarvaePS12" "L3LarvaePS36" "L3LarvaePS79"

[19] "WPP12hr" "WPP24hr" "adultfemale1d"

[22] "adultfemale30d" "adultfemale5d" "adultmale1d"

[25] "adultmale30d" "adultmale5d" "pupaeWPP2d"

[28] "pupaeWPP3d" "pupaeWPP4d" "whiteprepupae"

4.9.2 DEGList object
The embryonic stages correspond to the first 12 columns of data. We create a DGEList object
from these columns by:
> Hours <- seq(from=2, to=24, by=2)

> Time <- paste0(Hours,"hrs")

> y <- DGEList(counts=PooledCounts[,1:12], group=Time)

4.9.3 Gene annotation
We use the D. melanogaster organism package org.Dm.eg.db to map the flybase gene IDs to
gene symbols. Some flybase IDs map to multiple genes. To handle this possibility, we use
the multiVals argument of mapIds to keep the multiple symbols separated by semicolons:
> library(org.Dm.eg.db)

> multiVals <- function(x) paste(x,collapse=";")

> Symbol <- mapIds(org.Dm.eg.db, keys=rownames(y), keytype="FLYBASE",

+ column="SYMBOL", multiVals=multiVals)

> y$genes <- data.frame(Symbol=Symbol, stringsAsFactors=FALSE)

> head(y$genes)

Symbol

FBgn0000003 7SLRNA:CR32864

FBgn0000008 a

FBgn0000014 abd-A

FBgn0000015 Abd-B

FBgn0000017 Abl

FBgn0000018 abo

We will remove flybase IDs that cannot be mapped to gene symbols:
> HasSymbol <- y$genes$Symbol != "NA"

> y <- y[HasSymbol, , keep.lib.sizes=FALSE]

4.9.4 Filtering and normalization
We filter out lowly expressed genes.
> keep <- filterByExpr(y)

> table(keep)

115

edgeR User’s Guide

keep

FALSE TRUE

2562 10964

> y <- y[keep, , keep.lib.sizes=FALSE]

TMM normalization is performed to estimate effective library sizes:
> y <- normLibSizes(y)

> y$samples

group lib.size norm.factors

Embryos0002 2hrs 48258253 0.927

Embryos0204 4hrs 38828271 0.899

Embryos0406 6hrs 89803894 0.942

Embryos0608 8hrs 55475614 1.018

Embryos0810 10hrs 52438317 1.115

Embryos1012 12hrs 67362292 1.124

Embryos1214 14hrs 82936353 1.174

Embryos1416 16hrs 66518905 0.985

Embryos1618 18hrs 61271846 0.968

Embryos1820 20hrs 62003653 0.922

Embryos2022 22hrs 33933605 0.972

Embryos2224 24hrs 68279305 0.997

4.9.5 Data exploration
The data can be explored by generating multi-dimensional scaling (MDS) plots. This visual-
izes the differences between the expression profiles of different samples in two dimensions.
The 12 successive embryonic developmental stages are labelled according to number of hours
since fertilization. The MDS plot shows a smooth trend of transition in gene expression
during embryonic development from the start up to 22 hours:
> plotMDS(y, labels=Hours)

116

edgeR User’s Guide

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

Leading logFC dim 1 (60%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
19

%
)

2

4

6

8

10

12

14
16

18

20

2224

4.9.6 Design matrix
The aim of a time course experiment is to examine the relationship between gene abundances
and time points. Assuming gene expression changes smoothly over time, we can use a
polynomial or a cubic spline curve with a certain number of degrees of freedom to model
gene expression along time.
To use a polynomial with, say 3 degrees of freedom, a design matrix could be constructed as
follows.
> X <- poly(Hours, degree=3)

> design <- model.matrix(~ X)

> design

(Intercept) X1 X2 X3

1 1 -0.4599 0.50183 -0.4599

2 1 -0.3763 0.22810 0.0418

3 1 -0.2927 0.00912 0.2927

4 1 -0.2091 -0.15511 0.3484

5 1 -0.1254 -0.26460 0.2648

6 1 -0.0418 -0.31935 0.0976

7 1 0.0418 -0.31935 -0.0976

8 1 0.1254 -0.26460 -0.2648

9 1 0.2091 -0.15511 -0.3484

10 1 0.2927 0.00912 -0.2927

11 1 0.3763 0.22810 -0.0418

12 1 0.4599 0.50183 0.4599

attr(,"assign")

[1] 0 1 1 1

Then the coefficients X1, X2 and X3 represent the linear, quadratic and cubic time effect,
respectively. Hypotheses can be tested for each one of the coefficients.

117

edgeR User’s Guide

To use a cubic regression spline curve with, say 3 degrees of freedom, a design matrix can
be constructed as follows.
> library(splines)

> X <- ns(Hours, df=3)

> design <- model.matrix(~ X)

> design

(Intercept) X1 X2 X3

1 1 0.0000 0.000 0.000

2 1 -0.0643 0.203 -0.135

3 1 -0.0995 0.380 -0.253

4 1 -0.0764 0.503 -0.335

5 1 0.0334 0.547 -0.365

6 1 0.2199 0.512 -0.333

7 1 0.4134 0.435 -0.247

8 1 0.5391 0.359 -0.114

9 1 0.5281 0.323 0.058

10 1 0.3806 0.332 0.260

11 1 0.1417 0.373 0.482

12 1 -0.1429 0.429 0.714

attr(,"assign")

[1] 0 1 1 1

Here the three coefficients do not have any particular meaning. Hypothesis testing would only
make sense if the three coefficients are assessed together. The advantage of using a cubic
spline curve is that it provides more stable fit at the end points compared to a polynomial.
The spline curve with 3 degrees of freedonm has 2 knots where cubic polynomials are splined
together. In general, choosing a number of degrees of freedom to be in range of 3-5 is
reasonable. Setting the degrees of freedom equal to 1 would be equivalent to simple linear
regression, i.e., a straight line trend.

