
An Introduction to OTUbase

Modified: 8 September 2010. Compiled: May 1, 2024

> library("OTUbase")

The OTUbase package provides an organized structure for OTU (Operational Tax-
onomic Unit) data analysis. In addition, it provides a similar structure for general read-
taxonomy classification type data. OTUbase provides some basic functions to analyze
the data as well.

1 A simple workflow
This section walks through a simple workflow using a small example dataset. It demon-
strates the main features of OTUbase. The data used for this example comes from a
dataset described in "Microbial diversity in the deep sea and the underexplored ’rare
biosphere’" by Sogin et al. (PNAS 2006). The complete dataset is available through
PNAS. A random set of 1000 sequences was taken from this dataset.

1.1 Sample meta data
Sample metadata is collected along with the sample. This data may include any number
of different pieces of information about the sample. In the example dataset, the meta
data is provided in Table 1 of Sogin et al. This file is named ’sample_metadata.txt’. To
be easily read by OTUbase, this file is in the form of an AnnotatedDataFrame.

1.2 Sequence preprocessing
This section describes the preprocessing steps necessary to generate the files used by
OTUbase.

1.2.1 Sequence trimming and filtering

Many OTU data projects will begin with raw sequence reads from a next generation
pyrosequencer. These reads may include primers, barcodes, and/or adapters that are not
part of the actual read. The first step in the analysis pipeline is to trim the primers and
barcodes from the read. A number of tools are able to do this. Commands in Mothur
are ’trim.seqs()’ and ’filter.seqs()’. For this workflow we are assuming that these steps
have already been done. When the barcodes are trimmed off the reads, a separate file

1



is generally created that links the read with a sample identification. Mothur creates this
file automatically and gives it a ’.groups’ extension. Each line of this file contains a
read ID and the ID of the sample the read belongs to, separated by a tab. OTUbase
requires this groups file.

1.3 Taxonomic classification and OTU generation
There are two main approaches used to analyse amplicon data. An OTU approach in-
volves first clustering the sequences together by similarity into OTUs or Operational
Taxonomic Units. These OTUs can then be used in richness calculations and in com-
paring two samples. An alternate approach attempts to classify each sequence into
an existing taxonomy. The RDP classifier, for example, uses a Markov model to sort
sequences into genus level classifications.

The data produced by these two approaches is slightly different. The OTU approach
results in a list of sequences belonging to each OTU. The classification approach results
in each sequence having a classification. OTUbase is able to use either of these types
of data.

The data processing involved in OTU generation is described by Pat Schloss on the
Mothur web site. Those interested can find the OTU generation steps for Sogin’s data
at .

The data processing involved in the RDP taxonomic classification is somewhat
simpler and less computationally demanding. Details can be found on the RDP website
.

1.3.1 Reducing the dataset to unique sequences

To decrease the computation time involved in both techniques, duplicate sequences
in the dataset are removed first. These sequences can the be added back in after the
processing is complete. Mothur removes the duplicate sequences with the command
’unique.seqs()’ which also automatically generates a file that keeps track of which se-
quences have duplicates (called a name file).

In this workflow the duplicate sequences have been removed using Mothur. The
name file is called ’sogin.names’

1.4 Importing files into an OTUbase object
OTUbase is able to automatically import a number of files generated during the data
processing. These files include the sample file (the group file produced by Mothur), the
OTU file (the list file produced by Mothur), and the meta data (in AnnotatedDataFrame
format). In addition OTUbase inherits ShortRead which allows the user to include a
fasta file and a quality file. OTUbase also recognizes the RDP taxonomic classification
files that are in the ’fixed’ format.

> dirPath <- system.file("extdata/Sogin_2006", package="OTUbase")

Usually dirPath will be the directory path containing the files that will be read by
OTUbase.

2

http://www.mothur.org/wiki/Sogin_data_analysis
http://rdp.cme.msu.edu/classifier/classifier.jsp


Because there are two main approaches to data analysis (OTU and Taxonomic clas-
sification) we will look at both in parallel. To read in OTU related data the func-
tion readOTUset() is used. Likewise, to read in classification data the function
readTAXset() is used.

