Package 'zenith'

October 17, 2024

Type Package

Title Gene set analysis following differential expression using linear (mixed) modeling with dream

Version 1.6.0

Date 2024-03-08

Description Zenith performs gene set analysis on the result of differential expression using linear (mixed) modeling with dream by considering the correlation between gene expression traits. This package implements the camera method from the limma package proposed by Wu and Smyth (2012). Zenith is a simple extension of camera to be compatible with linear mixed models implemented in variancePartition::dream().

VignetteBuilder knitr

License Artistic-2.0

Encoding UTF-8

URL https://DiseaseNeuroGenomics.github.io/zenith

BugReports https://github.com/DiseaseNeuroGenomics/zenith/issues

Suggests BiocStyle, BiocGenerics, knitr, pander, rmarkdown, tweeDEseqCountData, edgeR, kableExtra, RUnit

biocViews RNASeq, GeneExpression, GeneSetEnrichment, DifferentialExpression, BatchEffect, QualityControl, Regression, Epigenetics, FunctionalGenomics, Transcriptomics, Normalization, Preprocessing, Microarray, ImmunoOncology, Software

Depends R (>= 4.2.0), limma, methods

Imports variancePartition (>= 1.26.0), EnrichmentBrowser (>= 2.22.0), GSEABase (>= 1.54.0), msigdbr (>= 7.5.1), Rfast, ggplot2, tidyr, reshape2, progress, utils, Rdpack, stats

RdMacros Rdpack

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/zenith

git_branch RELEASE_3_19

git_last_commit 3ac73cb
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-10-16
Author Gabriel Hoffman [aut, cre]
Maintainer Gabriel Hoffman <gabriel.hoffman@mssm.edu>

Contents

.rankSumTestWithCorrelation															2
corInGeneSet															3
get_GeneOntology															3
get_MSigDB															4
plotZenithResults															
zenith															7
zenithPR_gsa															9
zenith_gsa							•		•		•	•	•	•	11
															14

Index

```
.rankSumTestWithCorrelation
```

Two Sample Wilcoxon-Mann-Whitney Rank Sum Test Allowing For Correlation

Description

Same as limma::.rankSumTestWithCorrelation, but returns effect size.

Usage

```
.rankSumTestWithCorrelation(index, statistics, correlation = 0, df = Inf)
```

Arguments

index	any index vector such that statistics[index] contains the values of the statis- tic for the test group.
statistics	numeric vector giving values of the test statistic.
correlation	numeric scalar, average correlation between cases in the test group. Cases in the second group are assumed independent of each other and other the first group.
df	degrees of freedom which the correlation has been estimated.

Details

See limma::.rankSumTestWithCorrelation

2

corInGeneSet

Value

data.frame storing results of hypothesis test

corInGeneSet Evaluate mean correlation between residuals in gene set

Description

Evaluate mean correlation between residuals in gene set based on results from dream

Usage

corInGeneSet(fit, idx, squareCorr = FALSE)

Arguments

fit	result of differential expression with dream
idx	indeces or rownames to extract
squareCorr	compute the mean squared correlation instead

Value

list storing correlation and variance inflation factor

get_GeneOntology Load Gene Ontology genesets

Description

Load Gene Ontology genesets

Usage

```
get_GeneOntology(
   onto = c("BP", "MF", "CC"),
   to = "ENSEMBL",
   includeOffspring = TRUE,
   org = "hsa"
)
```

Arguments

onto	array of categories to load
to	<pre>convert gene names to this type using EnrichmentBrowser::idMap(). See EnrichmentBrowser::idTypes(org="hsa") for valid types</pre>
includeOffspri	ng
	if TRUE, follow the GO hierarchy down and include all genes in offspring sets for a given gene set
org	organism. human ('hsa'), mouse ('mmu'), etc

Details

This function loads the GO gene sets using the packages EnrichmentBrowser and GO.db It can take a mintute to load because converting gene name type is slow.

Value

Gene sets stored as GeneSetCollection

Examples

```
# load GO Biological Process
# gs = get_GeneOntology('BP')
# load all gene sets
```

```
# gs = get_GeneOntology()
```

get_MSigDB

Load MSigDB genesets

Description

Load MSigDB genesets

Usage

```
get_MSigDB(
   cat = unique(msigdbr_collections()$gs_cat),
   to = "ENSEMBL",
   org = "hsa"
)
```

Arguments

cat	array of categories to load. Defaults to array of all MSigDB categories
to	<pre>convert gene names to this type using EnrichmentBrowser::idMap(). See EnrichmentBrowser::idTypes(org="hsa") for valid types</pre>
org	organism. human ('hsa'), mouse ('mmu'), etc

plotZenithResults

Details

This function loads the MSigDB gene sets using the packages EnrichmentBrowser and msigdbr. It can take a mintute to load because converting gene name type is slow.

