GIGSEA: Genotype Imputed Gene Set Enrichment Analysis

Shijia Zhu
Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology

August 28, 2017

Contents

Abstract . . . . . . e e
1. Import packages . . . . . . .
2. Quick start . . ... e
3. One example of MetaXcan output . . . . . . . . . .. .. L L
4. Load data of gene sets . . . . . . . . .. e
4.1 Discrete-valued gene sets: . . . . . . . .. Lo
4.2 Continuous-valued gene sets: . . . . . . . ... L L e
4.3 User self-defined gene set . . . . . . . . . L
5. Gene set enrichment analysis . . . . . . . .. ... Lo
5.1 Gene set enrichment analysis using weighted simple linear regression . . . . . . .. .. ..
5.2 Gene set enrichment analysis using weighted multiple regression model . . . . . . . . . ..
5.3 One-step weightedGSEA . . . . . . . . .. e

—
—_ O © O Ik k=N ==

[t

Abstract

We presented the Genotype Imputed Gene Set Enrichment Analysis (GIGSEA), a novel method that
uses GWAS-and-eQTL-imputed differential gene expression to interrogate gene set enrichment for the
trait-associated SNPs. By incorporating eQTL from large gene expression studies, e.g. GTEx, GIGSEA
appropriately addresses such challenges for SNP enrichment as gene size, gene boundary, andmultiple-marker
regulation. The weighted linear regression model, taking as weights both imputation accuracy and model
completeness, was used to test the enrichment, properly adjusting the bias due to redundancy in different
gene sets. The permutation test, furthermore, is used to evaluate the significance of enrichment, whose
efficiency can be largely elevated by expressing the computational intensive part in terms of large matrix
operation. We have shown the appropriate type I error rates for GIGSEA (<5%), and the preliminary results
also demonstrate its good performance to uncover the real biological signal.

1. Import packages

In GIGSEA, the gene sets are saved as matrices. Such matrices are largely sparse, so, in order to save space,
we used the functions provided by the R package “Matrix” to build the sparse matrices and pre-saved into
the GIGSEA package. In addition, GIGSEA uses the local fdr, implemented by the R package “locfdr”, to
adjust for multiple hypothesis testing.

library(GIGSEA)

## Loading required package: Matrix
## Loading required package: MASS
## Loading required package: locfdr



2. Quick start

GIGSEA first uses MetaXcan (also called “s-predixcan”) to impute trait-associated differential gene expression
from both GWAS summary and eQTL database with LD structure adjusted, and next, builds a weighted
regression model to perfrom gene set enrichment analysis. In user’s convenience, we combine these procedures
together into one function runGIGSEA (), which writes the enrichment test results at the local directory. Users
only need to provide their GWAS summary data, and specify the paths to the MetaXcan.py file, the eQTL
database (e.g. GTex and DGN) and the reference popultation (e.g. 1000 Genome).

# TunGIGSEA( MetaXcan="software/MetaXcan.py" ,

# model_db_path="eQTL/DGN-WB_0.5.db",

# covartance="reference/covariance.DGN-WB_0.5.tzt.gz",

# guwas_folder="data/GWAS_summary", qwas_file_pattern="heart.sumstats",
# output_dir="result/GIGSEA", permutation_num=1000)

Alternatively, users can also submit their GWAS summary data to the online version of MetaXcan (s-predixcan)
https://cloud.hakyimlab.org/s-predixcan to impute the trait-associated differential gene expression, and
next, run the following steps provided by GIGSEA to perform the gene set enrichment analysis for the
trait-associated SNPs.

***In case that users had neither installed MetaXcan nor run the online MetaXcan, an example of MetaXcan-
imputed differential gene expression is given as follows. Users can use it to test the codes of GIGSEA step by
step.

3. One example of MetaXcan output

MetaXcan integrates GWAS summary result with eQTL information to map trait-associated genes. See
https://github.com /hakyimlab/MetaXcan. It provides a novel way to aggregate the multiple markers within
each gene, address the long-range regulation, and adjust bias from gene boundaries and gene size. We use
MetaXcan to impute the complex-trait-associated differential gene expression from eQTL summary and
GWAS summary datasets. MetaXcan imputes ~10,000 genes with high quality prediction in most tissues.
The training dataset for the expression prediction or 1000 Genomes was used as reference population to
address the LD structure (covariance) of markers. Users can also specify their own genotype data to address
the LD structure. The eQTL summary data was pre-calculated from large gene expression studies, such as
the Genotype-Tissue Expression Project (GTEx; a comprehensive set of tissues from of ~20,000 samples)
(Lonsdale, et al., 2013) and Depression Genes and Networks (DGN; 922 whole-blood samples) (Battle, et al.,
2014). So, users only need to provide the GWAS summary data to estimate the genetically regulated gene
expression.

