# Package 'tidybulk'

May 30, 2024

Type Package

Title Brings transcriptomics to the tidyverse

Version 1.16.0

**Description** This is a collection of utility functions that allow to perform exploration of and calculations to RNA sequencing data, in a modular, pipe-friendly and tidy fashion.

License GPL-3

**Depends** R (>= 4.1.0), ttservice (>= 0.3.6)

- **Imports** tibble, readr, dplyr (>= 1.1.0), magrittr, tidyr, stringi, stringr, rlang, purrr, tidyselect, preprocessCore, stats, parallel, utils, lifecycle, scales, SummarizedExperiment, GenomicRanges, methods, S4Vectors, crayon, Matrix
- Suggests BiocStyle, testthat, vctrs, AnnotationDbi, BiocManager, Rsubread, e1071, edgeR, limma, org.Hs.eg.db, org.Mm.eg.db, sva, GGally, knitr, qpdf, covr, Seurat, KernSmooth, Rtsne, ggplot2, widyr, clusterProfiler, msigdbr, DESeq2, broom, survival, boot, betareg, tidyHeatmap, pasilla, ggrepel, devtools, functional, survminer, tidySummarizedExperiment, markdown, uwot, matrixStats, igraph, EGSEA, IRanges, here, glmmSeq, pbapply, pbmcapply, lme4, glmmTMB, MASS, pkgconfig

# VignetteBuilder knitr

**RdMacros** lifecycle

Biarch true

**biocViews** AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normalization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics

**Encoding** UTF-8

LazyData true

RoxygenNote 7.3.1

LazyDataCompression xz

URL https://github.com/stemangiola/tidybulk

### Contents

2

BugReports https://github.com/stemangiola/tidybulk/issues

git\_url https://git.bioconductor.org/packages/tidybulk

git\_branch RELEASE\_3\_19

git\_last\_commit 3c5b1ff

git\_last\_commit\_date 2024-04-30

**Repository** Bioconductor 3.19

Date/Publication 2024-05-29

Author Stefano Mangiola [aut, cre], Maria Doyle [ctb]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

# Contents

| adjust_abundance                    | 3  |
|-------------------------------------|----|
| aggregate_duplicates                | 7  |
| arrange                             | 10 |
| as_matrix                           | 11 |
| as_SummarizedExperiment             | 12 |
| bind_cols                           | 13 |
| bind_rows                           | 14 |
| breast_tcga_mini_SE                 | 15 |
| check_if_counts_is_na               | 15 |
| check_if_duplicated_genes           | 16 |
| check_if_wrong_input                | 16 |
| cluster_elements                    | 17 |
| counts_ensembl                      | 20 |
| deconvolve_cellularity              | 20 |
| describe_transcript                 | 23 |
| distinct                            | 24 |
| ensembl_symbol_mapping              | 25 |
| ensembl_to_symbol                   | 25 |
| fill_missing_abundance              | 26 |
| filter                              | 28 |
| flybaseIDs                          | 29 |
| get_bibliography                    | 30 |
| get_reduced_dimensions_UMAP_bulk    | 31 |
| get_reduced_dimensions_UMAP_bulk_SE | 32 |
| group_by                            | 33 |
| identify_abundant                   | 34 |
| impute_missing_abundance            | 36 |
| inner_join                          | 39 |
| keep_abundant                       | 40 |
| keep_variable                       | 43 |
| log10_reverse_trans                 | 45 |
| logit_trans                         | 46 |

| mutate                                |
|---------------------------------------|
| pivot_sample                          |
| pivot_transcript                      |
| quantile_normalise_abundance          |
| reduce_dimensions                     |
| reexports                             |
| remove_redundancy                     |
| rename                                |
| rotate_dimensions                     |
| rowwise                               |
| scale_abundance                       |
| se                                    |
| se_mini 69                            |
| summarise                             |
| symbol_to_entrez                      |
| test_differential_abundance           |
| test_differential_cellularity         |
| test_gene_enrichment                  |
| test_gene_overrepresentation          |
| test_gene_rank                        |
| test_stratification_cellularity       |
| tidybulk                              |
| tidybulk_SAM_BAM                      |
| tximeta_summarizeToGene_object        |
| unnest                                |
| vignette_manuscript_signature_boxplot |
| vignette_manuscript_signature_tsne    |
| vignette_manuscript_signature_tsne2   |
| X cibersort                           |
|                                       |
|                                       |
| 100                                   |

# Index

adjust\_abundance *Adjust transcript abundance for unwanted variation* 

# Description

adjust\_abundance() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with an additional adjusted abundance column. This method uses scaled counts if present.