> soginOTU <- readOTUset(dirPath=dirPath, level="0.03", samplefile="sogin.groups", fastafile="sogin.fasta", otufile="sogin.unique.filter.fn.list", sampleADF="sample_metadata.txt")
> soginOTU

Class: OTUsetF
Number of Sequences: 1000 reads
Sequence Width: 56..100 cycles
Number of OTUs: 399
Number of Samples: 8
sampleData: T ncol: 6
assignmentData: F

The level is the OTU classification level desired (many clustering levels may be
present in one otufile). The default is ’0.03’. The samplefile connects the read ID to
the sample it belongs to. The fastafile and the associated quality file are optional. Their
inclusion may make the reading of the data significantly slower. The otufile must be in
Mothur format. The sampleADF is the sample meta data file.

> soginTAX <- readTAXset(dirPath=dirPath, fastafile='sogin.fasta', sampleADF='sample_metadata.txt', taxfile='sogin.unique.fix.tax', namefile='sogin.names', samplefile='sogin.groups')
> soginTAX

Class: TAXsetF
Number of Sequences: 1000 reads
Sequence Width: 56..100 cycles
Number of Samples: 8
sampleData: T ncol: 6
assignmentData: F

The readTAXset function only differs from the readOTUset function slightly.
Notably different is the absence of an otufile and the presence of a taxfile (in this case
the RDP fixed output). Also included in the readTAXset function is the namefile.
This file is the Mothur names file and should be included when the dataset has been
reduced to unique sequences.

1.5 Accessing data in OTUbase objects
OTUbase provides a number of accessor functions that allow the user to easily access
the data contained in the OTUbase object. sread, quality, and id are inherited
from the ShortRead package and allow access to the sequence, the quality, and the se-
quence id. In addition, sampleID, sData, and aData provide access to the sample
ID, the sample meta data, and the assignment meta data respectively (when available).

> head(id(soginOTU))

3



BStringSet object of length 6:
width seq

[1] 14 D4WT9DQ06DVGFR
[2] 14 D4WT9DQ05C6YNI
[3] 14 D4WT9DQ12HNQY2
[4] 14 D4WT9DQ01AP0UQ
[5] 14 D4WT9DQ09FLPTJ
[6] 14 D27LU0R02A82DK

> head(sread(soginOTU))

DNAStringSet object of length 6:
width seq

[1] 60 TGCCTTTGACATCCTCGGAACGGT...GGTGCCTTCGGGAACCGAGAGAC
[2] 71 TGGACTTGACATGTTAGTGTAAAC...AGCTTGCTCAAAGACACTATCAC
[3] 58 CGGGCTTGAAGTGCAAGCGACAAC...GATTTCCGCAAGGACGCTTGTAG
[4] 64 TGGTCTTGACATCCCGGGAATCTC...CCTCATTAGAGGAGCCTGGTGAC
[5] 60 AGGACTTGACATCCAGAGAACTCG...GGTGCCTTCGGGAACTCTGTGAC
[6] 59 ATCCCTTGACATCCTGCGAACTTT...TGGTGCCTTCGGAACGCAGTGAC

> head(sampleID(soginOTU))

[1] "53R" "53R" "115R" "FS312" "112R" "FS312"

> head(sData(soginOTU))

Site Lat_N Long_W Depth Temperature
53R Labrador seawater 58.3 -29.133 1,400 3.5
55R Oxygen minimum 58.3 -29.133 500 7.1
112R Lower deep water 50.4 -25.000 4,121 2.3
115R Oxygen minimum 50.4 -25.000 550 7.0
137 Labrador seawater 60.9 -38.516 1,710 3.0
138 Labrador seawater 60.9 -38.516 710 3.5

Cells
53R 6.4 × 104
55R 1.8 × 105
112R 3.9 × 104
115R 1.5 × 105
137 3.3 × 104
138 5.2 × 104

There are a couple accessors specific to OTUset or TAXset. To access the OTU
IDs stored in OTUset objects, otuID is used. Likewise, to access the taxonomic
classifications stored in TAXset objects, tax is used.