We take as an example the cardiovascular disease (CVD) GWAS, CARDIoGRAMplusC4D (60,801
cases, 123,504 controls and 9.4M SNPs) (Nikpay, et al., 2015). The summary data is downloaded from
<www.cardiogramplusc4d.org/data-downloads/>. We run the MetaXcan on it based on DGN eQTL database
and 1000 Genomes as covariance.

data(heart.metaXcan)
head (heart.metaXcan)

## gene gene_name zscore effect_size pvalue var_g
## 1 ENSGO0000134222 PSRC1 -8.857086 -0.13668948 8.213281e-19 0.1981241807
## 2 ENSGO0000107798 LIPA 6.946756 0.08913688 3.737808e-12 0.2702763074
## 3 ENSG0O0000135148 TRAFD1 6.104691 2.80669383 1.030000e-09 0.0002579440
## 4 ENSG0O0000111249 CUX2 -6.074906 -2.76985557 1.240602e-09 0.0002799391
## 5 ENSGO0000186063 AIDA 5.997636 0.37241430 2.002105e-09 0.0129998359
## 6 ENSG00000115486 GGCX 5.806570 0.06182678 6.376555e-09 0.4009731992
## pred_perf_r2 pred_perf_pval pred_perf_gval n_snps_used n_snps_in_cov

## 1 0.251784300 5.893333e-60 4.019735e-59 11 11

## 2 0.608481823 1.560951e-189 6.547543e-188 8 8


https://cloud.hakyimlab.org/s-predixcan
https://github.com/hakyimlab/MetaXcan

## 3 0.003758508 6.277686e-02 8.269168e-02 1 1
## 4 0.005794522 2.079893e-02 2.853868e-02 2

## 5 0.020511033 1.269367e-05 2.143166e-05 11 11
## 6 0.459503100 4.710932e-125 8.726820e-124 24 24
## n_snps_in_model

#it 1 11

## 2 9

## 3 1

## 4 2

## 5 11

#t 6 25

Each row is a gene’s association result:

o gemne: a gene’s id

e gene_name: a gene’s name

e zscore: MetaXcan’s association result for the gene

o effect_size: MetaXcan’s association effect size for the gene

e pvalue: P-value of the aforementioned statistic

e pred_perf_r2: R2 of transcriptome prediction model’s correlation to gene’s measured transcriptome
e pred_perf_pval: pval of transcriptome prediction model’s correlation to gene’s measured transcriptome
e pred_perf_qval: gval of transcriptome prediction model’s correlation to gene’s measured transcriptome
e n_snps_used: number of snps from GWAS that got used in MetaXcan analysis

e n_snps_in_cov: number of snps in the covariance matrix

e n_snps_in_model: number of snps in the prediction model

e var_g: variance of the gene expression

We use the linear regression model to build a threshold-free gene set enrichment test, checking whether
genes are significantly differentially expressed in a given gene set, as compared to the background. In the
regression model, we regress the imputed Z-score of differential gene expression on the gene sets. However,
the gene expression cannot be perfectly predicted using genotype, which is indicated by the prediction R"2,
and moreover, not all SNPs in the prediction model are in user’s dataset. In order to take into account such
two factors, we use as weights the multiplication of prediction R"2 and fraction of imputation-used SNPs,
building a weighted linear regression model.

gene = heart.metaXcan$gene_name

# extract the imputed Z-score of differential gene expression, which follows
# the normal distribution

fc <- heart.metaXcan$zscore

# use the prediction R72 and fraction of imputation-used SNPs as wetghts
usedFrac <- heart.metaXcan$n_snps_used / heart.metaXcan$n_snps_in_model

r2 <- heart.metaXcan$pred_perf_r2

weights <- usedFrac*r2

# build a new data frame for the following weighted linear regression-based
# enrichment analysts

data <- data.frame(gene,fc,weights)

head (data)