#### Usage

```
adjust_abundance(
  .data,
  .formula = NULL,
  .factor_unwanted = NULL,
  .factor_of_interest = NULL,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  method = "combat_seq",
  action = "add",
  . . . ,
  log_transform = NULL,
  transform = NULL,
  inverse_transform = NULL
)
## S4 method for signature 'spec_tbl_df'
adjust_abundance(
  .data,
  .formula = NULL,
  .factor_unwanted = NULL,
  .factor_of_interest = NULL,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  method = "combat_seq",
  action = "add",
  . . . ,
  log_transform = NULL,
  transform = NULL,
  inverse_transform = NULL
)
## S4 method for signature 'tbl_df'
adjust_abundance(
  .data,
  .formula = NULL,
  .factor_unwanted = NULL,
  .factor_of_interest = NULL,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  method = "combat_seq",
  action = "add",
  . . . ,
  log_transform = NULL,
  transform = NULL,
```

4

```
inverse_transform = NULL
)
## S4 method for signature 'tidybulk'
adjust_abundance(
  .data,
  .formula = NULL,
  .factor_unwanted = NULL,
  .factor_of_interest = NULL,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "combat_seq",
  action = "add",
  . . . ,
  log_transform = NULL,
  transform = NULL,
  inverse_transform = NULL
)
## S4 method for signature 'SummarizedExperiment'
adjust_abundance(
  .data,
  .formula = NULL,
  .factor_unwanted = NULL,
  .factor_of_interest = NULL,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "combat_seq",
  action = "add",
  ...,
  log_transform = NULL,
  transform = NULL,
  inverse_transform = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
adjust_abundance(
  .data,
  .formula = NULL,
  .factor_unwanted = NULL,
  .factor_of_interest = NULL,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "combat_seq",
```

```
...,
log_transform = NULL,
transform = NULL,
inverse_transform = NULL)
```

# Arguments

| .data             | A 'tbl' (with at least three columns for sample, feature and transcript abundance)<br>or 'SummarizedExperiment' (more convenient if abstracted to tibble with li-<br>brary(tidySummarizedExperiment))                                     |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| .formula          | DEPRECATED - A formula with no response variable, representing the desired linear model where the first covariate is the factor of interest and the second covariate is the unwanted variation (of the kind ~ factor_of_interest + batch) |  |
| .factor_unwant    | ed                                                                                                                                                                                                                                        |  |
|                   | A tidy select, e.g. column names without double quotation. c(batch, country)<br>These are the factor that we want to adjust for, including unwanted batcheffect,<br>and unwanted biological effects.                                      |  |
| .factor_of_int    | erest                                                                                                                                                                                                                                     |  |
|                   | A tidy select, e.g. column names without double quotation. c(treatment) These are the factor that we want to preserve.                                                                                                                    |  |
| .sample           | The name of the sample column                                                                                                                                                                                                             |  |
| .transcript       | The name of the transcript/gene column                                                                                                                                                                                                    |  |
| .abundance        | The name of the transcript/gene abundance column                                                                                                                                                                                          |  |
| method            | A character string. Methods include combat_seq (default), combat and limma_remove_batch_effect.                                                                                                                                           |  |
| action            | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).                                                                                         |  |
|                   | Further parameters passed to the function sva::ComBat                                                                                                                                                                                     |  |
| log_transform     | DEPRECATED - A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data)                                                                                                                                  |  |
| transform         | DEPRECATED - A function that will tranform the counts, by default it is log1p for RNA sequencing data, but for avoinding tranformation you can use identity                                                                               |  |
| inverse_transform |                                                                                                                                                                                                                                           |  |
|                   | DEPRECATED - A function that is the inverse of transform (e.g. expm1 is inverse of log1p). This is needed to transform back the counts after analysis.                                                                                    |  |
|                   |                                                                                                                                                                                                                                           |  |

# Details

'r lifecycle::badge("maturing")'

This function adjusts the abundance for (known) unwanted variation. At the moment just an unwanted covariate is allowed at a time using Combat (DOI: 10.1093/bioinformatics/bts034)

Underlying method: sva::ComBat(data, batch = my\_batch, mod = design, prior.plots = FALSE, ...)

