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1 Abstract

Pathway enrichment techniques are useful for giving context to experimental
metabolomics data. The primary analysis of the raw metabolomics data leads to
annotated metabolites with abundance measures. These metabolites are com-
pared between experimental conditions, in order to find discriminative molec-
ular signatures. The secondary analysis of the dataset aims at giving context
to the affected metabolites in terms of the prior biological knowledge gathered
in metabolic pathways. Several statistical approaches are available to derive a
list of prioritised metabolic pathways that relate to the underlying changes in
metabolite abundances. However, the interpretation of a prioritised pathway list
remains challenging, as pathways are not disjoint and show overlap and cross
talk effects. Furthermore, it is not straightforward to automatically propose
novel enzymatic targets given a pathway enrichment.
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The FELLA R package

We introduce FELLA, an R package to perform a network-based enrichment of a
list of affected metabolites. FELLA builds a hierarchical network representation
of the organism of choice using the Kyoto Encyclopedia of Genes and Genomes,
which contains pathways, modules, enzymes, reactions and metabolites. The
enrichment is accomplished by applying diffusion algorithms in the knowledge
network. Flow is introduced in the metabolites from the input list and propa-
gates to the rest of nodes, resulting in diffusion scores for all the nodes in the
network. The top scoring nodes contain not only relevant pathways, but also
the intermediate entities that build a plausible explanation on how the input
metabolites translate into reported pathways. The highlighted sub-network can
shed light on pathway cross talk under the experimental condition and potential
enzymatic targets for further study.

The implementation and the programmatic use of FELLA is hereby described,
along with a graphical user interface that wraps the package functionality. The
algorithmic part in FELLA was previously validated on the study of an unchar-
acterised mitochondrial protein. The functionality of FELLA has been demon-
strated on three public human metabolomics studies, respectively on (a) ovarian
cancer cells, (b) dry eye and (c) malaria and other febrile illnesses. FELLA has
been able to reproduce findings from the original publications and to report
sub-network representations that can be manually handled.

2 Introduction

Metabolomics is the science that studies the chemical reactions in living or-
ganisms by quantifying their lightweight molecules, called metabolites. The
utilities of metabolomics range from disease diagnosis through biomarkers and
personalised medicine to the generation of biological knowledge [1].

Metabolomics data is mainly acquired through technologies such as, but not
limited to, Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS).
MS is usually preceded by Liquid Chromatography (LC) or Gas Chromatography
(GC) [2]. The primary analysis of the raw metabolomics data can be achieved
through publicly available tools: the R packages xmcs [3] for peak identification
and CAMERA [4] for peak annotation. There are pipelines that cover the whole
process, for example the online tool MeltDB [5] or the R package MAIT [6].
Metabolites found in samples are mapped to specral databases such as the
Human Metabolome Database [7].

The secondary analysis, or data interpretation, starts when the metabolites are
mapped to a database and their abundances are available [8]. The existence
of experimental conditions enables a statistical differential analysis that yields
a set of metabolites that exhibit changes in the intervention. It is, however,
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increasingly important to understand the underlying biological perturbation by
giving context to the affected metabolites rather than focusing on the abil-
ity to classify samples through them [1]. Pathway analysis is a fundamental
methodology for data interpretation [9] that enriches the affected metabolites
with current knowledge on biology, available in pathway databases including
the Kyoto Encyclopedia of Genes and Genomes or KEGG [10], Reactome [11]
and WikiPathways [12]. Enrichment techniques will be discussed in three cat-
egories or generations, according to the classification proposed in the review
[9]. Commercial pathway analysis products such as IPA (QIAGEN Inc., https:
//www.giagenbioinformatics.com /products/ingenuitypathway-analysis) are out
of the scope of this work.

The first generation of methods, named over representation analysis (ORA),
are based on testing if the proportion of affected metabolites within a path-
way is statistically meaningful. ORA is based in statistical tests on probability
distribution like the hypergeometric, binomial or chi-squared [9]. ORA is avail-
able in tools like the web servers MetaboAnalyst [13] and IMPaLA [14] and the
R package clusterProfiler [15]. The online resource SubPathwayMiner identi-
fies sub-pathways from KEGG pathways by mining k-cliques in each metabolic
pathway prior to ORA. With this strategy, significant sub-regions can be spotted
even if the whole pathway is not significant [16].

The second generation of methods, functional class scoring (FCS), uses quanti-
tative data instead and seeks subtle but coordinated changes in the metabolites
belonging to a pathway. MSEA [17] in MetaboAnalyst [13] and IMPalA [14]
contain implementations of FCS for metabolomics. The R package PAPI calcu-
lates pathways activity scores per sample, based on the number of metabolites
identified from each pathway and their relative abundances. Significantly af-
fected pathways are found by applying an ANOVA or a t-test on those scores
[18]. On the other hand, there is an ensemble approach relying on several
pathway-based statistical tests [19] and is available in the R pacakge EGSEA.

The third generation, known as pathway topology-based (PT) methods, further
includes topological measures of the metabolites in the statistic, accounting for
their inequivalence in the metabolic network. PT analyses can be performed
using MetaboAnalyst [13], where metabolites are weighted by their centrality
within the pathway. The R package MPINet builds a pathway-level statistic
that accounts for metabolite inequivalence in the global metabolic network and
for bias in technical equipment [20].

