How to use cghMCR

Jianhua Zhang Bin Feng
April 30, 2024

1 Overview

Copy number data (arrayCGH or SNP) can be used to identify genomic regions (Regions
Of Interest or ROI) showing gains or losses that are common across samples. Existing
algorithms, MCR (Aguirre et. al. 2004), GISTIC(), or GTS(), for the identification of
ROI rely on the probe level data, which may be a concern when array density increases
(to 1 million for example) or when data generated by arrays of different densities need
to be analyzed together. The cghMCR initially implemented simplified version of MCR.
An alternative approach (Segment Gain Or Loss or SGOL) were then added by applying
a modified version of GISTIC algorithm so that the computations can be done based
on segmented data. This vignette demonstrate how to use cghMCR to identify genomic
alterations across samples profiled using copy number platforms using the two approaches
(e. g. arrayCGH or SNP array).

Since both approaches use the output of CBS (DNAcopy), the first section of the
vignette shows how to generate the segmented data using DNAcopy based on three raw
arrayCGH data files to reduce the length of time required for the calculation.

2 From raw to segmented data

3 From raw data to segment list

The raw data used for segment computation are downloaded from the TCGA web site
http://www. and stored in the sampleData directory of the package. Several Biocon-
ductor packages may be used to process the raw data. Here we choose to use limma to
process and normalize the raw data. The three samples files are:

> require("limma")

> arrayFiles <- list.files(system.file("sampleData', package = "cghMCR"),
+ full.names = TRUE, pattern = "TCGA")

> arrayFiles

http://www.

[1] "/tmp/RtmpzLOUcL/Rinst2965463b441aad/cghMCR/sampleData/TCGA-06-0881-01A-02D-0387-02
[2] "/tmp/RtmpzLOUcL/Rinst2965463b441aad/cghMCR/sampleData/TCGA-12-0818-01A-01D-0387-02
[3] "/tmp/RtmpzLOUcL/Rinst2965463b441aad/cghMCR/sampleData/TCGA-12-0827-01A-01D-0387-02

read.maimages is a generic function of the limma package that can be used to read
the process the raw data. In the example below we used the default settings of the
function. Curious readers may read the man page of read.maimages for descriptions of
the parameters and their possible settings.

> rawData <- read.maimages(arrayFiles, source = "agilent", columns =

+ list(R = "rMedianSignal", G = "gMedianSignal", Rb = "rBGMedianSignal",

+ Gb = "gBGMedianSignal'"), annotation = c("Row", "Col", "ControlType",

+ "ProbeName', "GeneName', "SystematicName', "PositionX", '"PositionY",

+ "gIsFeatNonUnifOL", "rIsFeatNonUnifOL", "gIsBGNonUnifOL", "rIsBGNonUnifOL",
+ "gIsFeatPopnOL'", '"rIsFeatPopnOL", "gIsBGPopnOL'", "rIsBGPopnOL",

+ "rIsSaturated", '"glsSaturated"), names = basename(arrayFiles))

Read /tmp/RtmpzLOUcL/Rinst2965463b441aad/cghMCR/sampleData/TCGA-06-0881-01A-02D-0387-0z
Read /tmp/RtmpzLOUcL/Rinst2965463b441aad/cghMCR/sampleData/TCGA-12-0818-01A-01D-0387-0%
Read /tmp/RtmpzLOUcL/Rinst2965463b441aad/cghMCR/sampleData/TCGA-12-0827-01A-01D-0387-0%

Dye assignment defults to Cyb = sample and Cy3 for reference in limma (set for
expression arrays). However, arrayCGH experiments are usually carried out with sample
dyed using Cy3. To take this into account, we define a design vector using 1 (Cyb =
sample) or -1 (Cy3 = sample) to indicate the dye assignment for each sample.

> rawData$design <- c(-1, -1, -1)

The following code does the background correction and normalization within and
then between arrays:

> ma <- normalizeWithinArrays (backgroundCorrect (rawData, method = "minimum"), method =

Since some of the probes are not mapped to exact positions in the genome, we need
to drop them together with the control probes.