Value

Gene sets stored as GeneSetCollection

Examples

```
# load Hallmark gene sets
gs = get_MSigDB('H')
# load all gene sets
# gs = get_MSigDB()
```

plotZenithResults *Heatmap of zenith results using ggplot2*

Description

Heatmap of zenith results showing genesets that have the top and bottom t-statistics from each assay.

Usage

```
plotZenithResults(
    df,
    ntop = 5,
    nbottom = 5,
    label.angle = 45,
    zmax = NULL,
    transpose = FALSE,
    sortByGeneset = TRUE
)
```

Arguments

df	result data.frame from zenith_gsa				
ntop	number of gene sets with highest t-statistic to show				
nbottom	number of gene sets with lowest t-statistic to show				
label.angle	angle of x-axis label				
zmax	maxium of the color scales. If not specified, used range of the observed t-statistics				
transpose	transpose the axes of the plot				
sortByGeneset	use hierarchical clustering to sort gene sets. Default is TRUE				

Value

Heatmap showing enrichment for gene sets and cell types

Examples

```
# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)
# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)
# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)
# Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)
# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)
# Apply dream analysis
fit = dream(vobj, ~ gender,df_metadata)
fit = eBayes(fit)
# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")
# Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE )
# Show top gene sets
head(res.gsa, 2)
# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluted because
    to few genes were represented
#
plotZenithResults(res.gsa)
```

zenith

Description

Perform gene set analysis on the result of differential expression using linear (mixed) modeling with variancePartition::dream by considering the correlation between gene expression traits. This package is a slight modification of limma::camera to 1) be compatible with dream, and 2) allow identification of gene sets with log fold changes with mixed sign.

Usage

```
zenith(
  fit,
  coef,
  index,
  use.ranks = FALSE,
  allow.neg.cor = FALSE,
  progressbar = TRUE,
  inter.gene.cor = 0.01
)
```

Arguments

fit	result of differential expression with dream
coef	coefficient to test using topTable(fit, coef)
index	an index vector or a list of index vectors. Can be any vector such that fit[index,] selects the rows corresponding to the test set. The list can be made using ids2indices.
use.ranks	do a rank-based test (TRUE) or a parametric test ('FALSE')?
allow.neg.cor	should reduced variance inflation factors be allowed for negative correlations?
progressbar	if TRUE, show progress bar
inter.gene.cor	if NA, estimate correlation from data. Otherwise, use specified value

Details

zenith gives the same results as camera(..., inter.gene.cor=NA) which estimates the correlation with each gene set.

For differential expression with dream using linear (mixed) models see Hoffman and Roussos (2020). For the original camera gene set test see Wu and Smyth (2012).

Value

- NGenes: number of genes in this set
- Correlation: mean correlation between expression of genes in this set
- delta: difference in mean t-statistic for genes in this set compared to genes not in this set
- se: standard error of delta
- p.less: p-value for hypothesis test of H0: delta < 0
- p.greater: p-value for hypothesis test of H0: delta > 0
- PValue: p-value for hypothesis test H0: delta != 0
- Direction: direction of effect based on sign(delta)
- FDR: false discovery rate based on Benjamini-Hochberg method in p. adjust

References

Hoffman GE, Roussos P (2020). "dream: Powerful differential expression analysis for repeated measures designs." *Bioinformatics*. doi:10.1093/bioinformatics/btaa687.

Wu D, Smyth GK (2012). "Camera: a competitive gene set test accounting for inter-gene correlation." *Nucleic acids research*, **40**(17), e133. doi:10.1093/nar/gks461.

Examples

```
library(variancePartition)
```

```
# simulate meta-data
info <- data.frame(Age=c(20, 31, 52, 35, 43, 45),Group=c(0,0,0,1,1,1))</pre>
```

```
# simulate expression data
y <- matrix(rnorm(1000*6),1000,6)
rownames(y) = paste0("gene", 1:1000)
colnames(y) = rownames(info)</pre>
```

```
# First set of 20 genes are genuinely differentially expressed
index1 <- 1:20
y[index1,4:6] <- y[index1,4:6]+1</pre>
```

```
# Second set of 20 genes are not DE
index2 <- 21:40</pre>
```

```
# perform differential expression analysis with dream
fit = dream(y, ~ Age + Group, info)
fit = eBayes(fit)
```

```
# perform gene set analysis testing Age
res = zenith(fit, "Age", list(set1=index1,set2=index2) )
```

head(res)

zenithPR_gsa

Description

Perform gene set analysis on the result of a pre-computed test statistic. Test whether statistics in a gene set are larger/smaller than statistics not in the set.