Another perspective for understanding metabolomics data is through the con-
struction and inquiry of metabolic networks. The MetScape plugin [21] within
the Cytoscape environment [22] is useful for representing metabolite-reaction-
enzyme-gene networks. KEGGGraph is an R package for constructing metabolic
networks from the KEGG pathways [23]. MetaboSignal is an R package for
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building and examining the topology of gene-metabolite networks [24]. The R
package MetaMapR helps reduce sparsity in metabolic networks by integrating
biochemical transformations, structural similarity, mass spectral similarity and
empirical correlation information [25].

Here, we introduce the R package FELLA for metabolomics data interpreta-
tion that combines concepts from pathway enrichment and network analysis.
The main objective of FELLA is providing the user with a biological explana-
tion involving biological pathways. FELLA starts from a single, comprehensive
network consisting of metabolites, reactions, enzymes, modules and pathways
as nodes. The list of affected metabolites and the pathways highlighted by
FELLA are connected through intermediate entities -reactions, enzymes and
KEGG modules- and returned as a sub-network. The intermediate entities sug-
gest how the perturbation spreads from metabolites to pathways and how path-
ways cross talk. The provided enzymes are candidates for further examination,
whereas new metabolites might be reported as well. FELLA is publicly available
in https://github.com /b2slab/FELLA under the GPL-3 license.

Methodology

3.2

Implementation details

FELLA is written entirely in R [26] and relies on the KEGGREST R package
[27] for retreiving KEGG, the igraph R package [28] for network analysis and
the shiny R package [29] for providing a graphical user interface.

FELLA defines two S4 classes for handling its main purposes: a FELLA.DATA
object that encompasses the knowledge model from KEGG and a FELLA.USER
object that contains the current analysis by the user. Table 1 contains further
details about the slots and sub-slots in each one of these classes, whereas figure
1 depicts the package workflow and main functions.

FELLA contains two vignettes that illustrate its capabilities: (1) a quick-start
example with the main functions applied to a toy dataset, and (2) this docu-
ment, an in-depth demonstration on three real studies. This vignette requires
an internet connection and can take up some time and memory to build, as it
builds the internal KEGG representation for Homo sapiens on the fly.

Database and knowledge model

A distinctive feature of FELLA is its unique knowledge model. Instead of using
individual pathway representations, either as a list of metabolites (ORA) or as
a metabolic network (TP), FELLA builds a unique network that encompasses
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Custom class  Slot Sub-slot Class Description
@graph igraph Knowledge graph object
@id2name list Dictionary from KEGG ID to common name
@keggdata  @pvalues.size matrix Matrix with largest CC size probabilities
@id list Correspondence between IDs and category
@status character  Status indicator of the object
@hypergeom @matrix Matrix Metabolite-pathway binary relationship
FELLA.DATA n - - B 0 -
@matrix matrix Matrix to compute diffusion as a matrix-vector product
@diffusion @rowSums vector Internal data to compute the z-scores
@squaredRowSums vector Internal data to compute the z-scores
@matrix matrix Matrix to compute PageRank as a matrix-vector product
@pagerank  @rowSums vector Internal data to compute the z-scores
@squaredRowSums vector Internal data to compute the z-scores
@metabolites vector KEGG IDs that map to the knowledge graph
@userinput @metabolitesbackground vector Background KEGG IDs
@excluded vector Input IDs not mapping to the knowledge graph
@valid logical Indicator of analysis validity
@pvalues vector Pathway p-values
@pathhits vector Number of hits in each pathway
@hypergeom . .
@pathbackground vector Number of metabolites in each pathway
@nbackground numeric  Number of compounds in the background
FELLA.USER @ninput numeric  Number of compounds in the input
@valid logical Indicator of analysis validity
. . @pscores vector P-scores for each node in the network
@diffusion . .
@approx character Chosen approximation
@niter numeric ~ Chosen iterations
@valid logical Indicator of analysis validity
@pscores vector P-scores for each node in the network
@parerank . .
@approx character Chosen approximation
@niter numeric  Chosen iterations

Table 1: Summary of the S4 classes defined in FELLA.

all the pathways at once: the KEGG graph. Figure 2 shows the hierarchical
representation of the KEGG database, ranging from the small, specific molecu-
lar level (metabolite) to the large, complex unit (pathway). Intermediate levels
contain, from bottom to top: reactions relating the metabolites, enzymes catal-
ising the reactions and KEGG modules containing the enzymes. More details on
the construction and curation of this structure, resemblant to the one used by
MetScape [21], can be found in [30]. The enrichment is therefore achieved by
finding a sub-network from the whole KEGG graph that is statistically relevant
for a list of input metabolites.

As shown in the block (1) of figure 1, the first step is to build a KEGG graph
from an organism in KEGG -Homo sapiens by default- using the buildGraph
FromKEGGREST command. Afterwards, a local database can be built from the
KEGG graph through the buildbataFromGraph command. The main purposes
of buildDataFromGraph are to save (1) the matrices that allow computing
diffusion and PageRank as a matrix-vector product, and (2) the null distribution
of the largest connected component of a k-th order subgraph, with uniformly
chosen nodes. Point (1) is required to compute the diffusion scores, whereas
(2) is useful for filtering small connected components in the reported subgraphs.

The user should be aware that KEGG is frequently updated and therefore the
derived KEGG graph can change between KEGG releases. The metadata from
the KEGG version used to build a FELLA.DATA object can be retrieved through

getInfo.
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Organism Input compounds
e.g. Homo sapiens e.g. C1, C3, (8, (9, (24
| |
buildGraphFromKEGGREST () defineCompounds ()

«ﬁ;«

buildDataFromGraph()

runHypergeom()
runDiffusion()
runPagerank()

A '

e

E addGOtoGraph ()
H plotGraph()

....................................................................................