> chrom <- gsub("chr([0-9XY]+):.*", "\\1", ma$genes[, "SystematicName"])
> dropMe <- c(which(!chrom 7inj, c(1:22, "X", "Y")), which(ma$genes[, "ControlType"] !=

A common approach to analyzing copy number data is to apply the segment function
of DNAcopy to segment the normalized data so that chromosome regions with the same
copy number have the same segment mean values.

> require(DNAcopy, quietly = TRUE)
> set.seed(25)
> cna <- CNA(ma$M[-dropMe, 1,
gsub("chr ([0-9XY]+) :.*", "\\1", ma$genes[-dropMe, "SystematicName'"]),
as.numeric(gsub(".*: ([0-9]+)-.*", "\\1",

ma$genes[-dropMe, "SystematicName"])),
data.type = "logratio", sampleid = colnames(ma$M))

+

+
+
+
>

segData <- segment (smooth.CNA(cna))

Analyzing: TCGA.06.0881.01A.02D.0387.02.short.txt
Analyzing: TCGA.12.0818.01A.01D.0387.02.short.txt
Analyzing: TCGA.12.0827.01A.01D.0387.02.short.txt

The segData object contains the segment list that we are going to use in the sections
to follow. The segment list can be extracted from the segData object by issuing the
following command.

> mySeglist <- segDatal[["output"]]
> head(mySeglist)

DO WN -

seg.

Ok WN -
|
N

TCGA.
TCGA.
TCGA.
TCGA.
TCGA.
TCGA.

06.
06.
06.
06.
06.
06.
mean

.0173
.0788
.0001
.2079
.0029
.0652

0881.
0881.
0881.
0881.
0881.
0881.

01A.
01A.
01A.
01A.
01A.
01A.

02D.
02D.
02D.
02D.
02D.
02D.

0387.
0387.
0387.
0387.
0387.
0387.

02.
02.
02.
02.
02.
02.

short
short
short
short
short
short

ID chrom loc.start

.txt
.txt
.txt
.txt
.txt
.txt

1
1
1
1
1

10

554268
66219285
97148420

150844444

loc.end num.mark

66194006
97057519
150775100
150848509

150930484 247032049

138206

135356671

4 Identifying Segment Gain Or Loss (SGOL)

594
215
248
2
795
1066

In this section or sections to follow, we are not going to used mySeglist we created in
the previous section as the data set only contains three samples. Instead , we will use
a different set of sample data that was created the same way but with more samples to
make the results more interesting. The sample data is stored in the data subdirectory
of the CNTools package and can be loaded into R by:

> require(CNTools, quietly = TRUE)

\%

> head(sampleData)

data("sampleData", package = "CNTools")

ID chrom loc.start 1loc.end num.mark seg.mean
1 TCGA-02-0001-01C-01 1 554267 72533855 6384 0.0883
2 TCGA-02-0001-01C-01 1 72550247 72568008 2 1.2898
3 TCGA-02-0001-01C-01 1 72602596 74674719 93 0.1422
4 TCGA-02-0001-01C-01 1 74693651 74877529 20 -0.3194
5 TCGA-02-0001-01C-01 1 74885003 74952060 7 -0.6418
6 TCGA-02-0001-01C-01 1 74961517 75110250 10 -0.2808

The segment list shown above is a data frame but can not be used directly for
computation across samples as each row only contains the segment data for a given
segment within a sample. For computations on segmented data across samples, the
segment list need to be converted into a matrix format with segments as rows and samples
as columns. The CNTools packages provides the functionalities for data conversion and
we are going to take the advantage of the package without detailing the algorithm of the
conversion. Curious readers are encouraged to read the vignette of CNTools for detailed
descriptions of the algorithms. Using the following code, we convert the segment list
into a matrix format with by aligning samples based on chromosome segment defined by
genes. Alternatively we can align samples based on overlapping chromosomal fragments.
The CNTools vignette has an example for that. Since the sample data contains over 200
samples, we only take 20 random samples here for the sake of time.