#i# gene fc weights
## 1 PSRC1 -8.857086 0.251784300
## 2 LIPA 6.946756 0.540872732
## 3 TRAFD1 6.104691 0.003758508
# 4 CUX2 -6.074906 0.005794522
## 5 AIDA 5.997636 0.020511033
## 6 GGCX 5.806570 0.441122976



4. Load data of gene sets

GIGSEA is built on the weighted linear regression model, so it permits both discrete-valued and continuous-
valued gene sets. We already incorporated several gene sets into the GIGSEA package, including:

)

discrete-valued gene sets:

MSigDB.KEGG.Pathway: Gene sets derived from the KEGG pathway database. It comprises 186
pathways (column) and 5267 genes (row). See ¢2.cp.kegg.v6.0.symbols.gmt.txt at http://software.broad
institute.org/gsea/msigdb/collections.jsp#C2

MSigDB.TF: Gene sets that share upstream cis-regulatory motifs which can function as potential
transcription factor binding sites. It comprises 615 TFs (column) and 12774 genes (row). See
¢3.tft.v6.0.symbols.gmt.txt at http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3
MSigDB.miRNA: Gene sets that contain genes sharing putative target sites (seed matches) of human
mature miRNA in their 3>-UTRs. It comprises 221 miRNAs (column) and 7444 genes (row). See
¢3.mir.v6.0.symbols.gmt.txt at http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3
GO: Gene sets that contain genes annotated by the same Gene Ontology (GO) term. For each GO term,
we not only incorporate its own gene sets, but also incorporate the gene sets belonging to its offsprings.
See the “database GO.db” in R.

continuous-valued gene sets:

Fantomb.TF: The human transcript promoter locations were obtained from Fantom5. Based on the
promoter locations, the tool MotEvo was used to predict the human transcriptional factor (TF) target
sites. The dataset contains 500 Positional Weight Matrices (PWM) and 21964 genes. For each PWM,
there is a list of associated human TFs, ordered by percent identity of TFs known to bind sites of
the PWM. The list of associations was checked manually. The entire set of PWMs and mapping to
associated TFs is available from the SwissRegulon website http://www.swissregulon.unibas.ch.
TargetScan.miRNA: Gene sets of predicted human miRNA target sites were downloaded from TargetScan.
TargetScan groups miRNAs that have identical subsequences at positions 2 through 8 of the miRNA,
i.e. the 2-7 seed region plus the 8th nucleotide, and provides predictions for each such seed motif.
TargetScan covers 87 human miRNA seed motifs in total. It provides a score for each seed motif and
each RefSeq transcript, called preferential conservation scoring (aggregate Pct), which shows consistently
high performance in various benchmark tests. To obtain a site count associated with each gene, we
average the TargetScan Pct scores of all RefSeq transcripts associated with each gene. It comprises 87
miRNA seed motifs and 9861 genes. See http://www.targetscan.org.

LINCS.CMap.drug: Large perturbational datasets of gene expression signature from small-molecule
compounds in multiple cell types from LINCS/CMap database. We downloaded the data of LINCS
phase 2 level 5 from GEO (GSE70138). The data is saved in the GCTx format (binary format based
on HDF5 that enables fast i/o than text), and we parsed it using the R package cmapR. The LINCS
level 5 data is a numeric matrix, comprising 118050 drugs/doses and 12328 genes. Each entry is a
replicate-collapsed z-score of differential gene expression due to a drug perturbation, which is calculated
by aggregating across individual replicates. See https://clue.io. In order to generate a single signature
for each drug perturbation, we further average the differential gene expression across different drug
doses, resulting in a condensed matrix of 1826 drugs (column) and 12328 genes (row).

4.1 Discrete-valued gene sets:

We first show an example of discrete-valued gene set: MSigDB.KEGG.Pathway, where the row represents the

gene,

and the column represents the pathway. Each entry takes discrete values of 0 or 1, where 1 represents

the gene (row) belongs to the pathway (column), and otherwise, not.