4.9.7 Dispersion estimation
The NB dispersion is estimated using the estimateDisp function. This returns the DGEList

object with additional entries for the estimated NB dispersion for each gene. These estimates
can be visualized with plotBCV, which shows the root-estimate, i.e., the biological coefficient
of variation for each gene.
> y <- estimateDisp(y, design)

> sqrt(y$common.dispersion)

[1] 0.447

> plotBCV(y)

118

edgeR User’s Guide

Note that this step is now optional as all the NB dispersion estimates will not be used further
under the latest quasi-likelihood (QL) pipeline.
For the QL dispersions, estimation can be performed using the glmQLFit function. This returns
a DGEGLM object containing the estimated values of the GLM coefficients for each gene, as well
as the fitted mean-QL dispersion trend, the squeezed QL estimates and the prior degrees of
freedom (df). These can be visualized with the plotQLDisp function.
> fit <- glmQLFit(y, design, robust=TRUE)

> plotQLDisp(fit)

119

edgeR User’s Guide

4.9.8 Time course trend analysis
In a time course experiment, we are looking for genes that change expression level over time.
Here, the design matrix uses 3 natural spline basis vectors to model smooth changes over
time, without assuming any particular pattern to the trend. We test for a trend by conducting
F-tests on 3 df for each gene:
> fit <- glmQLFTest(fit, coef=2:4)

The topTags function lists the top set of genes with most significant time effects.
> tab <- as.data.frame(topTags(fit, n=30))

> tab

Symbol logFC.X1 logFC.X2 logFC.X3 logCPM F PValue FDR

FBgn0031930 CG7025 7.5090 8.16 12.45 3.31 414 4.06e-16 4.46e-12

FBgn0036851 CG14082 10.2027 4.98 9.01 1.53 195 2.14e-13 8.43e-10

FBgn0032024 CG14273 9.4952 7.31 10.28 2.67 245 2.45e-13 8.43e-10

FBgn0053543 CG33543 9.6714 5.66 10.82 2.91 215 3.08e-13 8.43e-10

FBgn0259896 NimC1 9.7137 12.35 9.98 3.89 328 4.91e-13 1.08e-09

FBgn0030157 CG1468 6.8802 6.77 13.21 4.00 172 1.06e-12 1.93e-09

FBgn0023179 amon 9.0988 8.65 9.82 5.00 493 1.61e-12 2.53e-09

FBgn0004169 up 9.8544 8.81 8.76 10.53 476 1.97e-12 2.64e-09

FBgn0030747 CG4301 8.9327 10.52 8.54 6.05 474 2.17e-12 2.64e-09

FBgn0038606 CG15803 10.1116 5.42 9.88 2.76 189 3.03e-12 3.23e-09

FBgn0002773 Mlc2 9.6207 9.05 8.56 11.32 424 3.88e-12 3.23e-09

FBgn0001114 Glt 9.3347 8.16 8.25 9.48 420 4.08e-12 3.23e-09

FBgn0027556 CG4928 7.9255 9.77 10.92 7.42 418 4.35e-12 3.23e-09

FBgn0025833 CG8910 9.7922 8.85 10.27 2.70 170 4.36e-12 3.23e-09

FBgn0051265 CG31265 7.1627 2.92 13.02 3.43 133 4.42e-12 3.23e-09

FBgn0035293 CG5687 8.2325 8.81 10.45 4.99 400 4.93e-12 3.24e-09

FBgn0003086 Pig1 0.0567 7.17 11.39 1.27 103 5.02e-12 3.24e-09

FBgn0051664 CG31664 8.3922 4.17 11.28 2.54 127 5.57e-12 3.39e-09

FBgn0039325 CG10560 3.1161 7.04 12.80 2.93 118 6.81e-12 3.93e-09

FBgn0028699 Rh50 5.6852 3.86 13.26 3.60 119 9.34e-12 4.88e-09

FBgn0033958 jef 9.6893 7.72 9.48 5.69 370 9.35e-12 4.88e-09

FBgn0004516 Gad1 8.4619 8.74 9.72 6.19 364 9.95e-12 4.96e-09

FBgn0030928 CG15044 8.6350 11.91 11.24 3.61 175 1.27e-11 5.97e-09

FBgn0038420 CG10311 8.1302 7.46 9.57 5.82 346 1.33e-11 5.97e-09

FBgn0033250 CG14762 8.8984 9.75 8.92 5.68 342 1.44e-11 5.97e-09

FBgn0030897 Frq1 8.8878 7.33 10.31 3.50 230 1.44e-11 5.97e-09

FBgn0053179 beat-IIIb 8.1448 9.78 9.42 2.70 192 1.55e-11 5.97e-09

FBgn0010482 hlk 9.2026 9.37 10.28 5.30 328 1.60e-11 5.97e-09

FBgn0250908 beat-VII 8.6855 12.76 9.57 2.83 188 1.62e-11 5.97e-09

FBgn0030543 CG11585 4.1094 4.34 13.29 3.08 106 1.66e-11 5.97e-09

The total number of genes with significant (5% FDR) changes at different time points can
be examined with decideTests.
> summary(decideTests(fit))

X3-X2-X1

NotSig 1708

Sig 9256

120

edgeR User’s Guide

Note that all three spline coefficients should be tested together in this way. It is not meaningful
to replace the F-tests with t-tests for the individual coefficients, and similarly thelogFC columns
of the top table do not have any interpretable meaning. The trends should instead be
interpreted by way of trend plots, as we show now.
Finally, we visualize the fitted spline curves for the top four genes. We start by computing
the observed and fitted log-CPM values for each gene:
> logCPM.obs <- cpm(y, log=TRUE, prior.count=fit$prior.count)

> logCPM.fit <- cpm(fit, log=TRUE)

We then loop through the first four genes in the topTags table, plotting the observed and
fitted values for each gene:
> par(mfrow=c(2,2))