> data(geneInfo)

> data(sampleData, package = "CNTools")

> set.seed(1234)

> convertedData <- getRS(CNSeg(sampleDatal[which(is.element (sampleDatal, "ID"], sample(
+ XY = FALSE, geneMap = genelnfo, what = "median')

Once we have the segment data converted into a matrix format, we can try to identify
regions showing gains or losses that are common across samples. The imput parameter
indicates whether cells with missing values will be imputed and the parameter indicates
whether regions on the X and Y chromosome should be kept. Since our samples are a
mixture of male and female DNAs profiled against pooled male human DNA, we choose
to drop the data on X and Y chromosomes. Parameter geneMap is needed when samples
will be aligned by genes. The CNTools contains a built human gene information data
set (genelnfo) that was used in the code above. Users working on other organisms or
their own gene mapping information need to create a gene mapping data set following
the same format as genelnfo shown below:

Working on the data converted from segment list, we can compute the SGOL scores
for genes (or chromosomal fragment if samples are aligned by regions) by calculating the

4

summations (parameter method) for all the positive values over a set threshold and all
the negative values below a set threshold (threshold below).

> require(cghMCR, quietly = TRUE)
> SGOLScores <- SGOL(convertedData, threshold = c(-0.2, 0.2), method = sum)
> plot(SGOLScores)

20 40 B0
l

SGOL scare
1]
|

T T T T T T T T T T 1T TTTITTITIrn
1T 2 3 445 7T 9 11 13 16 20

Chromosome

Figure 1:

Based on the SGOL scores, genes in regions of gains or losses can be obtained by a
set of thresholds, say -20 and 20.

> GOIGains <- SGOLScores([which(as.numeric(unlist(gol(SGOLScores[, "gains"]))) >

+ 20), "gains"]

> GOILosses <- SGOLScores[which(as.numeric(unlist(gol(SGOLScores[, "losses"]))) <
+ -20), "losses"]

> head(gol(GOIGains))

gains
719839 22.0771
719857 38.7827
719869 45.6392

719916 52.8093
719920 52.0561
720101 48.8043

5 Identifying Minimum Common Regions (MCR)
The MCR approach was implemented following the heuristics listed below:

e MCRs are identified based on the segments obtained using DNAcopy

e Segments above an upper (defined by a parameter alteredHigh) and lower (alteredLow)
threshold values of percentile are identified as altered.

e If two or more altered segments are deparated by less than 500 kb, the entire region
spanned by the segments is considered to be an altered span.

e Highly altered segments or spans are retained as informative spans that define
descrete locus boundaries.

e Informative spanes are compared acress samples to identify overlapping groups of
positive or negative value segments.

e Minimal common regions (MCRs) are defined as contiguous spans having at least
a recurrence rate defined by a parameter (recurrence) across samples.

We use the segData that were generated by running segements as the input to
the cghMCR function. The parameter gapAllowed is numeric and indicate how many
basepairs should two adjancent segments be apart, below which the segments will be
joined to form an altered span. Parameters alteredLow and alteredHigh are also
numerics and specify the lower and upper percential threshold values. Only segements
with means less or greater than the lower or upper threshold values will be considered
as altered regions and included in the subsequent analysis. recurrence is an integer
defining the rate of recurrence for a region to show gain/loss across samples before it
can be declared as an MCR. Due to the small number of sample size, the parameters
are set to values that result in presentable results rather than correctness.

\%

cghmcr <- cghMCR(segData, gapAllowed = 500, alteredLow = 0.9,
alteredHigh = 0.9, recurrence = 100)
mcrs <- MCR(cghmcr)

v +

Using the above settings, we get a few MCRs that are common to the samples.