> head(otuID(soginOTU))

[1] "otu221" "otu250" "otu116" "otu385" "otu59" "otu95"

4



> head(tax(soginTAX))

root root_score domain domain_score phylum
1 Root 1.0 Bacteria 0.91 Proteobacteria
2 Root 1.0 Bacteria 0.91 Actinobacteria
3 Root 1.0 Bacteria 0.96 Actinobacteria
4 Root 1.0 Bacteria 1.00 Proteobacteria
5 Root 1.0 Bacteria 1.00 Proteobacteria
6 Root 1.0 Bacteria 1.00 Proteobacteria

phylum_score class class_score
1 0.62 Gammaproteobacteria 0.46
2 0.10 Actinobacteria 0.10
3 0.16 Actinobacteria 0.16
4 1.00 Deltaproteobacteria 1.00
5 0.98 Gammaproteobacteria 0.97
6 1.00 Gammaproteobacteria 1.00

order order_score family
1 Oceanospirillales 0.07 Halomonadaceae
2 Bifidobacteriales 0.04 Bifidobacteriaceae
3 Bifidobacteriales 0.06 Bifidobacteriaceae
4 Desulfobacterales 1.00 Desulfobulbaceae
5 Oceanospirillales 0.54 Oceanospirillaceae
6 Thiotrichales 1.00 Francisellaceae

family_score genus genus_score
1 0.06 Modicisalibacter 0.03
2 0.04 Metascardovia 0.04
3 0.06 Parascardovia 0.02
4 1.00 Desulfocapsa 1.00
5 0.51 Oceanospirillum 0.44
6 0.63 Francisella 0.63

1.6 First data analysis steps
Now that the data is in the OTUbase object, we can now generate tables and figures
that help analyze it. One of the first steps in many analyses is the generation of an
abundance table. There is an OTUbase method that does this.

> abundOTU <- abundance(soginOTU, weighted=F, collab='Site')
> head(abundOTU)

s
o Lower deep water Oxygen minimum Labrador seawater

otu1 0 0 2
otu10 2 0 0
otu100 1 0 0
otu101 0 0 0
otu102 0 0 0

5



otu103 0 0 0
s

o Labrador seawater Labrador seawater Oxygen minimum
otu1 1 1 0
otu10 0 0 0
otu100 0 0 0
otu101 0 0 0
otu102 1 0 0
otu103 0 0 0

s
o Bag City Marker 52

otu1 0 0
otu10 0 0
otu100 1 0
otu101 2 0
otu102 0 0
otu103 1 2

> abundTAX <- abundance(soginTAX, weighted=F, taxCol='genus', collab='Site')
> head(abundTAX)

s
o Lower deep water Oxygen minimum

Abiotrophia 0 0
Acetivibrio 0 0
Acinetobacter 0 0
Actibacter 0 0
Aestuariicola 0 0
Agromonas 0 0

s
o Labrador seawater Labrador seawater

Abiotrophia 0 1
Acetivibrio 0 0
Acinetobacter 0 1
Actibacter 0 0
Aestuariicola 0 0
Agromonas 0 0

s
o Labrador seawater Oxygen minimum Bag City

Abiotrophia 0 0 0
Acetivibrio 0 0 1
Acinetobacter 0 0 0
Actibacter 0 0 1
Aestuariicola 0 0 1
Agromonas 1 0 0

s

6



o Marker 52
Abiotrophia 0
Acetivibrio 0
Acinetobacter 0
Actibacter 3
Aestuariicola 0
Agromonas 4

It should be noted that the abundance method for TAXset objects requires one extra
piece of information, the column of the classification desired. The abundance can be
generated from any of them (genus, family, etc). Other options are also available in
the abundance methods. For example, the abundance can be generated based on any
column in the assignment data. For more on the abundance method please see the help
documentation.