> for(i in 1:4) {

+ FlybaseID <- row.names(tab)[i]

+ Symbol <- tab$Symbol[i]

+ logCPM.obs.i <- logCPM.obs[FlybaseID,]

+ logCPM.fit.i <- logCPM.fit[FlybaseID,]

+ plot(Hours, logCPM.obs.i, ylab="log-CPM", main=Symbol, pch=16)

+ lines(Hours, logCPM.fit.i, col="red", lwd=2)

+ }

121

edgeR User’s Guide

5 10 15 20

−
6

−
4

−
2

0
2

4
6

CG7025

Hours

lo
g−

C
P

M

5 10 15 20

−
6

−
4

−
2

0
2

CG14082

Hours

lo
g−

C
P

M

5 10 15 20

−
6

−
4

−
2

0
2

4

CG14273

Hours

lo
g−

C
P

M

5 10 15 20

−
4

−
2

0
2

4

CG33543

Hours

lo
g−

C
P

M

> par(mfrow=c(1,1))

In each plot, the red curve shows the fitted log2-CPM for that genes while the black dots
show the observed log-CPM values. All four of the genes show increased expression during
embryo development, with an up trend especially during the period from 6hrs to 20hrs.

4.9.9 Setup
This analysis was conducted using the following software setup:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

122

edgeR User’s Guide

Matrix products: default

locale:

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] splines stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] org.Dm.eg.db_3.19.1 AnnotationDbi_1.65.2 IRanges_2.37.1

[4] S4Vectors_0.41.7 Biobase_2.63.1 BiocGenerics_0.49.1

[7] edgeR_4.1.28 limma_3.59.10 knitr_1.46

[10] BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] bit_4.0.5 jsonlite_1.8.8 compiler_4.4.0

[4] BiocManager_1.30.22 highr_0.10 crayon_1.5.2

[7] Rcpp_1.0.12 blob_1.2.4 Biostrings_2.71.6

[10] png_0.1-8 yaml_2.3.8 fastmap_1.1.1

[13] statmod_1.5.0 lattice_0.22-6 R6_2.5.1

[16] XVector_0.43.1 GenomeInfoDb_1.39.14 GenomeInfoDbData_1.2.12

[19] DBI_1.2.2 rlang_1.1.3 KEGGREST_1.43.0

[22] cachem_1.0.8 xfun_0.43 bit64_4.0.5

[25] RSQLite_2.3.6 memoise_2.0.1 cli_3.6.2

[28] zlibbioc_1.49.3 digest_0.6.35 grid_4.4.0

[31] locfit_1.5-9.9 vctrs_0.6.5 evaluate_0.23

[34] rmarkdown_2.26 httr_1.4.7 pkgconfig_2.0.3

[37] UCSC.utils_0.99.7 tools_4.4.0 htmltools_0.5.8.1

4.10 Single cell RNA-seq differential expression with pseudo-
bulking

4.10.1 Introduction
The single cell RNA-seq data for this case study is from the human breast single cell RNA atlas
generated by Pal et al. [33]. The preprocessing of the data and the complete bioinformatics
analyses of the entire atlas study are described in detail in Chen et al. [5]. Most part of
the single cell analysis, such as dimensionality reduction and integration, were performed in
Seurat [46]. All the generated Seurat objects are publicly available on figshare [7]. Here, we
focus on the breast tissue micro-environment from 13 individual healthy donors. The original
integrated Seurat object for these 13 healthy donors are available at https://figshare.com/

123

edgeR User’s Guide

ndownloader/files/31545890. For demonstration purposes, we created a subset version of the
integrated Seurat object that contains 10,000 cells of the total 24,751 cells from the original
object.
We first download this subset Seurat object from https://bioinf.wehi.edu.au/edgeR/UserGuideData/
SeuratObj.rds.
> download.file("https://bioinf.wehi.edu.au/edgeR/UserGuideData/SeuratObj.rds",

+ "SeuratObj.rds")

We read in the downloaded Seurat object.
> so <- readRDS("SeuratObj.rds")

This subset Seurat object contains single cell RNA-seq profiles of 10,000 cells from 13 in-
dividual healthy donors. The cell information is stored in the meta.data component of the
object.
> head(so@meta.data)

orig.ident nCount_RNA nFeature_RNA group

N_0019_total_AAACCTGAGGGCTCTC-1 N 7886 2419 N_0019_total

N_0019_total_AAACCTGGTACCGCTG-1 N 2306 1018 N_0019_total

N_0019_total_AAACCTGTCTAGCACA-1 N 8569 2411 N_0019_total

N_0019_total_AAACGGGAGGACAGAA-1 N 3774 1311 N_0019_total

N_0019_total_AAACGGGCATATGAGA-1 N 5689 1753 N_0019_total

N_0019_total_AAAGCAAGTGTAAGTA-1 N 3684 1350 N_0019_total

integrated_snn_res.0.05 seurat_clusters

N_0019_total_AAACCTGAGGGCTCTC-1 1 1

N_0019_total_AAACCTGGTACCGCTG-1 0 0

N_0019_total_AAACCTGTCTAGCACA-1 0 0

N_0019_total_AAACGGGAGGACAGAA-1 0 0

N_0019_total_AAACGGGCATATGAGA-1 1 1

N_0019_total_AAAGCAAGTGTAAGTA-1 3 3

The t-SNE visualization of the integrated data is shown below. Cells are coloured by cluster
on the left and by donor on the right.
> p1 <- Seurat::DimPlot(so, reduction="tsne", cols=2:8)

> p2 <- Seurat::DimPlot(so, reduction="tsne", group.by="group")