Figure 1: Design of the R package FELLA. Block | covers the creation of a graph object from an
organism code and its database, which can be loaded into a FELLA.DATA object. This object is
needed in all the following blocks. Block Il requires block | and shows how to map the KEGG identi-
fiers to the database in a FELLA.USER object and run the propagation algorithms (diffusion, PageR-

ank) to score all the entities in the graph. Block Il requires blocks | and Il and exports the results
as a sub-network or as a table.

Enrichment analysis

Once the database is ready as a FELLA.DATA object and the input is formatted
as a list of KEGG compounds, the enrichment can be performed. The results

of the enrichment are stored in a FELLA.USER object, possibly using three
methodologies described below.
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Compounds

Figure 2: Internal knowledge representation from KEGG. The scheme outlines the KEGG graph,

a heterogeneous network whose nodes belong to a category in KEGG: compound, reaction, en-
zyme, module or pathway. Lower levels are expected to be more specific entities, while top levels are
broader concepts. The enrichment procedure starts from input metabolites and extracts a relevant
sub-network from the KEGG graph. Figure extractred from [30]

3.3.1 Hypergeometric test

For completeness purposes, the hypergeometric test is included in FELLA in the
function runHypergeom. As in several ORA implementations, the hypergeomet-
ric distribution is used to assess whether a biological pathway contains more
hits within the input list than expected from chance given its size. Pathways
are ranked according to their p-value after multiple testing correction.

Note that the results from this test will differ from a hypergeometric test us-
ing the original KEGG pathways, because metabolite-pathway connections are
inferred from the KEGG graph. A metabolite is included in a pathway if the
pathway can be reached from the metabolite in the upwards-directed KEGG
graph, depicted in figure 4. In consequence, metabolites related to the enzymes
within a pathway will belong to the pathway, even if they were not in the original
definition of the KEGG pathway.

3.3.2 Diffusion

Diffusion algorithms have been extensively used in computational biology. For
instance, HotNet is an algorithm for finding sub-networks with a large amount
of mutated genes [31], whereas TieDIE attemps to link a source set and a
target set of molecular entities through two diffusion processes [32]. Other
applications include the prioritisation of disease genes [33] and the prediction
of gene function [34].
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Compounds

Figure 3: Network setup for the diffusion process. nput metabolites (in black rings) introduce a
unitary flow in the network and only the pathway nodes (blue rings) can leak the flow. The final
score of the nodes reflects the “temperature” of a stationary state. Figure extractred from [30].

In FELLA, diffusion is a natural way to score all the nodes in the KEGG graph
given an input list of metabolites, available using method = "diffusion" in
the function runDiffusion. The input metabolites introduce unitary flow in
the network. Flow can only leave the network through pathway nodes, forcing
it to propagate through the intermediate entities as well (reactions, enzymes
and modules), see figure 3. Further details can found in [30].

However, the diffusion scores are biased due to the network topology [30] and
therefore a normalisation step is required. FELLA offers a normalisation through
a z-score (approx = "normality") or through an empirical p-value (approx =
"simulation"), both assessing whether the diffusion score of a node is likely to
be reached in a permutation analysis, i.e. if the input is random.

The normalisation through the z-scores leads to p-scores, defined as:

psi=1—®(z)

Where ps; is the p-score of node i, z; is its z-score [30] and & is the cumulative
distribution function of the standard gaussian distribution. Under this definition,
nodes are ranked using increasing p-scores.

For completeness, two alternative parametric scores have been added. The
heavier-tailed t-distribution can be used instead of the gaussian by choosing
approx = "t" and supplying the desired degrees of freedom v.

Similarly, the gamma distribution can be used through approx = "gamma".
The p-score is obtained with

ps;i =1— Fz(Tz)
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Figure 4: Network setup for PageRank. Input metabolites (in black rings) are the source of random
walks that must climb through the graph levels, up to the pathway nodes. Figure extractred from
[30].

Being T, the raw temperature of node ¢ and F; the cumulative distribution

function of a gamma distribution, adjusted by its shape (Z—z) and scale (Z—f)

parameters. The quantities ; and o? are the mean and variance of the null

temperatures and are analytically known from the null model formulation [30].

3.3.3 PageRank

PageRank [35] offers a scoring method for the nodes in the KEGG graph, based
on a random walks approach. The random walks start at the input metabolites
and are forced to explore their reachable nodes, see figure 4. As random walks
take into account the direction of the edges, PageRank is applied to the upwards-
directed KEGG graph (figure 2) in order to force the walks to reach pathway
nodes. Nodes that are frequently visited by the random walks earn a higher
PageRank, analogously to the diffusion scores. More details about this particular
formulation, implemented in runPagerank, can be found in [30].

The PageRank scores are statistically normalised, providing the same options
as in the diffusion scores in section 3.3.2. Therefore, the argument approx can
be set to "simulation" for the permutation analysis, or to "normality", "t"
or "gamma" for the parametric alternatives.

3.4 Enrichment wrapper

FELLA contains the wrapper enrich that maps the KEGG ids and runs the
desired enrichment procedure with a single call. This can be convenient for
producing compact scripts and running quick analyses.
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3.5

Limitations

FELLA currently starts the statistical analysis from a list of affected metabolites.
Therefore, it inherits a limitation from ORA methods: the need of choosing a
cutoff to derive the list of affected metabolites, assuming that the metabolites
stem from a differential abundance analysis.