Usage

```
zenithPR_gsa(
   statistics,
   ids,
   geneSets,
   use.ranks = FALSE,
   n_genes_min = 10,
   progressbar = TRUE,
   inter.gene.cor = 0.01,
   coef.name = "zenithPR"
)
```

Arguments

statistics	pre-computed test statistics
ids	name of gene for each entry in statistics
geneSets	GeneSetCollection
use.ranks	do a rank-based test TRUE or a parametric test FALSE? default: FALSE
n_genes_min	minumum number of genes in a geneset
progressbar	if TRUE, show progress bar
inter.gene.cor	correlation of test statistics with in gene set
coef.name	name of column to store test statistic

Details

This is the same as zenith_gsa(), but uses pre-computed test statistics. Note that zenithPR_gsa() may give slightly different results for small samples sizes, if zenithPR_gsa() is fed t-statistics instead of z-statistics.

Value

- NGenes: number of genes in this set
- Correlation: mean correlation between expression of genes in this set
- delta: difference in mean t-statistic for genes in this set compared to genes not in this set
- se: standard error of delta

- p.less: p-value for hypothesis test of H0: delta < 0
- p.greater: p-value for hypothesis test of H0: delta > 0
- PValue: p-value for hypothesis test H0: delta != 0
- Direction: direction of effect based on sign(delta)
- FDR: false discovery rate based on Benjamini-Hochberg method in p. adjust
- coef.name: name for pre-computed test statistics. Default: zenithPR

See Also

```
zenith_gsa(), limma::cameraPR()
```

Examples

```
# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)
# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)
# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)
# Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)
# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)
# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)
# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")
# Run zenithPR analysis with a test statistic for each gene
tab = topTable(fit, coef='gendermale', number=Inf)
```

```
res.gsa = zenithPR_gsa(tab$t, rownames(tab), gs)
```

zenith_gsa

Description

Perform a competitive gene set analysis accounting for correlation between genes.

Usage

```
zenith_gsa(
  fit,
  geneSets,
 coefs,
  use.ranks = FALSE,
 n_genes_min = 10,
 inter.gene.cor = 0.01,
 progressbar = TRUE,
  . . .
)
## S4 method for signature 'MArrayLM,GeneSetCollection'
zenith_gsa(
 fit,
 geneSets,
 coefs,
 use.ranks = FALSE,
 n_genes_min = 10,
 inter.gene.cor = 0.01,
 progressbar = TRUE,
  . . .
)
```

Arguments

fit	results from dream()
geneSets	GeneSetCollection
coefs	<pre>list of coefficients to test using topTable(fit, coef=coefs[[i]])</pre>
use.ranks	do a rank-based test TRUE or a parametric test FALSE? default: FALSE
n_genes_min	minumum number of genes in a geneset
inter.gene.cor	if NA, estimate correlation from data. Otherwise, use specified value
progressbar	if TRUE, show progress bar
	other arguments

Details

This code adapts the widely used camera() analysis (Wu and Smyth 2012) in the limma package (Ritchie et al. 2015) to the case of linear (mixed) models used by variancePartition::dream().

Value

data. frame of results for each gene set and cell type

References

Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, Smyth GK (2015). "limma powers differential expression analyses for RNA-sequencing and microarray studies." *Nucleic acids research*, **43**(7), e47–e47.

Wu D, Smyth GK (2012). "Camera: a competitive gene set test accounting for inter-gene correlation." *Nucleic acids research*, **40**(17), e133. doi:10.1093/nar/gks461.

See Also

limma::camera

Examples

```
# Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)
# Load RNA-seq data from LCL's
data(pickrell)
geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)
# Filter genes
# Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)
keep = filterByExpr(geneCounts, dsgn, min.count=5)
# Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)
# Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)
# Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)
# Load Hallmark genes from MSigDB
# use gene 'SYMBOL', or 'ENSEMBL' id
```

zenith_gsa

```
# use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")
# Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE )
# Show top gene sets
head(res.gsa, 2)
# for each cell type select 3 genesets with largest t-statistic
# and 1 geneset with the lowest
# Grey boxes indicate the gene set could not be evaluted because
# to few genes were represented
plotZenithResults(res.gsa)
```

Index

.rankSumTestWithCorrelation, 2

corInGeneSet, 3

get_GeneOntology, 3
get_MSigDB, 4

 ${\tt plotZenithResults, 5}$

zenith, 7
zenith_gsa, 5, 11
zenith_gsa, MArrayLM, GeneSetCollection, ANY-method
 (zenith_gsa), 11
zenith_gsa, MArrayLM, GeneSetCollection-method
 (zenith_gsa), 11
zenithPR_gsa, 9