> p1 | p2

124

edgeR User’s Guide

4.10.2 Create pseudo-bulk samples
For differential expression analysis of a multi-sample single-cell experiment, pseudo-bulk meth-
ods outperform DE methods specifically designed at the single-cell level in terms of both sta-
bility and computational speed [9]. Also, the biological variation between samples is preserved
and can be assessed in the standard edgeR pipeline.
Pseudo-bulk samples are created by aggregating read counts together for all the cells with the
same combination of human donor and cluster. Here, we generate pseudo-bulk expression
profiles from the Seurat object using the Seurat2PB function. The human donor and cell
cluster information of the integrated single cell data is stored in the group and seurat_clusters

columns of the meta.data component of the Seurat object.
> y <- Seurat2PB(so, sample="group", cluster="seurat_clusters")

> dim(y)

[1] 13527 85

> head(y$samples, n=10L)

group lib.size norm.factors sample cluster

N_0019_total_cluster0 1 1679441 1 N_0019_total 0

N_0019_total_cluster1 1 2225898 1 N_0019_total 1

N_0019_total_cluster2 1 350241 1 N_0019_total 2

N_0019_total_cluster3 1 133909 1 N_0019_total 3

N_0019_total_cluster4 1 49889 1 N_0019_total 4

N_0019_total_cluster5 1 160445 1 N_0019_total 5

N_0019_total_cluster6 1 58839 1 N_0019_total 6

N_0021_total_cluster0 1 38263 1 N_0021_total 0

N_0021_total_cluster1 1 515730 1 N_0021_total 1

N_0021_total_cluster2 1 92472 1 N_0021_total 2

125

edgeR User’s Guide

4.10.3 Filtering and normalization
We first examine the library sizes of all the pseudo-bulk samples and filter out those below
the threshold of 50,000.
> summary(y$samples$lib.size)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1352 42181 165537 651543 776854 5011510

> keep.samples <- y$samples$lib.size > 5e4

> table(keep.samples)

keep.samples

FALSE TRUE

26 59

> y <- y[, keep.samples]

We then filter out lowly expressed genes.
> keep.genes <- filterByExpr(y, group=y$samples$cluster)

> table(keep.genes)

keep.genes

FALSE TRUE

5660 7867

> y <- y[keep.genes, , keep=FALSE]

TMM normalization is performed to estimate effective library sizes.
> y <- normLibSizes(y)

> head(y$samples, n=10L)

group lib.size norm.factors sample cluster

N_0019_total_cluster0 1 1648290 1.013 N_0019_total 0

N_0019_total_cluster1 1 2183862 1.031 N_0019_total 1

N_0019_total_cluster2 1 345136 0.878 N_0019_total 2

N_0019_total_cluster3 1 131336 0.971 N_0019_total 3

N_0019_total_cluster5 1 157127 1.083 N_0019_total 5

N_0019_total_cluster6 1 57861 1.285 N_0019_total 6

N_0021_total_cluster1 1 508776 0.870 N_0021_total 1

N_0021_total_cluster2 1 91463 0.930 N_0021_total 2

N_0064_total_cluster0 1 154672 1.071 N_0064_total 0

N_0064_total_cluster1 1 230306 1.064 N_0064_total 1

> summary(y$samples$norm.factors)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.673 0.915 1.026 1.009 1.113 1.285

4.10.4 Data exploration
We explore the pseudo-bulk profiles using a multi-dimensional scaling (MDS) plot. This visu-
alizes the differences between the expression profiles of different samples in two dimensions.
It can be seen that pseudo-bulk samples from the same cell cluster are close to each other.

126

edgeR User’s Guide

> cluster <- as.factor(y$samples$cluster)

> plotMDS(y, pch=16, col=c(2:8)[cluster], main="MDS")

> legend("bottomleft", legend=paste0("cluster",levels(cluster)),

+ pch=16, col=2:8, cex=0.8)

−3 −2 −1 0 1

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

MDS

Leading logFC dim 1 (17%)

Le
ad

in
g

lo
gF

C
 d

im
 2

 (
14

%
)

cluster0
cluster1
cluster2
cluster3
cluster4
cluster5
cluster6

4.10.5 Design matrix
To perform differential expression analysis between cell clusters, we create a design matrix
using both cluster and donor information.
> donor <- factor(y$samples$sample)

> design <- model.matrix(~ cluster + donor)

> colnames(design) <- gsub("donor", "", colnames(design))

> colnames(design)[1] <- "Int"

> head(design)

Int cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 N_0021_total

1 1 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0

3 1 0 1 0 0 0 0 0

4 1 0 0 1 0 0 0 0

5 1 0 0 0 0 1 0 0

6 1 0 0 0 0 0 1 0

N_0064_total N_0092_total N_0093_total N_0123_total N_0169_total

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

N_0230.17_total N_0233_total N_0275_total N_0288_total N_0342_total

1 0 0 0 0 0

127

edgeR User’s Guide

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

N_0372_total

1 0

2 0

3 0

4 0

5 0

6 0

> dim(design)

[1] 59 19

4.10.6 Dispersion estimation
The NB dispersion can be estimated using the estimateDisp function and visualized with
plotBCV.
> y <- estimateDisp(y, design, robust=TRUE)

> y$common.dispersion

[1] 0.0651

> plotBCV(y)

Note that the NB dispersion estimates will not be used further under the latest quasi-likelihood
(QL) pipeline.
The QL dispersions can be estimated using the glmQLFit function and visualized with plotQLD

isp.

