
Extending GenomicRanges

Michael Lawrence, Bioconductor Team

Edited: Oct 2014; Compiled: October 9, 2024

Contents

1 Introduction . 1

2 The GenomicRanges abstraction. 1

3 Formalizing mcols: Extra column slots 3

1 Introduction
The goal of GenomicRanges is to provide general containers for genomic data. The central
class, at least from the user perspective, is GRanges, which formalizes the notion of ranges,
while allowing for arbitrary “metadata columns” to be attached to it. These columns offer
the same flexibility as the venerable data.frame and permit users to adapt GRanges to a wide
variety of adhoc use-cases.

The more we encounter a particular problem, the better we understand it. We eventually
develop a systematic approach for solving the most frequently encountered problems, and
every systematic approach deserves a systematic implementation. For example, we might
want to formally store genetic variants, with information on alleles and read depths. The
metadata columns, which were so useful during prototyping, are inappropriate for extending
the formal semantics of our data structure: for the sake of data integrity, we need to ensure
that the columns are always present and that they meet certain constraints.

We might also find that our prototype does not scale well to the increased data volume
that often occurs when we advance past the prototype stage. GRanges is meant mostly
for prototyping and stores its data in memory as simple R data structures. We may require
something more specialized when the data are large; for example, we might store the data as
a Tabix-indexed file, or in a database.

The GenomicRanges package does not directly solve either of these problems, because there
are no general solutions. However, it is adaptible to specialized use cases.

2 The GenomicRanges abstraction
Unbeknownst to many, most of the GRanges implementation is provided by methods on the
GenomicRanges class, the virtual parent class of GRanges. GenomicRanges methods pro-
vide everything except for the actual data storage and retrieval, which GRanges implements
directly using slots. For example, the ranges are retrieved like this:

http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/GenomicRanges

Extending GenomicRanges

> library(GenomicRanges)

> selectMethod(ranges, "GRanges")

Method Definition:

function (x, use.names = TRUE, use.mcols = FALSE, ...)

{

.local <- function (x, use.names = TRUE, use.mcols = FALSE)

{

if (!isTRUEorFALSE(use.names))

stop(wmsg("'use.names' must be TRUE or FALSE"))

if (!isTRUEorFALSE(use.mcols))

stop(wmsg("'use.mcols' must be TRUE or FALSE"))

ans <- updateObject(x@ranges, check = FALSE)

if (!use.names)

names(ans) <- NULL

if (use.mcols)

mcols(ans) <- mcols(x, use.names = FALSE)

ans

}

.local(x, use.names, use.mcols, ...)

}

<bytecode: 0x564d4c35ae00>

<environment: namespace:GenomicRanges>

Signatures:

x

target "GRanges"

defined "GRanges"

An alternative implementation is DelegatingGenomicRanges, which stores all of its data in a
delegate GenomicRanges object:

> selectMethod(ranges, "DelegatingGenomicRanges")

Method Definition:

function (x, use.names = TRUE, use.mcols = FALSE, ...)

ranges(x@delegate, ...)

<bytecode: 0x564d4c35c1e8>

<environment: namespace:GenomicRanges>

Signatures:

x

target "DelegatingGenomicRanges"

defined "DelegatingGenomicRanges"

This abstraction enables us to pursue more efficient implementations for particular tasks.
One example is GNCList, which is indexed for fast range queries, we expose here:

> getSlots("GNCList")["granges"]

granges

2

http://bioconductor.org/packages/GenomicRanges

Extending GenomicRanges

"GRanges"

The MutableRanges package in svn provides other, untested examples.

3 Formalizing mcols: Extra column slots
An orthogonal problem to data storage is adding semantics by the formalization of metadata
columns, and we solve it using the “extra column slot” mechanism. Whenever GenomicRanges
needs to operate on its metadata columns, it also delegates to the internal extraColumnSlot
Names generic, methods of which should return a character vector, naming the slots in the
GenomicRanges subclass that correspond to columns (i.e., they have one value per range).
It extracts the slot values and manipulates them as it would a metadata column – except
they are now formal slots, with formal types.

An example is the VRanges class in VariantAnnotation. It stores information on the variants
by adding these column slots:

> GenomicRanges:::extraColumnSlotNames(VariantAnnotation:::VRanges())

[1] "ref" "alt" "totalDepth"

[4] "refDepth" "altDepth" "sampleNames"

[7] "softFilterMatrix"

Mostly for historical reasons, VRanges extends GRanges. However, since the data storage
mechanism and the set of extra column slots are orthogonal, it is probably best practice to
take a composition approach by extending DelegatingGenomicRanges.

3

http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/MutableRanges
http://bioconductor.org/packages/VariantAnnotation

	1 Introduction
	2 The GenomicRanges abstraction
	3 Formalizing mcols: Extra column slots