\

head(cbind(mcrs[, c("chromosome", '"status'", "mcr.start'", "mcr.end",
+ "samples")]))

chromosome status mcr.start mcr.end
1" "gain" "55469748" "66010735"
1" "gain" "66063005" "66219285"
1" "gain" "66219285" "84504182"
1" "gain" "84504182" "84591307"
1" "gain" "84591307" "97057519"
1" "gain" "97057519" "121013177"
samples
1 "TCGA.12.0818.01A.01D.0387.02.short.txt,TCGA.12.0827.01A.01D.0387.02.short.txt"
1 "TCGA.12.0818.01A.01D.0387.02.short.txt,TCGA.12.0827.01A.01D.0387.02.short.txt"
1 "TCGA.06.0881.01A.02D.0387.02.short.txt,TCGA.12.0818.01A.01D.0387.02.short.txt,TCGA.
1 "TCGA.06.0881.01A.02D.0387.02.short.txt,TCGA.12.0818.01A.01D.0387.02.short.txt"
1 "TCGA.06.0881.01A.02D.0387.02.short.txt,TCGA.12.0818.01A.01D.0387.02.short.txt,TCGA.
1 "TCGA.12.0818.01A.01D.0387.02.short.txt,TCGA.12.0827.01A.01D.0387.02.short.txt"
To include probe ids for the MCRs identified, we can call the function mergeMCRProbes
to have probe ids within each MCR appended. Multiple probes are separated by a ",".
> mcrs <- mergeMCRProbes (mcrs[mcrs[, "chromosome"] == "7",], as.data.frame(segDatal[["c
> head(cbind (mcrs[, c("chromosome", "status'", 'mcr.start", "mcr.end",
+ "probes")]))
chromosome status mcr.start mcr.end probes
T "r" "gain" "48653437" "56089387'" NA
7 "7 "gain" "56089387" "b6570930'" NA
7 "7 "gain" "56570930" "63977464" NA
7 " "gain" "68001742" "71432134" NA
T "r" "loss" "265449" 48484884" NA
T "r" "loss" "64168901" "67228626" NA

6 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 4.4.0 beta (2024-04-15 r86425)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default

BLAS:

/home/biocbuild/bbs-3.19-bioc/R/1ib/1libRblas.so

LAPACK: /usr/1ib/x86_64-linux-gnu/lapack/liblapack.s0.3.10.0

locale:

[1]
(3]
(5]
[7]
(9]
[11]

LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
LC_PAPER=en_US.UTF-8 LC_NAME=C

LC_ADDRESS=C LC_TELEPHONE=C
LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] tools stats graphics grDevices utils
[8] base

other attached packages:

[1] cghMCR_1.62.0 CNTools_1.60.0 genefilter_1.

[6] 1limma_3.60.0

loaded via a namespace (and not attached):

[1]

(4]

7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]

Matrix_1.7-0 bit_4.0.5
compiler_4.4.0 crayon_1.5.2
blob_1.2.4 Biostrings_2.72.0
IRanges_2.38.0 png_0.1-8
statmod_1.5.0 lattice_0.22-6
XVector_0.44.0 GenomeInfoDb_1.40.0
XML_3.99-0.16.1 MatrixGenerics_1.16.0
GenomeInfoDbData_1.2.12 DBI_1.2.2
KEGGREST_1.44.0 cachem_1.0.8
annotate_1.82.0 RSQLite_2.3.6
cli_3.6.2 zlibbioc_1.50.0
xtable_1.8-4 S4Vectors_0.42.0
survival_3.6-4 stats4_4.4.0
matrixStats_1.3.0 UCSC.utils_1.0.0

7 References

datasets methods

86.0 DNAcopy_1.78.0

jsonlite_1.8.8
Biobase_2.64.0
splines_4.4.0
fastmap_1.1.1
R6_2.5.1
BiocGenerics_0.50.0
AnnotationDbi_1.66.0
rlang_1.1.3
bit64_4.0.5
memoise_2.0.1
grid_4.4.0
vctrs_0.6.5
httr_1.4.7

Aguirre, AJ, C. Brennan, G. Bailey, R. Sinha, B. Feng, C. Leo, Y. Zhang, J. Zhang, N.
Bardeesy, C. Cauwels, C. Cordon-Cardo, MS Redston, RA DePinho and L. Chin. High-

resolution Characterization of the Pancreatic Adenocarcinoma Genome. Proc Natl Acad
Sci U S A. 2004. 101(24):9067-9072

	Overview
	From raw to segmented data
	From raw data to segment list
	Identifying Segment Gain Or Loss (SGOL)
	Identifying Minimum Common Regions (MCR)
	Session Information
	References