128

edgeR User’s Guide

> fit <- glmQLFit(y, design, robust=TRUE)

> plotQLDisp(fit)

4.10.7 Marker genes identification
To confirm the identities of cell clusters, we perform differential expression analysis to identify
marker genes of each cluster. In particular, we compare each cluster with all the other clusters.
Since there are 7 clusters in total, we construct a contrast matrix as follows so that each
column of the contrast matrix represents a testing contrast for one cell cluster.
> ncls <- nlevels(cluster)

> contr <- rbind(matrix(1/(1-ncls), ncls, ncls),

+ matrix(0, ncol(design)-ncls, ncls))

> diag(contr) <- 1

> contr[1,] <- 0

> rownames(contr) <- colnames(design)

> colnames(contr) <- paste0("cluster", levels(cluster))

> contr

cluster0 cluster1 cluster2 cluster3 cluster4 cluster5 cluster6

Int 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cluster1 -0.167 1.000 -0.167 -0.167 -0.167 -0.167 -0.167

cluster2 -0.167 -0.167 1.000 -0.167 -0.167 -0.167 -0.167

cluster3 -0.167 -0.167 -0.167 1.000 -0.167 -0.167 -0.167

cluster4 -0.167 -0.167 -0.167 -0.167 1.000 -0.167 -0.167

cluster5 -0.167 -0.167 -0.167 -0.167 -0.167 1.000 -0.167

cluster6 -0.167 -0.167 -0.167 -0.167 -0.167 -0.167 1.000

N_0021_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0064_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0092_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0093_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0123_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

129

edgeR User’s Guide

N_0169_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0230.17_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0233_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0275_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0288_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0342_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N_0372_total 0.000 0.000 0.000 0.000 0.000 0.000 0.000

We then perform quasi-likelihood F-test for each testing contrast. The results are stored as
a list of DGELRT objects, one for each comparison.
> qlf <- list()

> for(i in 1:ncls){

+ qlf[[i]] <- glmQLFTest(fit, contrast=contr[,i])

+ qlf[[i]]$comparison <- paste0("cluster", levels(cluster)[i], "_vs_others")

+ }

The top most significant DE genes of cluster 0 vs other clusters can be examined with topTags.

> topTags(qlf[[1]], n=10L)

Coefficient: cluster0_vs_others

gene logFC logCPM F PValue FDR

FBLN1 FBLN1 6.01 6.78 709 2.03e-36 1.60e-32

OGN OGN 5.74 5.84 586 6.24e-36 2.46e-32

CRABP2 CRABP2 3.95 6.35 436 5.93e-32 1.56e-28

SERPINF1 SERPINF1 5.17 6.92 580 1.07e-31 2.09e-28

MFAP4 MFAP4 4.62 5.95 433 1.87e-31 2.94e-28

IGFBP6 IGFBP6 5.37 6.79 497 9.57e-31 1.25e-27

GFPT2 GFPT2 3.50 6.43 435 1.37e-30 1.54e-27

LRP1 LRP1 4.35 5.59 393 2.26e-30 2.22e-27

MEG8 MEG8 4.29 5.41 371 4.61e-30 4.03e-27

DPT DPT 5.93 6.31 415 2.55e-29 2.01e-26

The numbers of DE genes under each comparison are shown below.
> dt <- lapply(lapply(qlf, decideTests), summary)

> dt.all <- do.call("cbind", dt)

> dt.all

cluster0_vs_others cluster1_vs_others cluster2_vs_others

Down 1463 775 1442

NotSig 4007 4876 4298

Up 2397 2216 2127

cluster3_vs_others cluster4_vs_others cluster5_vs_others

Down 1588 1608 243

NotSig 4423 4939 6596

Up 1856 1320 1028

cluster6_vs_others

Down 1415

NotSig 4869

Up 1583

130

edgeR User’s Guide

We select the top 20 marker (up-regulated) genes for each cluster.
> top <- 20

> topMarkers <- list()

> for(i in 1:ncls) {

+ ord <- order(qlf[[i]]$table$PValue, decreasing=FALSE)

+ up <- qlf[[i]]$table$logFC[ord] > 0

+ topMarkers[[i]] <- rownames(y)[ord[up][1:top]]

+ }

> topMarkers <- unique(unlist(topMarkers))

> topMarkers

[1] "FBLN1" "OGN" "CRABP2" "SERPINF1" "MFAP4" "IGFBP6"

[7] "GFPT2" "LRP1" "MEG8" "DPT" "MRC2" "RARRES2"

[13] "PCOLCE" "SFRP2" "GPC3" "C1S" "ADAM12" "EVA1A"

[19] "CFH" "CCDC80" "PLVAP" "INHBB" "EMCN" "PECAM1"

[25] "FLT1" "RAPGEF4" "ESAM" "CDH5" "RBP7" "PTPRB"

[31] "MECOM" "ADGRF5" "SOX17" "CALCRL" "PKIG" "ADGRG1"

[37] "TM4SF18" "MYCT1" "S1PR1" "GNG11" "TPM2" "CRISPLD2"

[43] "MYL9" "CALD1" "ACTA2" "ADAMTS4" "PLN" "NDUFA4L2"

[49] "MCAM" "CYCS" "EFHD1" "TAGLN" "CSRP2" "ENPEP"

[55] "APEX1" "COL4A1" "KCNE4" "GLIS2" "AXL" "ZNF331"

[61] "ACSL1" "CD68" "HLA-DQB1" "C5AR1" "IL4I1" "HLA-DPA1"

[67] "CXCL16" "MPP1" "TLR2" "PSAP" "LAPTM5" "HLA-DPB1"

[73] "MXD1" "FGR" "SEMA6B" "FAM49B" "CREG1" "GPAT3"

[79] "SLC16A10" "SLC1A3" "KLRD1" "LEPROTL1" "PIK3IP1" "CLEC2D"

[85] "CCL5" "KIAA1551" "PARP8" "SARAF" "AKNA" "CRYBG1"

[91] "CD7" "RUNX3" "PPP2R5C" "SMAP2" "FYN" "CHST12"

[97] "STK4" "CNOT6L" "RNF19A" "CDC42SE2" "SFN" "KRT5"

[103] "KRT17" "KRT14" "S100A2" "DST" "LAMA3" "KRT6B"

[109] "S100A14" "LIMA1" "ACTG2" "KRT7" "FHL2" "CLMP"

[115] "DMKN" "SPINT2" "CD200" "PPFIBP1" "SCN3B" "CNKSR3"

[121] "GATA2" "C2CD4B" "GDF15" "HEY1" "TSPAN12" "PRRG4"

[127] "BBC3" "RAB32" "CLDN5" "ARL4A" "C6orf141" "RASGRP3"

[133] "TFF3" "ALPK3" "RAI14" "PODXL"

A heat map is produced to visualize the top marker genes across all the pseudo-bulk samples.