# load data

data(MSigDB.KEGG.Pathway)

# MSi1gDB.KEGG.Pathway is a list comprising two components: met and annot
class(MSigDB.KEGG.Pathway)

## [1] "list"


http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2
http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2
http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3
http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C3
http://www.swissregulon.unibas.ch
http://www.targetscan.org
https://clue.io

names (MSigDB.KEGG.Pathway)

## [1] "net" "annot"
dim(MSigDB.KEGG.Pathway$net)

## [1] 5267 186

# the column is the pathway and the Tow %s the gene
head (colnames (MSigDB.KEGG.Pathway$net))

## [1] "KEGG_GLYCOLYSIS_GLUCONEOGENESIS"

## [2] "KEGG_CITRATE_CYCLE_TCA_CYCLE"

## [3] "KEGG_PENTOSE_PHOSPHATE_PATHWAY"

## [4] "KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS"
## [5] "KEGG_FRUCTOSE_AND_ MANNOSE_METABOLISM"

## [6] "KEGG_GALACTOSE_METABOLISM"

head (rownames (MSigDB.KEGG.Pathway$net))

## [1] "A2M" "A4GALT" "AACS" "AADAT" "AANAT" "AARS"

# the annotation of the pathway
head (MSigDB.KEGG.Pathway$annot)

## term
## 1 KEGG_GLYCOLYSIS_GLUCONEOGENESIS
## 2 KEGG_CITRATE_CYCLE_TCA_CYCLE
## 3 KEGG_PENTOSE_PHOSPHATE_PATHWAY
## 4 KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
## 5 KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM
## 6 KEGG_GALACTOSE_METABOLISM

## link

## 1 http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_GLYCOLYSIS_GLUCONEOGENESIS
## 2 http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_CITRATE_CYCLE_TCA_CYCLE
## 3 http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_PENTOSE_PHOSPHATE_PATHWAY
## 4 http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
## 5 http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM
## 6 http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_GALACTOSE_METABOLISM
##  totalGenes
## 1 62
## 2 32
##t 3 27
## 4 28
## 5 34
## 6 26

# the net takes discrete wvalues of 0 or 1
head (MSigDB.KEGG.Pathway$net[,1:30])

## 6 x 30 sparse Matrix of class "dgCMatrix"
## [[ suppressing 30 column names 'KEGG_GLYCOLYSIS_GLUCONEOGENESIS', 'KEGG_CITRATE_CYCLE_TCA_CYCLE',

##

## A2M .

## A4GALT .

## AACS e e e e e e e e e e e
## AADAT . . . . . . . . . . . ... ... .001 00001



## AANAT . . . . . . . . . . o 0000001
## AARS

4.2 Continuous-valued gene sets:

Followed is an example of continuous-valued gene set: TargetScan.miRNA, where the row represents the gene,
and the column represents the miRNA. Each entry takes continuous values of pct, representing the binding
affinity of miRNA on the gene 3’ UTR.

# load data

data(TargetScan.miRNA)

# TargetScan.miBNA is a list comprising two components: met and annot
class(TargetScan.miRNA)

## [1] "list"

names (TargetScan.miRNA)

## [1] "net"  "annot"
dim(TargetScan.miRNA$net)

## [1] 9861 87

# the column is the miRNA and the row is the gene
head(colnames(TargetScan.miRNA$net))

## [1] "hsa-let-7a hsa-let-7b hsa-let-7c hsa-let-7d hsa-let-7e hsa-let-7f hsa-miR-98 hsa-let-7g hsa-let
## [2] "hsa-miR-1 hsa-miR-206 hsa-miR-613"

## [3] "hsa-miR-101"

## [4] "hsa-miR-103a hsa-miR-107"

## [5] "hsa-miR-10a hsa-miR-10b"

## [6] "hsa-miR-122"

head (rownames (TargetScan.miRNA$net))

## [1] "AICF" "A2LD1" "AAGAB" "AAK1" "AAMP" "AARS"

# the annotation of the miRNA
head(TargetScan.miRNA$annot)

##

## 49 hsa-let-7a hsa-let-7b hsa-let-7c hsa-let-7d hsa-let-7e hsa-let-7f hsa-miR-98 hsa-let-7g hsa-let-7
## 57 hsa-mil
## 14

