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1 Overview

This document provides a brief guide to the clusterStab package, which is

intended to be used for two things:

� Determining the number of clusters in a set of microarray data.

� Deciding how 'good' these clusters are.

Clustering microarray data and producing so-called heatmaps is a

very common thing to do. However, there are some signi�cant drawbacks to

this technique. First, clustering is not an inferential technique, so there are

no p-values associated with the heatmap to indicate how likely it is that the

results arose simply by chance. Second, most clustering techniques are quite

sensitive to the input data, so it is possible to get a very di�erent result by

simply adding or removing a single sample (or by adding or removing genes).

This, of course, would result in a completely di�erent interpretation. Third,

clustering methods are intended to show previously unknown patterns in

high dimensional data, but are often used to show expected patterns. This

can result in a self-ful�lling prophecy, if for instance, the data are �ltered

based on an expected pattern. An example would be �ltering the data based

on the di�erence in expression between two sample types and then clustering

the data. Since the �ltered genes by de�nition are those that are di�erent

between the two groups, the heatmap will clearly show this di�erence. This

is usually an uninteresting result, as permuting the sample labels, re-�ltering

the data and re-clustering will almost always result in a heatmap as striking

as the original, yet will be based on sample groups that are not expected to

be di�erent.

This third point is quite important. In order to create a heatmap that

is small enough to be useful, it is often necessary to �lter out genes that are
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not di�erentially expressed in any samples without unintentionally selecting

genes that ful�ll an a priori assumption about the number of clusters. A

good approach is to select genes that have a high coe�cient of variation

(CV), which implies that there is a high variation in expression relative to

the average expression for that gene.

When using hierarchical clustering to detect a priori unknown groups

in data, there are thus two questions that arise; how many clusters are there,

and given a number of clusters, how likely is it that they simply arose by

chance? We answer both questions by relying on the fact that clustering

solutions can be sensitive to changes in the input data. To test for the

likely number of clusters, we repeatedly select subsets of the samples, cluster

them, and then see for each number of clusters (from 2 to N) how often we

get similar results. If the results are not often similar for a given number of

clusters, it is not likely that there are that many clusters in our data. We

assess similarity using a Jaccard coe�cient, and use histograms to compare

di�erent numbers of clusters.

Once we have decided how many clusters we think there are, we can

test to see how likely it is that this number came about simply by chance.

Again, this is done by selecting subsets of the data and clustering. However,

in this case we are selecting subsets of genes (using all samples). The basic

idea here is the same; repeatedly subset the data and compare the resulting

clustering solutions. If we keep getting the same clusters over and over, then

this gives evidence that the cluster is stable, which implies that it is not

likely that this result arose simply by chance.

Note that these functions are based on hierarchical clustering using

the hclust() function, although they can be generalized to most clustering

techniques. Incorporation of di�erent clustering algorithms will be based on

user requests.

2 A Simple Example

For this example we will be using the �broEset package, which contains

an ExpressionSet object with 46 samples and 12625 genes. There are 11

bonobo samples, 12 gorilla samples, and 23 human samples, so I would expect

either two or three clusters, depending on how well the bonobo and gorilla

samples cross-hybridize to A�ymetrix HG-U95Av2 chips.

This is of course too many genes to cluster, so we will start by se-

lecting only those genes that appear to be di�erentially expressed. Here I

will use those genes that have a CV greater than 0.1. However, there are
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many other possibilites that can be used; see the gene�lter package for more

suggestions.

> library(clusterStab)

> library(genefilter)

> library(fibroEset)

> data(fibroEset)

> exprs(fibroEset) <- log2(exprs(fibroEset))

> filt <- cv(0.1, Inf)

> index <- genefilter(fibroEset, filt)

> fb <- fibroEset[index,]

> bh <- benhur(fb, 0.7, 6, seednum = 12345) #seednum only used to ensure reproducibility

There are 721 genes for which the CV is greater than 0.1. We will

now use these genes to decide how many di�erent sample types (clusters)

there are in our data, using the benhur function. The number of clusters

is determined by taking random samples of the microarrays and then clus-

tering. Similarity between pairwise clusters is estimated using a Jaccard

coe�cient; stable clusters will tend to have similar results on repeated sam-

pling, whereas unstable clusters will tend to have very di�erent results. This

can be visualized using either histograms or empirical cumulative distribu-

tion function (eCDF) plots. We �rst look at the histograms using the hist()

function.

Figure 1 shows individual histograms for each of the 2 - 6 possible

clusters that were tested. Each histogram shows the distribution of the

Jaccard coe�cients for a particular number of clusters. What we are looking

for is the histogram with the majority of the data at or near one. This gives

the most likely number of clusters in our data. It appears that the most

likely number of clusters is one, as each of the other histograms have data

that are not clustered near one.

Figure 2 shows the dendrogram for this clustering result. The �broE-

set data are A�y HG-U95av2 chips that were run on human, bonobo, and

gorilla samples (labeled h, b, and g in the dendrogram). It is not surprising

that the bonobo and gorilla samples cluster together considering that they

were analyzed using a human chip. In addition, there are at least two smaller

clusters within the human samples

We can also look at the eCDF plot, using the ecdf() function.

Figure 3 shows the eCDFs for each number of clusters. Again, it

appears that there are probably only two real clusters here.

Once we have decided how many clusters there are in our sample, we
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> hist(bh)
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Figure 1: Histograms of the �broEset data
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Figure 2: Cluster of the �broEset data
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> plot(hclust(dist(t(exprs(fibroEset[index,])))), labels = pData(fibroEset)[,2], sub="", xlab="")

> ecdf(bh)
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Figure 3: Empirical CDF plots of the �broEset Data
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can test to see how stable the clusters are. For this, we use the clusterComp

function.

> cmp <- clusterComp(fb, 2)

> cmp

Results from running clusterComp:

1 2

Cluster stability: 100% 100%

Iterations: 100

Subsampling frequency: 80%

Agglomeration method: average

Original cluster membership:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

7


	Overview
	A Simple Example