> lcpm <- cpm(y, log=TRUE)

> annot <- data.frame(cluster=paste0("cluster ", cluster))

> rownames(annot) <- colnames(y)

> ann_colors <- list(cluster=2:8)

> names(ann_colors$cluster) <- paste0("cluster ", levels(cluster))

> pheatmap::pheatmap(lcpm[topMarkers,], breaks=seq(-2,2,length.out=101),

+ color=colorRampPalette(c("blue","white","red"))(100), scale="row",

+ cluster_cols=TRUE, border_color="NA", fontsize_row=5,

+ treeheight_row=70, treeheight_col=70, cutree_cols=7,

+ clustering_method="ward.D2", show_colnames=FALSE,

+ annotation_col=annot, annotation_colors=ann_colors)

131

edgeR User’s Guide

CRABP2
SERPINF1
LRP1
PCOLCE
C1S
CFH
RARRES2
CCDC80
MFAP4
GFPT2
CLMP
ADAM12
EVA1A
OGN
GPC3
SFRP2
FBLN1
DPT
IGFBP6
MEG8
MRC2
S100A2
SPINT2
KRT7
SFN
KRT17
DMKN
KRT6B
S100A14
ACTG2
KRT5
KRT14
DST
LAMA3
CSRP2
ADAMTS4
COL4A1
PKIG
GNG11
ESAM
ADGRF5
NDUFA4L2
MCAM
LIMA1
CALD1
FHL2
EFHD1
GLIS2
ENPEP
CRISPLD2
KCNE4
CYCS
APEX1
AXL
TPM2
ACTA2
MYL9
TAGLN
PLN
ZNF331
PPFIBP1
RAI14
CD200
CNKSR3
C6orf141
ALPK3
HEY1
TSPAN12
RAB32
PRRG4
ARL4A
BBC3
TFF3
SCN3B
GDF15
FLT1
RAPGEF4
MECOM
RBP7
PLVAP
SOX17
PECAM1
EMCN
PTPRB
CALCRL
INHBB
MYCT1
S1PR1
GATA2
TM4SF18
CLDN5
C2CD4B
CDH5
PODXL
ADGRG1
RASGRP3
LEPROTL1
CLEC2D
PIK3IP1
KLRD1
CD7
PARP8
SARAF
CHST12
FYN
RNF19A
SMAP2
AKNA
CRYBG1
RUNX3
STK4
PPP2R5C
LAPTM5
CDC42SE2
KIAA1551
CCL5
CNOT6L
FAM49B
GPAT3
HLA−DPB1
HLA−DQB1
HLA−DPA1
FGR
SEMA6B
PSAP
SLC1A3
CD68
CREG1
CXCL16
SLC16A10
IL4I1
C5AR1
TLR2
MPP1
ACSL1
MXD1

cluster cluster
cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6

−2

−1

0

1

2

4.10.8 Setup
This analysis was conducted using the following software setup:
> sessionInfo()

R version 4.4.0 (2024-04-24 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:

132

edgeR User’s Guide

[1] LC_COLLATE=English_Australia.utf8 LC_CTYPE=English_Australia.utf8

[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C

[5] LC_TIME=English_Australia.utf8

time zone: Australia/Sydney

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_4.1.32 limma_3.59.10 knitr_1.46 BiocStyle_2.31.0

loaded via a namespace (and not attached):