## 53

## 18

## 59

## family totalGenes

## 49 GAGGUAG 1046

## 57 GGAAUGU 769

## 14 ACAGUAC 788

## 53 GCAGCAU 638

## 18 ACCCUGU 216

## 59 GGAGUGU 112

# the net takes continuous values
head(TargetScan.miRNA$net [,1:20])

## 6 x 20 sparse Matrix of class "dgCMatrix"



#i# [[ suppressing 20 column names 'hsa-let-7a hsa-let-7b hsa-let-7c hsa-let-7d hsa-let-7e hsa-let-7f

#

## AICF 0.000 . . . . .. .. . 0.331

## A2LD1 .

## AAGAB . e .o e . . e .
## AAK1 0.922 . . . 0.581 0 0.836 . . . . 0.951 0.879 . . . 0.376 .
## AAMP

## AARS

4.3 User self-defined gene set

In adition to the above predefined gene sets, users can also specify their own gene set. Here, we take
as an example the CREEDS <amp.pharm.mssm.edu/CREEDS/>. It is a manually curated database of
gene signatures of single drug perturbations. For each drug perturbation, it lists both up-regulated and
down-regulated gene sets. In the following example, we transform the gmt format file into a sparse matrix,
where for each drug perturbation, the up-regulated genes take the value of 1, the down-regulated genes take
the value of -1, and the others take the value of 0.

# downlaod the gmt file

gmt <- readLines( pasteO('http://amp.pharm.mssm.edu/CREEDS/download/",
'single_drug_perturbations-v1.0.gmt') )

# obtain the index of up-regulated and down-regulated gene sets

index_up <- grep('-up',gmt)

index_down <- grep('-dn',gmt)

# transform the gmt file into gene sets. The gene set ©s a data frame,

# comprising three vectors: term (here is drug), geneset (a gene symbol list

# separated by comma), and value (1 and -1 separated by comma)

gff_up <- gmt2geneSet( gmt[index_up] , termCol=c(1,2) , singleValue = 1 )

gff_down <- gmt2geneSet( gmt[index_down] , termCol=c(1,2) , singleValue = -1 )

# as following, combine the up and down-regulated gene sets together,
# and use wvalue of 1 and -1 to indicate their direction:

# extract the drug names

term_up <- sapply( gff_up$term , function(x) gsub('-up','',x) )
term_down <- sapply( gff_down$term , function(x) gsub('-dn','',x) )
all(term_up==term_down)

## [1] TRUE

# combine up and down-regulated gene names for each drug perturbation
geneset <- sapply( 1l:nrow(gff_up) , function(i)

paste(gff_up$geneset[i] ,gff_down$geneset[i],sep=',"') )
# use 1 and -1 to indicate direction of up-regulated and down-regulated genes
value <- sapply( 1:nrow(gff_up) , function(i)

paste(gff_up$valuel[i] ,gff_down$value[i],sep=',"') )
# transform the gene set into matriz, where the row represents the gene,
# the column represents the drug perturbation, and each entry takes wvalues of
# 1 and -1
netl <- geneSet2Net( term=term_up , geneset=geneset , value=value )
# transform the gene set into sparse matriz, where the row represents the gene,
# the column represents the drug perturbation, and each entry takes values of
# 1 and -1
net2 <- geneSet2sparseMatrix( term=term_up , geneset=geneset , value=value )
tail(net1[,1:30])



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
7773

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
7773

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
2773

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
7773

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
7773

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
2773

ZYG11B
Zyx
ZYX
ZZEF1
Zzz3
7773

ZYG11B
Zyx
ZYX
ZZEF1

Fluorouracil,drug:3639 Resveratrol,drug:3499 Citalopram,drug:3292

0

O O O O o

0

O O O O

0

Fluorouracil,drug:3638 Ethanol,drug:3475 Resveratrol,drug:3498

O O O O O O

Fluorouracil,drug:3637

O O O O O

0

0

O O O O o

O O O O O

0

O O O O O O

Resveratrol,drug:3497 Sodium arsenite,drug:3357

0

O O O O

0

O O O O O

0

Vitamin c,drug:3510 Vitamin c,drug:3511 Perfluorooctanoic acid,drug:3516

0
-1
0
0
0
0

0

O O O O

0

Perfluorooctanoic acid,drug:3517 Formaldehyde,drug:3550

0

O O O O

0

O O O O O O

Tretinoin,drug:3634 Vitamin e,drug:3515 Gefitinib,drug:3474

0

O O O O

0

0

O O O O

0

Methylprednisolone,drug:3668 Methylprednisolone,drug:3669

0

O O O O

0

O O O O O

0

O O O O O O

Levetiracetam,drug:2671 Rosiglitazone,drug:2672 Alitretinoin,drug:2673

0

0
0
0

O O O O O o



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

2223 0 0 0
72773 0 0 0
Tretinoin,drug:3233 Tretinoin,drug:3232 Tretinoin,drug:3231
ZYG11B 0 0
Zyx
ZYX
ZZEF1
Zzz3
72773