#### Value

A consistent object (to the input) with additional columns for the adjusted counts as '<COUNT COLUMN>\_adjusted'

A consistent object (to the input) with additional columns for the adjusted counts as '<COUNT COLUMN>\_adjusted'

A consistent object (to the input) with additional columns for the adjusted counts as '<COUNT COLUMN>\_adjusted'

A consistent object (to the input) with additional columns for the adjusted counts as '<COUNT COLUMN>\_adjusted'

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

#### Examples

```
cm = tidybulk::se_mini
cm$batch = 0
cm$batch[colnames(cm) %in% c("SRR1740035", "SRR1740043")] = 1
cm |>
identify_abundant() |>
adjust_abundance(.factor_unwanted = batch, .factor_of_interest = condition, method="combat"
)
```

aggregate\_duplicates Aggregates multiple counts from the same samples (e.g., from isoforms), concatenates other character columns, and averages other numeric columns

### Description

aggregate\_duplicates() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with aggregated transcripts that were duplicated.

### Usage

```
aggregate_duplicates(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
```

```
aggregation_function = sum,
 keep_integer = TRUE
)
## S4 method for signature 'spec_tbl_df'
aggregate_duplicates(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  aggregation_function = sum,
 keep_integer = TRUE
)
## S4 method for signature 'tbl_df'
aggregate_duplicates(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 aggregation_function = sum,
 keep_integer = TRUE
)
## S4 method for signature 'tidybulk'
aggregate_duplicates(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  aggregation_function = sum,
  keep_integer = TRUE
)
## S4 method for signature 'SummarizedExperiment'
aggregate_duplicates(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  aggregation_function = sum,
 keep_integer = TRUE
)
## S4 method for signature 'RangedSummarizedExperiment'
aggregate_duplicates(
  .data,
  .sample = NULL,
```

8

```
.transcript = NULL,
.abundance = NULL,
aggregation_function = sum,
keep_integer = TRUE
)
```

#### Arguments

| .data                | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| .sample              | The name of the sample column                                                                                                                                                                 |  |
| .transcript          | The name of the transcript/gene column                                                                                                                                                        |  |
| .abundance           | The name of the transcript/gene abundance column                                                                                                                                              |  |
| aggregation_function |                                                                                                                                                                                               |  |
|                      | A function for counts aggregation (e.g., sum, median, or mean)                                                                                                                                |  |
| keep_integer         | A boolean. Whether to force the aggregated counts to integer                                                                                                                                  |  |

#### Details

'r lifecycle::badge("maturing")'

This function aggregates duplicated transcripts (e.g., isoforms, ensembl). For example, we often have to convert ensembl symbols to gene/transcript symbol, but in doing so we have to deal with duplicates. 'aggregate\_duplicates' takes a tibble and column names (as symbols; for 'sample', 'transcript' and 'count') as arguments and returns a tibble with aggregate transcript with the same name. All the rest of the column are appended, and factors and boolean are appended as characters.

Underlying custom method: data |> filter(n\_aggr > 1) |> group\_by(!!.sample,!!.transcript) |> dplyr::mutate(!!.abundance := !!.abundance |> aggregation\_function())

# Value

A consistent object (to the input) with aggregated transcript abundance and annotation

A consistent object (to the input) with aggregated transcript abundance and annotation

A consistent object (to the input) with aggregated transcript abundance and annotation

A consistent object (to the input) with aggregated transcript abundance and annotation

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

#### Examples

```
# Create a aggregation column
se_mini = tidybulk::se_mini
SummarizedExperiment::rowData(se_mini )$gene_name = rownames(se_mini )
aggregate_duplicates(
    se_mini,
```

```
.transcript = gene_name
)
```

arrange

#### Arrange rows by column values

# Description

'arrange()' order the rows of a data frame rows by the values of selected columns.

Unlike other dplyr verbs, 'arrange()' largely ignores grouping; you need to explicit mention grouping variables (or use 'by\_group = TRUE') in order to group by them, and functions of variables are evaluated once per data frame, not once per group.

#### Arguments

| .data     | A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See *Methods*, below, for more details. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <['tidy-eval'][dplyr_tidy_eval]> Variables, or functions or variables. Use [desc()] to sort a variable in descending order.                    |
| .by_group | If TRUE, will sort first by grouping variable. Applies to grouped data frames only.                                                            |

# Details

## Locales The sort order for character vectors will depend on the collating sequence of the locale in use: see [locales()].

## Missing values Unlike base sorting with 'sort()', 'NA' are: \* always sorted to the end for local data, even when wrapped with 'desc()'. \* treated differently for remote data, depending on the backend.

#### Value

An object of the same type as '.data'.

\* All rows appear in the output, but (usually) in a different place. \* Columns are not modified. \* Groups are not modified. \* Data frame attributes are preserved.