Another limitation, shared among network-based models, is the incomplete bi-
ological knowledge from which the network is built. The knowledge model in
FELLA might also constraint the complexity of the mechanisms that can be
found through it. Processes such as genetic and epigenetic events, or the type
and directionality of regulatory events, are not considered at the moment.

The user should be aware that FELLA neither builds a dynamic model of the
biochemical reactions in the metabolism, nor relies on flux balance analysis.
Conversely, FELLA is built on a knowledge representation from the biology in
KEGG that focuses on offering interpretability to the final user.

Case studies

4.1

The functionalities of FELLA are demonstrated by (1) building a Homo sapi-
ens database and (2) enriching summary metabolomics data from three public
datasets.

Building the database

FELLA requires a database built from KEGG to perform any data enrichment.
FELLA contains a small example database as a FELLA.DATA object, acces-
sible via data("FELLA.sample"), but this is a toy example for demonstration
purposes, not suited for regular analyses.

Therefore, the database for the corresponding organism has to be built before
any analysis is run. The first step is to build the KEGG graph from the current
KEGG release with the function buildGraphFromKEGGREST. Note that the user
can force specific KEGG pathways to be excluded from the graph - the following
code removes “overview" metabolic pathways based on KEGG brite.

library(FELLA)
set.seed(1)
# Filter overview pathways
graph <- buildGraphFromKEGGREST (
organism = "hsa",
filter.path = c("01100", "01200", "01210", "01212", "01230"))

+ + VvV VvV VvV V

10
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Once the KEGG graph is ready, the database will be saved locally using

. The user can choose which matrices shall be stored using the
matrices argument - saving both "diffusion" and "pagerank" might take up
to 1GB of disk space.

If the user plans on using the z-score approximation, it is advisable to set
the normality argument to c("diffusion", "pagerank") in order to speed up
future computations. Using the z-scores with a custom metabolite background
will require the matrices to be saved as well.

Finally, the argument niter controls how many random trials are performed in
the estimation of the null distribution of the largest connected component of
a k-th order random subgraph. As this is a property of the KEGG graph, it is
performed once and reused in each analysis. This finds application when filtering
small connected components from the reported sub-network, see section 4.2.3.

tmpdir <- pasteO(tempdir(), "/my_database")

# Otherwise the vignette will rise an error
# because FELLA will not overwrite an existing database
unlink(tmpdir, recursive = TRUE)
buildDataFromGraph(
keggdata.graph = graph,
databaseDir = tmpdir,
internalDir = FALSE,
matrices = "diffusion",
normality = "diffusion",
niter = 50)

+ + + + + + V V V V V V

When the database is available in local, it can be loaded in an R session and
assigned to a FELLA.DATA object using the function . This
should be the only procedure for creating any FELLA.DATA object. The user is
given the choice of loading the diffusion and pagerank matrices to ease memory
saving.

> fella.data <- loadKEGGdata(

+ databaseDir = tmpdir,

+ internalDir = FALSE,

+ loadMatrix = "diffusion"
+ )

The contents of the FELLA.DATA object can be summarised as well:

# Mke sure the database does not exist from a former vignette build

11
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> fella.data

General data:

- KEGG graph:

Nodes: 11926

Edges: 37880

Density: 0.0002663525
Categories:

+ pathway [347]

*

*
*
*

+ + +

+

module [195]
enzyme [1201]
reaction [5879]
compound [4304]

* Size: 5.9 Mb
- KEGG names are ready.

Hypergeometric test:
- Matrix not loaded.

Heat diffusion:

- Matrix is ready
* Dim: 11926 x 4304
* Size: 392.6 Mb

- RowSums are ready.

PageRank:
- Matrix not loaded.
- RowSums not loaded.

The function provides the KEGG release and organism that generated
a FELLA.DATA object:

> cat(getInfo(fella.data))

TO1001 Homo sapiens (human) KEGG Genes Database
hsa Release 110.0+/05-01, May 24

Kanehisa Laboratories

24,689 entries
linked db pathway

brite

module

ko

12
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4.2.1

genome
enzyme

network
disease

drug
nchi-geneid
nchi-proteinid
uniprot

Please note that the database built for this vignette is stored in a temporary
folder and will not be persistent. The user should build his or her own database
and save it in a persistent location, either in the package installation directory
(internalDir = TRUE) or in a custom folder (internalDir = FALSE). Internal
databases can be listed using ListInternalDatabases

A cautionary note if the user is relying on the internal directory: reinstalling
FELLA will wipe existent databases because its internal directory is overwrit-
ten. Also, if the database name already exists when saving a new database,
the existing database will be renamed by appending _old in order to avoid
overwriting.

Epithelial cells dataset

This example data is extracted from the epithelial cancer cells dataset [36],
an in vitro model of dry eye in which the human epithelial cells IOBA-NHC
are put under hyperosmotic stress. The original study files are deposited in the
Metabolights repository [37] under the identifier MTBLS214: https://www.ebi.
ac.uk/metabolights/MTBLS214. The list of metabolites hereby used reflects
metabolic changes in “Treatment 1" (24 hours in serum-free media at 380
mOsm) against control (24 hours at 280 mOsm). The metabolites have been
extracted from “Table 1" in the original manuscript and mapped to KEGG ids.

Mapping the input metabolites

The input metabolites should be provided as KEGG compound identifiers. If
the user starts from another source (common names, HMDB identifiers), tools
like the “compound ID conversor” from MetaboAnalyst can be useful for the
ID conversion.