O O O O O
O O O O O
O O O O O

0
Pristane,drug:3230 Tretinoin,drug:3237 Hypochlorous acid,drug:3198
ZYG11B 0 0
Zyx
ZYX
ZZEF1
2zz3
2773

O O O O O
O O O O
O O O O O O

0
Methoxychlor,drug:3235 4-vinylcyclohexene diepoxide,drug:3234
ZYG11B 0
Zyx
ZYX
ZZEF1
2zz3
27273

O O O O O
O O O O O O

tail(net2[,1:30])

##
#i#

##
##
##
##
##
##
##

6 x 30 sparse Matrix of class "dgCMatrix"

[[ suppressing 30 column names 'Fluorouracil,drug:3639', 'Resveratrol,drug:3499',

ZYG11B . e e e
Zyx e e e e e o1
ZYX

ZZEF1

Zzz3

2773

# the size of sparse matriz ts much smaller than the matriz
format( object.size(netl), units = "auto")

##

[1] "197.6 Mb"

format( object.size(net2), units = "auto")

##

5.

(1] "7.9 Mb"

Gene set enrichment analysis

5.1 Gene set enrichment analysis using weighted simple linear regression

'Citalopram,drug

After obtaining the imputed differential gene expression and the weights, we build the weighted linear
regression model to investigate the gene set enrichment. Permutation test was used to adjust the p values
of the regression coefficients. We repeatedly shuffle the differential gene expression to obtain a global null
distribution of no associated gene sets and calculate the empirical p value for each gene set. For the Single
Gene Set Erichment Analysis (SGSEA), especially with many gene sets tested, a large number of weighted
simple linear regression model would be interrogated. To improve the efficiency, we use weighted Pearson
correlation to rank the significance, which uses the same hypothesis statistic with the weighted linear regression



model. Furthermore, we expressed it in terms of large matrix inner product, substantially improving the time
efficiency.

# take MSigDB.KEGG.Pathway as an example

net <- MSigDB.KEGG.Pathway$net

# intersect the permuted genes with the gene sets of interest

data2 <- orderedIntersect( x = data , by.x = data$gene , by.y = rownames(net) )
net2 <- orderedIntersect( x = net , by.x = rownames(net) , by.y = data$gene )
all( rownames(net2) == as.character(data2$gene) )

## [1] TRUE

# the SGSEA.resl uses the weighted simple linear regression model, while

# SGSEA.res2 used the weighted Pearson correlation. The latter one takes

# substantially less time.

system.time( SGSEA.resl <- permutationSimpleLm( fc=data2$fc , net=net2 ,
weights=data2$weights , num=100 ) )

## 0%..... 10%..... 20%. .. .. 30%..... 40%. . ... 50%..... 60%..... T0%. ... 80%..... 90%. .... 100%.

## user system elapsed
## 50.232 0.948 51.180

system.time( SGSEA.res2 <- permutationSimpleLmMatrix( fc=data2$fc ,
net=net2 , weights=data2$weights , num=100 ) )

## 0%..... 10%..... 20%. .. .. 30%..... 40%. . ... 50%..... 60%..... T0%. ... 80%..... 90%. .... 100%.

## user system elapsed
## 0.172 0.008 0.181

head (SGSEA.res2)

## term usedGenes observedCorr
## 9 KEGG_STEROID_BIOSYNTHESIS 13 0.10579471
## 117 KEGG_TIGHT_JUNCTION 81 0.09104426
## 105 KEGG_VASCULAR_SMOQOTH_MUSCLE_CONTRACTION 70 0.08248315
## 67 KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 27 -0.07912328
## 29 KEGG_GLUTATHIONE_METABOLISM 36 -0.06984190
## 68 KEGG_DRUG_METABOLISM_CYTOCHROME_P450 23 -0.06442495
## empiricalPval BayesFactor