A tibble

#### Methods

This function is a \*\*generic\*\*, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages:

# as\_matrix

# See Also

Other single table verbs: filter(), mutate(), rename(), summarise()

# Examples

```
arrange(mtcars, cyl, disp)
```

as\_matrix Get matrix from tibble

# Description

Get matrix from tibble

# Usage

```
as_matrix(tbl, rownames = NULL, do_check = TRUE)
```

# Arguments

| tbl      | A tibble                                                                               |
|----------|----------------------------------------------------------------------------------------|
| rownames | The column name of the input tibble that will become the rownames of the output matrix |
| do_check | A boolean                                                                              |

# Value

A matrix

# Examples

tibble(.feature = "CD3G", count=1) |> as\_matrix(rownames=.feature)

```
as_SummarizedExperiment
```

as\_SummarizedExperiment

### Description

as\_SummarizedExperiment() creates a 'SummarizedExperiment' object from a 'tbl' or 'tidybulk' tbl formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |

### Usage

```
as_SummarizedExperiment(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL
)
## S4 method for signature 'spec_tbl_df'
as_SummarizedExperiment(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL
)
## S4 method for signature 'tbl_df'
as_SummarizedExperiment(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL
)
## S4 method for signature 'tidybulk'
as_SummarizedExperiment(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL
)
```

### Arguments

| .data   | A tibble                      |
|---------|-------------------------------|
| .sample | The name of the sample column |

# bind\_cols

| .transcript | The name of the transcript/gene column           |
|-------------|--------------------------------------------------|
| .abundance  | The name of the transcript/gene abundance column |

# Value

- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object

bind\_cols Left join datasets

# Description

Left join datasets

# Arguments

| x      | tbls to join. (See dplyr)                                                                                                                                                            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| У      | tbls to join. (See dplyr)                                                                                                                                                            |
| by     | A character vector of variables to join by. (See dplyr)                                                                                                                              |
| сору   | If x and y are not from the same data source, and copy is TRUE, then y will be copied into the same src as x. (See dplyr)                                                            |
| suffix | If there are non-joined duplicate variables in x and y, these suffixes will be added<br>to the output to disambiguate them. Should be a character vector of length 2.<br>(See dplyr) |
|        | Data frames to combine (See dplyr)                                                                                                                                                   |

# Value

A tt object

# Examples

```
annotation = tidybulk::se_mini |> tidybulk() |> as_tibble() |> distinct(.sample) |> mutate(source = "AU")
tidybulk::se_mini |> tidybulk() |> as_tibble() |> left_join(annotation)
```

```
bind_rows
```

# Description

This is an efficient implementation of the common pattern of 'do.call(rbind, dfs)' or 'do.call(cbind, dfs)' for binding many data frames into one.

# Arguments

|              | Data frames to combine.<br>Each argument can either be a data frame, a list that could be a data frame, or a list of data frames.                                                                                                                                                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | When row-binding, columns are matched by name, and any missing columns will be filled with NA.                                                                                                                                                                                                                                                                    |
|              | When column-binding, rows are matched by position, so all data frames must<br>have the same number of rows. To match by value, not position, see mutate-<br>joins.                                                                                                                                                                                                |
| .id          | Data frame identifier.<br>When '.id' is supplied, a new column of identifiers is created to link each row<br>to its original data frame. The labels are taken from the named arguments to<br>'bind_rows()'. When a list of data frames is supplied, the labels are taken from<br>the names of the list. If no names are found a numeric sequence is used instead. |
| add.cell.ids | from Seurat 3.0 A character vector of length( $x = c(x, y)$ ). Appends the corresponding values to the start of each objects' cell names.                                                                                                                                                                                                                         |

# Details

The output of 'bind\_rows()' will contain a column if that column appears in any of the inputs.

# Value

'bind\_rows()' and 'bind\_cols()' return the same type as the first input, either a data frame, 'tbl\_df', or 'grouped\_df'.