> compounds.epithelial <- c(
+ "C02862", "COO487", "C00025", "COOO64",
+ "CO0670", "COOO73", "COO588", "COPOE82", "COOO43")

13
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The first step is to map the input metabolites to the KEGG graph with

. This step requires the FELLA.DATA object, loaded in section
4.1. The user can impose a custom metabolite background with the com-
poundsBackground argument. By default, all the KEGG compounds in the
graph are used.

> analysis.epithelial <- defineCompounds(
+ compounds = compounds.epithelial,
+ data = fella.data)

Notice that throws a warning if any of the input metabolites
does not map to the graph. The user can retrieve the mapped and unmapped
identifiers through and , respectively.

> getInput(analysis.epithelial)

[1] "CO0O25" "COOO43" "COOG64" "COOO73" "COOOB82" "COO487" "COO588" "COO670"
> getExcluded(analysis.epithelial)

[1] "C02862"

The status of a FELLA.USER object can be checked by printing the object.
> analysis.epithelial

Compounds in the input: 8
[1] "COOO25" "COOO43" "COOO64" "COOO73" "COMO82" "COO487" "COO588" "C0OO670"
Background compounds: all available compounds (default)

PageRank: not performed

Enriching using diffusion

Having mapped the compounds, the enrichment can be performed. In this
vignette, only the diffusion method in will be applied, although
PageRank has an almost identical usage in

If the user prefers an explicit permutation analysis, the option approx = "sim
ulation" performs the amount of iterations specified in the niter argument.

14
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Conversely, if the desired approximation is the z-score (approx = "normality"),
the process does not require permutations. The z-scores are converted to
p.scores using the pnorm routine. Likewise, approx = "t" and approx =

"gamma" respectively rely on pt and pgamma. Section 3.3.2 contains further
details on the scores.

This example applies approx = "normality", a fast option. For a comparison
between prioritisations using Monte Carlo trials or the parametric z-score, the
user can is referred to [30].

> analysis.epithelial <- runDiffusion(

+ object = analysis.epithelial,
+ data = fella.data,
+ approx = "normality")

The FELLA.USER object has been updated with the p.scores from the diffu-
sion results:

> analysis.epithelial

Compounds in the input: 8
[1] "COOO25" "COOO43" "COOO64" "COOO73" "COMO82" "COO487" "COO588"
Background compounds: all available compounds (default)

Heat diffusion: ready.
P-scores under 0.05: 282

PageRank: not performed

At this point, the subgraph consisting of top scoring nodes can be plotted in
a heterogeneous network layout. In the presence of signal, this subgraph will
exhibit large connected components and contain nodes from all the levels in the
KEGG graph. It is also expected that the algorithm gives a high priority to the
metabolites specified in the input, although not all of them must necessarily be
top ranked.

Therefore, the user should expect to find the presence of intermediate entities
(reactions, enzymes and modules) that connect the input to relevant KEGG
pathways. Note that FELLA can also pinpoint new KEGG compounds as po-
tentially relevant.

In this example, the plot is limited to 150 nodes using the nlimit argument from

"C00670"

15
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> nlimit <- 150
> vertex. label.cex <- .5

> plot(

+ analysis.epithelial,

+ method = "diffusion",

+ data = fella.data,

+ nlimit = nlimit,

+ vertex. label.cex = vertex. label.cex)

Categories for each node

@ athway C @compound
¢} (@]

Enput compound

In the original work [36], the activation of the glycerophosphocholine synthe-
sis rather than the carnitine response is a main result. FELLA highlights® the
related pathway choline metabolism in cancer and the choline metabolite as
well. Another key process is the O-linked glycosilation, which is close to the
KEGG module O-glycan biosynthesis, mucin type core and to the KEGG path-
way Mucin type O-glycan biosynthesis. Finally, FELLA reproduces the finding

IThis analysis is
subject to KEGG
release 83.0, from
August 17th, 2017.
Posterior KEGG
releases might alter
the reported sub-
network
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of UAP1 by reporting the enzyme 2.7.7.23, named UDP-N-acetylglucosamine
diphosphorylase. UAP1 is a key protein in the study, pinpointed by iTRAQ and
validated via western blot.

Exporting the results

After an initial exploration of the results, these can be exported using three
functions that lead to network and tabular formats.

The top scoring nodes can be exported as a network in igraph with the function

. The number k of nodes in the subgraph is controlled
by the most stringent filter between nlimit (limit on the number of nodes) and
threshold (limit on the p.score).

Once £ is determined, the argument thresholdConnectedComponent further fil-
ters small connected components from the subgraph, implying that the resulting
subgraph can have less than k nodes. A connected component of order r will
be kept only if the probability that a random subgraph of order k contains a
connected component of order at least 7 is smaller than the specified threshold.
In other words, small connected components can arise from random sampling of
the subgraph, whereas larger connected components are highly unlikely under a
uniform sampling. The user can filter connected components that are too small
to be meaningful in that sense.

Lastly, the argument LabellLengthAtPlot allows to truncate the KEGG names
at the given number of characters for visualisation purposes.