## 9 0.000811828 601.603426

## 117 .002155914 234.117348

0
## 105 0.003661290 121.318361
## 67 0.004575269  88.465756
## 29 0.008983871  23.874605
## 68 0.013983871 2.135257

5.2 Gene set enrichment analysis using weighted multiple regression model

A gene may function in multiple ways and thus appear multiple times in functional gene sets. In spite
of reflecting the crosstalk between gene sets, such overlap may make the results of gene set analysis more
difficult to interpret. To address the redundancy existing among gene sets, we build a weighted multiple
linear regression model, taking into account all gene sets in one model. The redundancy of one gene set can
be adjusted by considering all other gene sets as covariates. To improve the time efficiency, we also use matrix
operation to solve the weighted multiple regression model.

# MGSEA.resl uses the weighted multiple linear regression model
system.time( MGSEA.resl <- permutationMultipleLm( fc=data2$fc , net=net2 ,

10



weights=data2$weights , num=1000 ) )

# 0h..... 10%..... 20%. .. .. 30%..... 40%. .. .. 50%..... 60%..... T0%. ... 80%. .. .. 90%. .... 100%.

## user system elapsed
## 158.199 1.748 159.950

# MGSEA.res2 used the matrizr solution
system.time( MGSEA.res2 <- permutationMultipleLmMatrix( fc=data2$fc ,
net=net2 , weights=data2$weights , num=1000 ) )

## 0h..... 10%..... 20%. .. .. 30%..... 40%. . ... 50%..... 60%..... T0%. ... 80%..... 90%..... 100%.

## user system elapsed
## 3.646 0.100 3.746

head (MGSEA.res2)

## term usedGenes observedTstats
## 9 KEGG_STEROID_BIOSYNTHESIS 13 6.478134
## 105 KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 70 5.198424
## 8 KEGG_FATTY_ACID_METABOLISM 28 3.778185
## 60 KEGG_RETINOL_METABOLISM 19 -3.554576
## 117 KEGG_TIGHT_JUNCTION 81 3.405676
## 72 KEGG_RIBOSOME 63 3.252726
## empiricalPval BayesFactor
## 9 0.000194086 874.20581
## 105 0.001462903 53.92111
## 8 0.011694086 0.00000
## 60 0.016511290 0.00000
## 117 0.019194086 0.00000
## 72 0.023425269 0.00000

5.3 One-step weighted GSEA

In user’s convenience, we combine the above procedures together into one function weightedGSEA(). Based on
the imputed differential gene expression, weightedGSEA() checks multiple classes of gene sets simultaneously
and writes out the enrichment analysis results. Users need to provide the same data with above, and specify
the columns of gene names (geneCol), imputed differential gene expression (fcCol), and weights (weightCol).
Additionally, users specify the gene sets of interest (geneSet), the times of permutation (permutationNum)
and the directory for saving the results (outputDir). By default, we only do SGSEA. Users can specify
MGSEAthres to perform MGMEA for those with less than MGSEAthres gene sets.

# amport packages and prepare data as above
library (GIGSEA)

# prepare the dataset

data(heart.metaXcan)

gene = heart.metaXcan$gene_name

fc <- heart.metaXcan$zscore

usedFrac <- heart.metaXcan$n_snps_used / heart.metaXcan$n_snps_in_cov
r2 <- heart.metaXcan$pred_perf_r2

weights <- usedFrac*r2

data <- data.frame(gene,fc,weights)

# run one-step GIGSEA
#weightedGSEA (data, geneCol='gene', fcCol='fc', weightCol= 'weights',

11



#geneSet=c ("MSigDB.KEGG.Pathway", "Fantomb. TF", "TargetScan.miRNA", "GO")
#permutationNum=10000, outputDir="./GIGSEA" )

#dir("./GIGSEA")

12



	Abstract
	1. Import packages
	2. Quick start
	3. One example of MetaXcan output
	4. Load data of gene sets
	4.1 Discrete-valued gene sets:
	4.2 Continuous-valued gene sets:
	4.3 User self-defined gene set

	5. Gene set enrichment analysis
	5.1 Gene set enrichment analysis using weighted simple linear regression
	5.2 Gene set enrichment analysis using weighted multiple regression model
	5.3 One-step weightedGSEA