One of the strengths of OTUbase is that by being in the R environment it can take
advantage of a number of available data analysis packages. One of these packages is
vegan. vegan is an R package that provides many tools to analyze ecological type data.
It includes diversity estimation and cluster analysis.

Using the functions provided by vegan and the abundance table previously gener-
ated:

> estrichOTU <- apply(abundOTU, 2, estimateR)
> estrichOTU

s
Lower deep water Oxygen minimum

S.obs 57.000000 44.000000
S.chao1 192.125000 176.000000
se.chao1 60.975679 74.630319
S.ACE 283.067602 154.791782
se.ACE 7.841178 8.026768

s
Labrador seawater Labrador seawater

S.obs 49.000000 48.00000
S.chao1 254.000000 159.42857
se.chao1 110.794024 53.88188
S.ACE 230.006548 320.32000
se.ACE 5.532269 11.21429

s
Labrador seawater Oxygen minimum Bag City

S.obs 37.000000 29.000000 110.00000
S.chao1 145.750000 191.500000 384.61538
se.chao1 62.860021 104.644533 96.01630
S.ACE 147.625000 182.685606 579.22305
se.ACE 3.619804 2.553564 16.82521

s
Marker 52

7



S.obs 130.00000
S.chao1 308.00000
se.chao1 54.70480
S.ACE 392.65701
se.ACE 12.75554

> estrichTAX <- apply(abundTAX, 2, estimateR)
> estrichTAX

s
Lower deep water Oxygen minimum

S.obs 48.00000 34.000000
S.chao1 118.00000 64.000000
se.chao1 33.36542 17.882622
S.ACE 202.70270 77.238156
se.ACE 10.26136 5.658764

s
Labrador seawater Labrador seawater

S.obs 41.00000 35.000000
S.chao1 173.00000 122.750000
se.chao1 74.62941 52.070518
S.ACE 167.54231 132.763430
se.ACE 4.56640 5.203785

s
Labrador seawater Oxygen minimum Bag City

S.obs 29.000000 22.000000 91.000000
S.chao1 67.000000 107.500000 253.750000
se.chao1 23.913688 59.310721 62.402381
S.ACE 98.141354 194.379259 290.053022
se.ACE 7.521336 9.549327 9.670711

s
Marker 52

S.obs 88.000000
S.chao1 157.789474
se.chao1 26.353821
S.ACE 190.277732
se.ACE 8.276204

The vegan function vegedist and hclust have been combined into one OTUbase
wrapper for convenience. This allows the user to quickly cluster the samples. This
clustering can be done using a number of different distance and clustering methods.

> clusterSamples(soginOTU, distmethod='jaccard', clustermethod='complete', collab='Site')

Call:
hclust(d = d, method = clustermethod)

8



Cluster method : complete
Distance : jaccard
Number of objects: 8

> clusterSamples(soginTAX, taxCol='genus', distmethod='jaccard', clustermethod='complete', collab='Site')

Call:
hclust(d = d, method = clustermethod)

Cluster method : complete
Distance : jaccard
Number of objects: 8

The user is encouraged to explore many functions available through vegan and
other R packages. Commonly useful ones can then be brought into OTUbase to make
their use more efficient.

2 Advanced features
A number of other functions are available. While the implementation is incomplete,
subOTUset() is a function that allows the user to extract any OTUs or samples from
the dataset to be analyzed separately. This makes it possible to remove one or more
OTUs or samples from the analysis. Eventually this will be implemented using the
more traditional ’[’ notation.

> soginReduced <- subOTUset(soginOTU, samples=c("137", "138", "53R", "55R"))
> soginReduced

Class: OTUsetF
Number of Sequences: 222 reads
Sequence Width: 56..100 cycles
Number of OTUs: 127
Number of Samples: 4
sampleData: T ncol: 6
assignmentData: F

3 The structure of an OTUbase object
OTUbase objects include a number of possible slots. Inherited from ShortRead are
sread, id, and quality. These slots, along with otuID, tax, and sampleID are all of
identical length and order. For example, the first row in the id slot is connected to the
first rows in the sread, quality, otuID, and sampleID slots. In other words, the first id
represents the first sequence that has a quality described by the first row of the quality
slot; it is a member of the otu listed in the otuID slot and a member of the sample listed
in the first row of the sample slot.