[1] deldir_2.0-4 pbapply_1.7-2 gridExtra_2.3

[4] rlang_1.1.3 magrittr_2.0.3 RcppAnnoy_0.0.22

[7] spatstat.geom_3.2-9 matrixStats_1.3.0 ggridges_0.5.6

[10] compiler_4.4.0 png_0.1-8 vctrs_0.6.5

[13] reshape2_1.4.4 stringr_1.5.1 pkgconfig_2.0.3

[16] fastmap_1.1.1 labeling_0.4.3 utf8_1.2.4

[19] promises_1.3.0 rmarkdown_2.26 purrr_1.0.2

[22] xfun_0.43 jsonlite_1.8.8 goftest_1.2-3

[25] highr_0.10 later_1.3.2 spatstat.utils_3.0-4

[28] irlba_2.3.5.1 parallel_4.4.0 cluster_2.1.6

[31] R6_2.5.1 ica_1.0-3 spatstat.data_3.0-4

[34] stringi_1.8.3 RColorBrewer_1.1-3 reticulate_1.36.1

[37] parallelly_1.37.1 lmtest_0.9-40 scattermore_1.2

[40] Rcpp_1.0.12 tensor_1.5 future.apply_1.11.2

[43] zoo_1.8-12 sctransform_0.4.1 httpuv_1.6.15

[46] Matrix_1.7-0 splines_4.4.0 igraph_2.0.3

[49] tidyselect_1.2.1 abind_1.4-5 yaml_2.3.8

[52] spatstat.random_3.2-3 spatstat.explore_3.2-7 codetools_0.2-20

[55] miniUI_0.1.1.1 listenv_0.9.1 lattice_0.22-6

[58] tibble_3.2.1 plyr_1.8.9 withr_3.0.0

[61] shiny_1.8.1.1 ROCR_1.0-11 evaluate_0.23

[64] Rtsne_0.17 future_1.33.2 fastDummies_1.7.3

[67] survival_3.5-8 polyclip_1.10-6 fitdistrplus_1.1-11

[70] pillar_1.9.0 BiocManager_1.30.22 Seurat_5.0.3

[73] KernSmooth_2.23-22 plotly_4.10.4 generics_0.1.3

[76] RcppHNSW_0.6.0 sp_2.1-3 ggplot2_3.5.1

[79] munsell_0.5.1 scales_1.3.0 globals_0.16.3

[82] xtable_1.8-4 glue_1.7.0 pheatmap_1.0.12

[85] lazyeval_0.2.2 tools_4.4.0 data.table_1.15.4

[88] RSpectra_0.16-1 locfit_1.5-9.9 RANN_2.6.1

[91] leiden_0.4.3.1 dotCall64_1.1-1 cowplot_1.1.3

[94] grid_4.4.0 tidyr_1.3.1 colorspace_2.1-0

[97] nlme_3.1-164 patchwork_1.2.0 cli_3.6.2

[100] spatstat.sparse_3.0-3 spam_2.10-0 fansi_1.0.6

[103] viridisLite_0.4.2 dplyr_1.1.4 uwot_0.2.2

[106] gtable_0.3.5 digest_0.6.35 progressr_0.14.0

[109] ggrepel_0.9.5 farver_2.1.1 htmlwidgets_1.6.4

133

edgeR User’s Guide

[112] SeuratObject_5.0.1 htmltools_0.5.8.1 lifecycle_1.0.4

[115] httr_1.4.7 statmod_1.5.0 mime_0.12

[118] MASS_7.3-60.2

134

Bibliography

1. Baldoni, P.L., Chen, Y., Hediyeh-zadeh, S., Liao, Y., Dong, X., Rithie, M.E., Shi, W.,
and Smyth, G.K. (2024). Dividing out quantification uncertainty allows efficient
assessment of differential transcript expression with edgeR. Nucleic Acids Research 52,
e13.

2. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B 57, 289–300.

3. Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal
probabilistic RNA-seq quantification. Nature biotechnology 34, 525.

4. Chen, Y., Lun, A.T.L., and Smyth, G.K. (2014). Differential expression analysis of
complex RNA-seq experiments using edgeR. In S. Datta and D.S. Nettleton, editors,
Statistical Analysis of Next Generation Sequence Data, pages 51–74. Springer, New
York.

5. Chen, Y., Pal, B., Lindeman, G.J., Visvader, J.E., and Smyth, G.K. (2022). R code and
downstream analysis objects for the scRNA-seq atlas of normal and tumorigenic human
breast tissue. Scientific Data 9, 96.

6. Chen, Y., Pal, B., Visvader, J.E., and Smyth, G.K. (2017). Differential methylation
analysis of reduced representation bisulfite sequencing experiments using edgeR.
F1000Research 6, 2055.

7. Chen, Y. and Smyth, G.K. (2021). Data, R code and output Seurat objects for single
cell RNA-seq analysis of human breast tissues. figshare
https://doi.org/10.6084/m9.figshare.17058077.

8. Cox, D.R. and Reid, N. (1987). Parameter orthogonality and approximate conditional
inference. Journal of the Royal Statistical Society: Series B (Methodological) 49, 1–18.

9. Crowell, H.L., Soneson, C., Germain, P.L., Calini, D., Collin, L., Raposo, C., Malhotra,
D., and Robinson, M.D. (2020). muscat detects subpopulation-specific state transitions
from multi-sample multi-condition single-cell transcriptomics data. Nature
Communications 11, 6077.

10. Cumbie, J.S., Kimbrel, J.A., Di, Y., Schafer, D.W., Wilhelm, L.J., Fox, S.E., Sullivan,
C.M., Curzon, A.D., Carrington, J.C., Mockler, T.C., and Chang, J.H. (2011).
GENE-Counter: A computational pipeline for the analysis of RNA-Seq data for gene
expression differences. PLOS ONE 6, e25279.

135

edgeR User’s Guide

11. Dai, Z., Sheridan, J.M., Gearing, L.J., Moore, D.L., Su, S., Wormald, S., Wilcox, S.,
O’Connor, L., Dickins, R.A., Blewitt, M.E., and Ritchie, M.E. (2014). edgeR: a
versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens.
F1000Research 3, 95.

12. Dong, X., Du, M.R.M., Gouil, Q., Tian, L., Jabbari, J.S., Bowden, R., Baldoni, P.L.,
Chen, Y., Smyth, G.K., Amarasinghe, S.L., Law, C.W., and Ritchie, M.E. (2023).
Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures. Nature
Methods 20, 1810–1821.

13. Du, P., Zhang, X., Huang, C.C., Jafari, N., Kibbe, W.A., Hou, L., and Lin, S.M.
(2010). Comparison of Beta-value and M-value methods for quantifying methylation
levels by microarray analysis. BMC Bioinformatics 11, 587.

14. Dunn, P.K. and Smyth, G.K. (2018). Generalized Linear Models With Examples in R.
Springer-Verlag, New York.

15. Frazee, A.C., Langmead, B., and Leek, J.T. (2011). ReCount: a multi-experiment
resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 12, 449.

16. Fu, N.Y., Pal, B., Chen, Y., Jackling, F., Milevskiy, M., Vaillant, F., Capaldo, B., Guo,
F., Liu, K.H., Rios, A.C., Lim, N., Kueh, A.J., Virshup, D.M., Herold, M.J., Tucker,
H.O., Smyth, G.K., Lindeman, G.J., and Visvader, J.E. (2018). Foxp1 is indispensable
for ductal morphogenesis and controls the exit of mammary stem cells from quiescence.
Developmental Cell 47, 629–644.

17. Fu, N.Y., Rios, A.C., Pal, B., Soetanto, R., Lun, A.T.L., Liu, K., Beck, T., Best, S.A.,
Vaillant, F., Bouillet, P., Strasser, A., Preiss, T., Smyth, G.K., Lindeman, G., and
Visvader, J. (2015). EGF-mediated induction of Mcl-1 at the switch to lactation is
essential for alveolar cell survival. Nature Cell Biology 17, 365–375.

18. Gahurova, L., Tomizawa, S.i., Smallwood, S.A., Stewart-Morgan, K.R., Saadeh, H.,
Kim, J., Andrews, S.R., Chen, T., and Kelsey, G. (2017). Transcription and chromatin
determinants of de novo DNA methylation timing in oocytes. Epigenetics & Chromatin
10, 25.