> g <- generateResultsGraph(

+ object = analysis.epithelial,
+ method = "diffusion",

+ nlimit = nlimit,

+ data = fella.data)

> g

IGRAPH 1481bea UNW- 142 173 --

+ attr: organism (g/c), name (v/c), com (v/n), NAME (v/x), entrez
| (v/x), label (v/c), input (v/1), weight (e/n)

+ edges from 1481lbea (vertex names):

[1] hsa00512--MOO0O56 hsa04146--2.3.1.7 M0O0056 --2.4.1.102
[4] MOOO75 --2.4.1.143 MO0O75 --2.4.1.144 MOOO75 --2.4.1.145
[7] hsa00512--2.4.1.146 MO0056 --2.4.1.147 hsa00512--2.4.1.149
[10] MEOO75 --2.4.1.155 MOOO65 --2.4.1.198 MOOO75 --2.4.1.201
[13] MEOO70 --2.4.1.206 MOOO71 --2.4.1.206 MOOO59 --2.4.1.223
[16] MOOO59 --2.4.1.224 MO0O75 --2.4.1.68 hsa05231--2.7.1.32

[19] MEOO9O® --2.7.1.32 hsa05231--2.7.1.82 M0O0090 --2.7.1.82
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+ ... omitted several edges

The exported (sub)graph can be further complemented with data from GO, the
Gene Ontology [38]. Specifically, the enzymes can be equipped with annotations
from their underlying genes in any ontology from GO. Note that this requires
additional packages: biomaRt and org.Hs.eg.db. The latter should be changed
in case the analysis and the database are not from Homo sapiens.

The function achieves this by accepting a query GO term and
computing the semantic similarity of all the genes within each enzyme to the
query GO term. The semantic similarity is detailed and implemented in the
package GOSemSim [39].

In the current example, enzymes are going to be compared to the GO cellular
component term mitochondrion. Enzymes that contain genes whose cellular
component is closer or coincident with the mitochondrion will be highlighted.

> # G0:0005739 is the term for mitochondrion
> g.go <- addGOToGraph(
+ graph = g,

+ GOterm = "GO:0005739",
+ godata.options = list(
+ Orgbb = "org.Hs.eg.db", ont = "CC"),
+ mart.options = list(
biomart = "ensembl", dataset = "hsapiens_gene_ensembl"))
> g.go

IGRAPH 1481bea UNW- 142 173 --

+ attr: organism (g/c), name (v/c), com (v/n), NAME (v/x), entrez

| (v/x), label (v/c), input (v/1), GO (v/x), GO.simil (v/x), weight
| (e/n)

+ edges from 1481lbea (vertex names):

[1] hsa00512--MOOO56 hsa04146--2.3.1.7 M00056 --2.4.1.102
[4] MOOO75 --2.4.1.143 MOOO75 --2.4.1.144 MOOO75 --2.4.1.145
[7] hsa00512--2.4.1.146 MOOO56 --2.4.1.147 hsa00512--2.4.1.149
[10] MOOO75 --2.4.1.155 MOOO65 --2.4.1.198 MOOO75 --2.4.1.201
[13] MOOO70 --2.4.1.206 MOOO71 --2.4.1.206 MOOO59 --2.4.1.223
[16] MOOGO59 --2.4.1.224 MOOO75 --2.4.1.68 hsa05231--2.7.1.32
+ ... omitted several edges
Plotting the graph with the function reveals the addition of the

GO term due to a slight change in the plotting legend. Enzyme nodes have a
different shape and their colour scale reflects their degree of similarity to the
queried GO term.
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> plotGraph(

+ g.qgo,
+ vertex. label.cex = vertex. label. cex)
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The second way to export the enrichment results is to write the data from the
KEGG entries in the top k p.scores using generateResultsTable. This function
accepts arguments similar to those in generateResultsTable.

> tab.all <- generateResultsTable(

+ method = "diffusion",

+ nlimit = 100,

+ object = analysis.epithelial,
+ data = fella.data)

> # Show head of the table
> knitr::kable(head(tab.all), format = "latex")
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KEGG.id | Entry.type | KEGG.name p.score
hsa02010 | pathway ABC transporters - Homo sapiens (human) 3.31e-05
hsa05231 | pathway Choline metabolism in cancer - Homo sapiens (... | 1.00e-06
MO00056 | module O-glycan biosynthesis, mucin type core 1.00e-06
MO00075 | module N-glycan biosynthesis, complex type 5.70e-06
1.14.11.1 | enzyme gamma-butyrobetaine dioxygenase 1.00e-06
23.1.7 enzyme carnitine O-acetyltransferase 1.00e-06
The last exporting option, , is to a tabular format with

details from the enzymes reported among the top £ KEGG entries. In particular,
the table contains the genes that belong to each enzyme family, separated by

semicolons.

> tab.enzyme <- generateEnzymesTable(
+ method = "diffusion",

+ nlimit = 100,

+ object = analysis.epithelial,

+ data = fella.data)

> # Show head of the table
> knitr::kable(head(tab.enzyme, 10), format = "latex")

EC_number | p.score | EC_name Genes

2.3.1.7 1e-06 | carnitine O-acetyltransferase 1384

1.14.11.1 1e-06 | gamma-butyrobetaine dioxygenase 8424

3.1.3.75 1e-06 | phosphoethanolamine/phosphocholine phosphatas... 162466

3.1.4.2 1e-06 | glycerophosphocholine phosphodiesterase 56261

3.6.1.53 1e-06 | Mn2+-dependent ADP-ribose/CDP-alcohol diphosp... | 56985

3.1.4.12 1e-06 | sphingomyelin phosphodiesterase 339221;55512;55627;660
2.7.1.32 1e-06 | choline kinase 1119;1120

3.1.15 1e-06 | lysophospholipase 10434;10908;11313;1178
3.3.2.2 1e-06 | lysoplasmalogenase 255043

2.4.1.150 1e-06 | N-acetyllactosaminide beta-1,6-N-acetylglucos... 2651

The three exporting options shown above are included in the wrapper function

, using format = "csv" for the general tabular data, format =
"enzyme" for the enzyme tabular data and format = "igraph" for saving an
.RData object with the igraph sub-network object.