9



In addition there are two AnnotatedDataFrames. The sampleData data frame is
linked to the sampleID slot through the sample IDs. The assignmentData data frame is
linked to the otuID slot through the OTU IDs.

There are slight differences in the OTUset objects and the TAXset objects. In the
TAXset objects, the assignmentData data frame is not explicitly linked to the tax slot.

4 Conclusions and directions for development
OTUbase provides an organization and structure for OTU data and taxonomic classifi-
cation data produced during the analysis of amplicon sequences. This allows the user
to quickly and easily analyze amplicon data.

While the structure and a few basic functions are available withing OTUbase, there
are a large number of possible improvements and extensions that have yet to be devel-
oped. OTUbase provides a structure for the data but functions for downstream analysis
are not yet included. Future development will include a better integration of OTUbase
with other available R packages such as vegan and the inclusion of a wider variety of
functions for data analysis.

5 References
Sogin, M., H. Morrison, J. Huber, D. Welch, S. Huse, P. Neal, J. Arrieta, and G. Herndl.
2006. Microbial diversity in the deep sea and the underexplored "rare biosphere." Proc.
Natl. Acad. Sci. U. S. A. 103:12115-12120

Schloss PD, et al. (2009) Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial communities.
Appl Environ Microbiol 75:7537-7541

Wang, Q, G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian
Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy.
Appl Environ Microbiol. 73(16):5261-7

10



> toLatex(sessionInfo())

• R version 4.4.0 beta (2024-04-15 r86425), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 22.04.4 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so

• LAPACK:
/usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

• Base packages: base, datasets, graphics, grDevices, methods, stats, stats4, utils

• Other packages: Biobase 2.64.0, BiocGenerics 0.50.0, BiocParallel 1.38.0,
Biostrings 2.72.0, GenomeInfoDb 1.40.0, GenomicAlignments 1.40.0,
GenomicRanges 1.56.0, IRanges 2.38.0, lattice 0.22-6, MatrixGenerics 1.16.0,
matrixStats 1.3.0, OTUbase 1.54.0, permute 0.9-7, Rsamtools 2.20.0,
S4Vectors 0.42.0, ShortRead 1.62.0, SummarizedExperiment 1.34.0,
vegan 2.6-4, XVector 0.44.0

• Loaded via a namespace (and not attached): abind 1.4-5, bitops 1.0-7,
cluster 2.1.6, codetools 0.2-20, compiler 4.4.0, crayon 1.5.2,
DelayedArray 0.30.0, deldir 2.0-4, GenomeInfoDbData 1.2.12, grid 4.4.0,
httr 1.4.7, hwriter 1.3.2.1, interp 1.1-6, jpeg 0.1-10, jsonlite 1.8.8,
latticeExtra 0.6-30, MASS 7.3-60.2, Matrix 1.7-0, mgcv 1.9-1, nlme 3.1-164,
parallel 4.4.0, png 0.1-8, pwalign 1.0.0, R6 2.5.1, RColorBrewer 1.1-3,
Rcpp 1.0.12, S4Arrays 1.4.0, SparseArray 1.4.0, splines 4.4.0, tools 4.4.0,
UCSC.utils 1.0.0, zlibbioc 1.50.0

Table 1: The output of sessionInfo on the build system after running this vignette.

11


	A simple workflow
	Sample meta data
	Sequence preprocessing
	Sequence trimming and filtering

	Taxonomic classification and OTU generation
	Reducing the dataset to unique sequences

	Importing files into an OTUbase object
	Accessing data in OTUbase objects
	First data analysis steps

	Advanced features
	The structure of an OTUbase object
	Conclusions and directions for development
	References