19. Graveley, B.R., Brooks, N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L.,
Artieri, G., van Baren, M.J., Boley, N., Booth, B.W., Brown, J.B., Cherbas, L., Davis,
C.A., Dobin, A., Li, R., Lin, W., Malone, J.H., Mattiuzzo, N.R., Miller, D., Sturgill, D.,
Tuch, B.B., Zaleski, C., Zhang, D., Blanchette, M., and Dudoit, S. (2011). The
developmental transcriptome of drosophila melanogaster. Nature 471, 473–479.

20. Hansen, K.D., Irizarry, R.A., and Wu, Z. (2012). Removing technical variability in
RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216.

21. International HapMap Consortium, T. (2005). A haplotype map of the human genome.
Nature 437, 1299–1320.

22. Krueger, F. and Andrews, S.R. (2011). Bismark: a flexible aligner and methylation
caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572.

23. Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). Voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29.

24. Liao, Y., Smyth, G.K., and Shi, W. (2013). The Subread aligner: fast, accurate and
scalable read mapping by seed-and-vote. Nucleic Acids Research 41, e108.

25. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general-purpose
read summarization program. Bioinformatics 30, 923–930.

136

edgeR User’s Guide

26. Liao, Y., Smyth, G.K., and Shi, W. (2019). The R package Rsubread is easier, faster,
cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic
Acids Research 47, e47.

27. Lun, A.T.L., Chen, Y., and Smyth, G.K. (2016). It’s DE-licious: a recipe for differential
expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR.
Methods in Molecular Biology 1418, 391–416.

28. Lund, S.P., Nettleton, D., McCarthy, D.J., and Smyth, G.K. (2012). Detecting
differential expression in RNA-sequence data using quasi-likelihood with shrunken
dispersion estimates. Statistical Applications in Genetics and Molecular Biology 11,
Article 8.

29. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-seq:
An assessment of technical reproducibility and comparison with gene expression arrays.
Genome Research 18, 1509–1517.

30. McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012). Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids
Research 40, 4288–4297.

31. McCarthy, D.J. and Smyth, G.K. (2009). Testing significance relative to a fold-change
threshold is a TREAT. Bioinformatics 25, 765–771.

32. Meissner, A., Gnirke, A., Bell, G.W., Ramsahoye, B., Lander, E.S., and Jaenisch, R.
(2005). Reduced representation bisulfite sequencing for comparative high-resolution
DNA methylation analysis. Nucleic acids research 33, 5868–5877.

33. Pal, B., Chen, Y., Vaillant, F., Capaldo, B.D., Joyce, R., Song, X., Bryant, V.,
Penington, J.S., Di-Stefano, L., Ribera, N.T., Wilcox, S., Mann, G.B., kConFab,
Papenfuss, A.T., Lindeman, G.J., Smyth, G.K., and Visvader, J.E. (2021). A single-cell
RNA atlas of human breast spanning normal, preneoplastic and tumorigenic states.
EMBO Journal 40, e107333.

34. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon
provides fast and bias-aware quantification of transcript expression. Nature Methods
14, 417.

35. Phipson, B., Lee, S., Majewski, I.J., Alexander, W.S., and Smyth, G.K. (2016). Robust
hyperparameter estimation protects against hypervariable genes and improves power to
detect differential expression. Annals of Applied Statistics 10, 946–963.

36. Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt, B.E., Nkadori, E.,
Veyrieras, J.B., Stephens, M., Gilad, Y., and Pritchard, J.K. (2010). Understanding
mechanisms underlying human gene expression variation with RNA sequencing. Nature
464, 768–772.

37. Pickrell, J.K., Pai, A.A., Gilad, Y., and Pritchard, J.K. (2010). Noisy splicing drives
mRNA isoform diversity in human cells. PLoS Genetics 6, e1001236.

38. Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. (2011). GC-content normalization
for RNA-Seq data. BMC Bioinformatics 12, 480.

39. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140.

40. Robinson, M.D. and Oshlack, A. (2010). A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biology 11, R25.

137

edgeR User’s Guide

41. Robinson, M.D. and Smyth, G.K. (2007). Moderated statistical tests for assessing
differences in tag abundance. Bioinformatics 23, 2881–2887.

42. Robinson, M.D. and Smyth, G.K. (2008). Small-sample estimation of negative binomial
dispersion, with applications to SAGE data. Biostatistics 9, 321–332.

43. Schübeler, D. (2015). Function and information content of DNA methylation. Nature
517, 321–326.

44. Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl,
D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014). Genome-scale
CRISPR-Cas9 knockout screening in human cells. Science 343, 84–7.

45. Smyth, G.K. (2004). Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Statistical Applications in Genetics
and Molecular Biology 3, Article 3.

46. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III, W.M.,
Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration
of single-cell data. Cell 177, 1888–1902.

47. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette,
M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P.
(2005). Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–50.

48. Tuch, B.B., Laborde, R.R., Xu, X., Gu, J., Chung, C.B., Monighetti, C.K., Stanley, S.J.,
Olsen, K.D., Kasperbauer, J.L., Moore, E.J., Broomer, A.J., Tan, R., Brzoska, P.M.,
Muller, M.W., Siddiqui, A.S., Asmann, Y.W., Sun, Y., Kuersten, S., Barker, M.A.,
Vega, F.M.D.L., and Smith, D.I. (2010). Tumor transcriptome sequencing reveals allelic
expression imbalances associated with copy number alterations. PLoS ONE 5, e9317.

49. Wu, D., Lim, E., Vaillant, F., Asselin-Labat, M., Visvader, J.E., and Smyth, G.K.
(2010). ROAST: rotation gene set tests for complex microarray experiments.
Bioinformatics 26, 2176–2182.

50. Wu, D. and Smyth, G.K. (2012). Camera: a competitive gene set test accounting for
inter-gene correlation. Nucleic Acids Research 40, e133.

138