For instance, the general tabular data:

> tmpfile <- tempfile()
> exportResults(
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+ + 4+ + +

format = "csv",

file = tmpfile,

method = "diffusion",

object = analysis.epithelial,
data = fella.data)

If the argument format is none of the former, FELLA saves the sub-network

using

from the igraph package with the desired format.

> tmpfile <- tempfile()
> exportResults(

+

+ + + +

format = "pajek",

file = tmpfile,

method = "diffusion",

object = analysis.epithelial,
data = fella.data)

Deploying the graphical user interface

FELLA is equipped with a graphical user interface that eases data analysis
without learning the package syntax. The app is divided in the following tabs:

Compounds upload (figure 5): contains a general description of the tabs
and a handle to submit the input metabolite list as a text file. Exam-
ples are provided as well. The right panel shows the mapped and the
mismatching compounds with regard to the default database.

Advanced options (figure 6): widgets that contain the main function
arguments for customising the enrichment procedure. Allows database
choice from the internal package directory, method and approximation
choice and parameter tweaking. It also allows defining a GO label for the
semantic similarity analysis on the reported enzymes.

Results (figure 7): interactive plot with the sub-graph with the top &
KEGG entries. Nodes can be selected, queried and link to the KEGG
entries when hovered. Below the network lies an interactive table with
the graph nodes, allowing the user to look into particular entries.

Export (figure 8): several tabular and network exporting options.

The app is based on shiny [29] and can be launched through
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ts FELLA: pathway analysis for metabolomics data €@ @

1. Upload compounds 2. Advanced options 3. Interactive results 4. Export results

Overview

FELLA allows the user to
perform a pathway enrichment
on metabolomics data using
the KEGG database.

1. Upload compounds

The user can upload a list of
metabolites as a text file containing
KEGG ids. Three sample lists show the
app functionalities. Once the
metabolites are defined, the matches
.and the mismatches are displayed.

2. Advanced options

This tab lets the user adjust
methodological and graphical
parameters. For instance, the
algorithm to prioritise the nodes, the
thresholds and the maximum amount
«of nodes to display. Furthermore, the
‘enzymes in the solution can be
overlaid with their similarity to a user-
defined GO label.

3. Interactive results

This tab draws the solution and lets the
user zoom, move, search and highlight
nodes in the solution graph. Below, a
table describes the depicted nodes and
links to their KEGG entries in their
website.

4. Export results

A variety of output formats are
available for downloading the results.

Upload
compounds

List of metabolites to enrich:

® Example 1
Example 2
Example MetaboAnalyst
| will upload my compounds

Browse... | Nofi

Example file

Here is a sample of the format
understood by FELLA. This is the
content of the data for 'Example 2'.
KEGG identifiers can be quoted as
well, but this is not necessary. The file
extension is irelevant (.txt, .csv) as
long as the format is correct

Make sure the KEGG compounds are parsed
as expected in the right column. For instance,
seek mismalches due to whilespaces.

& Download Example 2

Contents of the file

co09ee
co1043

Check the uploaded

compounds

Successfully mapped KEGG ids:
KEGG name
1,3-Diaminopropane
N-Carbamoylsarcosine

Urea

Mismatching compounds:

Note: due to the graph curation, not every KEGG compound s within the FELLA

database, Even if the KEGG id exists, a mismatch can take place,

Figure 5: Graphical interface: compounds upload

85| FELLA: pathway analysis for metabolomics data & €

1. Upload compounds 2. Advanced options 3. Interactive results 4. Export results

Adjust arguments (optional)

The database
Local databases choice

created  2018-01-
03meta__hsa_Release_85.0_01_01_Janv18

T01001 Homo sapiens (human) KEG(

hsa Release 85.0+/01-01, Jan
Kanehisa Laboratories
39,546 entri

linked db pathway
brite
module
ko

genome

4 3

The method
Method choice

Heat diffusion -

Figure 6: Graphical interface: advanced options

Graphical parameters
Threshold (p-score) for the nodes in
the solution graph

oa0s 0z

Limit for the number of nodes in the
solution graph

a0 250 300
————————

Threshold for the size of a connected
component to be shown

|

Limit for the label length in the plot

© 50 100
—

GO labels for enzymes

Adding a GO term takes some time,
please be patient

The user can add a GO label visual flter for the
enzymes in the output. For example, we can decide to
filter by ‘mitochondrio’ by clicking the following
button:

GO: mitochondrion example

The GO term for each enzyme family is determined by the best
semantic similarity using the genes in it The GO term of the:
best hitis appended to the node label and the node shape.
becomes triangular. If GO annotations are unavaiable for an
enzyme, itis left with a circular shape.

Specify a GO term

GO data options
GO orgDb

GO ontology

cc -

biomaRt options

Specify a biomaRt

22



The FELLA R package

Bis| FELLA: pathway analysis for metabolomics data @ €@

1. Upload compounds 2. Advanced options 3. Interactive results 4. Export results
Number of nodes: 72 Select by id L}

Select by group v

Figure 7: Graphical interface: results

85| FELLA: pathway analysis for metabolomics data € €)

1. Uplead compounds 2. Advanced options 3. Interactive results 4. Export results

Export tables

Export the whole results table as csv
& Download table with results
Export the enzymes in the solution with related genes and GO terms as csv
&, Download table with enzymes
Export the genes (entrez) that belong to the enzyme EC numbers as a text file

& Download text file with genes

Export graph solution to R igraph

& Download R igraph solution

Figure 8: Graphical interface: export

4.2.5 Helper functions

FELLA is equipped with helper functions that ease the user experience and
avoid direct manipulation of the S4 classes. Some of them have been already
introduced - a complete enumeration of the exported functions is hereby pro-

vided.
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Functions of the type get- ease object and slot retrieval, with the following
possibilities: getBackground, getExcluded, getInfo, getInput, getName, getP
scores.

On the other hand, functions starting by list- provide general purpose data
about the package (ListMethods, listApprox, listCategories) and a listing
of the available internal databases (ListInternalDatabases).

Finally, functions starting by is- check if an object belongs to a certain class:
is.FELLA.DATA and is.FELLA.USER

Ovarian cancer cells dataset

The next example has been extracted from the study on metabolic responses
of ovarian cancer cells [40]. The original files can be found in the MTBLS150
study in the Metabolights respository: https://www.ebi.ac.uk/metabolights/
MTBLS150. OCSCs are isogenic ovarian cancer stem cells derived from the
OVCAR-3 ovarian cancer cells. The abundances of six metabolites are affected
by the exposure to several environmental conditions: glucose deprivation, hy-
poxia and ischemia (column "All" in “Figure 3" from their main manuscript).

The common names have been converted to KEGG ids prior to applying FELLA.
The analysis is performed using the wrapper enrich that maps the compounds
to the internal representation and runs the desired methods.

> compounds.ovarian <- c(

+ "COO275", "COO158", "COOO42",
+ "CO0346", "COO122", "CO6468")
> analysis.ovarian <- enrich(

+ compounds = compounds.ovarian,
+ data = fella.data,

+ methods = "diffusion")

> plot(

+ analysis.ovarian,

+ method = "diffusion",

+ data = fella.data,

+ nlimit = 150,

+ vertex. label.cex = vertex. label. cex,
+ plotLegend = FALSE)
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The resulting subnetwork? reports several TCA cycle-related entities, also re-

ported by the authors and by previous work [41]. It also mentions sphingosine zTh_iS analysis is
degradation, closely related to the reported sphingosine metabolism in the :E:SC; ;g (2( Efo?n
original work. Enzymes that have been formerly related to cancer are suggested  p;gust 17tH, 2017.
within the TCA cycle, like fumarate hydratase [42, 43, 41] succinate dehydro-  Posterior KEGG
genase [44, 41] and aconitase [45]. Another suggestion is lysosome - lysosomes  releases might alter
suffer changes in cancer cells and directly affect apoptosis [46]. Finally, the the reported sub-
graph contains several hexokinases, potential targets to disrupt glycolysis, a network
fundamental need in cancer cells [47].

4.4 Malaria dataset

The metabolites in the last example are related to the distinction between
malaria and other febrile ilnesses in [48]. The study files can be found under the
MTBLS315 identifier in Metabolights: https://www.ebi.ac.uk/metabolights/
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MTBLS315. Specifically, the list of KEGG identifiers has been extracted from
the supplementary data spreadsheet, using all the possible KEGG matches for
the “non malaria” patient group.

> compounds.malaria <- c(

+ "CO5471", "C14831", "CO2686", "CO6462", "COO735", "(C14833",
+ "C18175", "C0OO550", "CO1124", "CO5474", "C0O5469")
> analysis.malaria <- enrich(

+ compounds = compounds.malaria,

+ data = fella.data,

+ methods = "diffusion")

> plot(

+ analysis.malaria,

+ method = "diffusion",

+ data = fella.data,

+ nlimit = 50,

+ vertex. label.cex = vertex. label. cex,

+ plotLegend = FALSE)
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In this case, the depicted subnetwork® contains the modules C21-Steroid hor-
mone biosynthesis, progesterone => corticosterone/aldosterone and C21-Steroid
hormone biosynthesis, progesterone => cortisol/cortisone, related to the cor-
ticosteroids as a main pathway reported in the original text. This is part of
the also reported Aldosterone synthesis and secretion; aldosterone is known to
show changes related to fever as a metabolic response to infection [49]. An-
other plausible hit in the sub-network is linoleic acid metabolism, as erythrocytes
infected by various malaria parasytes can be enriched in linoleic acid [50]. In
addition, the pathway sphingolipid metabolism can play a role in the immune
response [51, 52]. As for the enzymes, 3alpha-hydroxysteroid 3-dehydrogenase
(Si-specific) and Delta4-3-oxosteroid bbeta-reductase are related to three input
metabolites each and might be candidates for further examination.

3This analysis is
subject to KEGG
release 83.0, from
August 17th, 2017.
Posterior KEGG
releases might alter
the reported sub-
network

27



The FELLA R package

5

Conclusions

The FELLA R package provides a simple, programmatic and intuitive enrich-
ment tool for metabolomics summary data. Starting from a list of metabolites,
FELLA not only pinpoints relevant pathways but also intermediate reactions,
enzymes and modules that links the input metabolites to the pathways. The
reported entries have a network structure focused on interpretability and new
hypotheses generation, giving a richer perspective than classical pathway en-
richment tools. This comprehensive layout can also suggest potential enzymes
and new metabolites for further study. Finally, FELLA comes equipped with a
graphical user interface that promotes its usage to a wider audience and offers
interactive sub-network examination.
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