# Examples

```
data(se_mini)
```

```
se_mini_tidybulk = se_mini |> tidybulk()
bind_rows( se_mini_tidybulk, se_mini_tidybulk )
tt_bind = se_mini_tidybulk |> select(time, condition)
se_mini_tidybulk |> bind_cols(tt_bind)
```

# Description

Needed for vignette breast\_tcga\_mini\_SE

# Usage

```
breast_tcga_mini_SE
```

# Format

An object of class SummarizedExperiment with 500 rows and 251 columns.

check\_if\_counts\_is\_na Check whether there are NA counts

# Description

Check whether there are NA counts

# Usage

check\_if\_counts\_is\_na(.data, .abundance)

# Arguments

| .data       | A tibble of read counts                   |
|-------------|-------------------------------------------|
| . abundance | A character name of the read count column |

### Value

A tbl

check\_if\_duplicated\_genes

Check whether there are duplicated genes/transcripts

# Description

Check whether there are duplicated genes/transcripts

# Usage

```
check_if_duplicated_genes(
  .data,
  .sample = sample,
  .transcript = transcript,
  .abundance = `read count`
)
```

# Arguments

| .data       | A tibble of read counts                        |
|-------------|------------------------------------------------|
| .sample     | A character name of the sample column          |
| .transcript | A character name of the transcript/gene column |
| . abundance | A character name of the read count column      |

# Value

A tbl

check\_if\_wrong\_input Check whether there are NA counts

# Description

Check whether there are NA counts

### Usage

check\_if\_wrong\_input(.data, list\_input, expected\_type)

# Arguments

| .data         | A tibble of read counts |
|---------------|-------------------------|
| list_input    | A list                  |
| expected_type | A character string      |

# cluster\_elements

### Value

A tbl

cluster\_elements *Get clusters of elements (e.g., samples or transcripts)* 

# Description

cluster\_elements() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and identify clusters in the data.

#### Usage

```
cluster_elements(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
  method,
  of_samples = TRUE,
  transform = log1p,
  action = "add",
  ...,
  log_transform = NULL
)
## S4 method for signature 'spec_tbl_df'
cluster_elements(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
  method,
  of_samples = TRUE,
  transform = log1p,
  action = "add",
  . . . .
  log_transform = NULL
)
## S4 method for signature 'tbl_df'
cluster_elements(
  .data,
  .element = NULL,
  .feature = NULL,
```

```
.abundance = NULL,
  method,
  of_samples = TRUE,
  transform = log1p,
  action = "add",
  . . . ,
 log_transform = NULL
)
## S4 method for signature 'tidybulk'
cluster_elements(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
  method,
 of_samples = TRUE,
  transform = log1p,
  action = "add",
  ...,
 log_transform = NULL
)
## S4 method for signature 'SummarizedExperiment'
cluster_elements(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
  of_samples = TRUE,
  transform = log1p,
  action = "add",
  . . . ,
  log_transform = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
cluster_elements(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
  of_samples = TRUE,
  transform = log1p,
  action = "add",
  ...,
```

18

log\_transform = NULL
)

### Arguments

| .data         | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .element      | The name of the element column (normally samples).                                                                                                                                            |
| .feature      | The name of the feature column (normally transcripts/genes)                                                                                                                                   |
| . abundance   | The name of the column including the numerical value the clustering is based<br>on (normally transcript abundance)                                                                            |
| method        | A character string. The cluster algorithm to use, at the moment k-means is the only algorithm included.                                                                                       |
| of_samples    | A boolean. In case the input is a tidybulk object, it indicates Whether the ele-<br>ment column will be sample or transcript column                                                           |
| transform     | A function that will tranform the counts, by default it is log1p for RNA sequenc-<br>ing data, but for avoinding tranformation you can use identity                                           |
| action        | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).                                             |
|               | Further parameters passed to the function kmeans                                                                                                                                              |
| log_transform | DEPRECATED - A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data)                                                                                      |

# Details

'r lifecycle::badge("maturing")'

identifies clusters in the data, normally of samples. This function returns a tibble with additional columns for the cluster annotation. At the moment only k-means (DOI: 10.2307/2346830) and SNN clustering (DOI:10.1016/j.cell.2019.05.031) is supported, the plan is to introduce more clustering methods.

Underlying method for kmeans do.call(kmeans(.data, iter.max = 1000, ...)

Underlying method for SNN .data Seurat::CreateSeuratObject() Seurat::ScaleData(display.progress = TRUE,num.cores = 4, do.par = TRUE) Seurat::FindVariableFeatures(selection.method = "vst") Seurat::RunPCA(npcs = 30) Seurat::FindNeighbors() Seurat::FindClusters(method = "igraph", ...)

# Value

A tbl object with additional columns with cluster labels

A tbl object with additional columns with cluster labels

A tbl object with additional columns with cluster labels

A tbl object with additional columns with cluster labels

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

# Examples

cluster\_elements(tidybulk::se\_mini,centers = 2, method="kmeans")

counts\_ensembl Counts with ensembl annotation

#### Description

Counts with ensembl annotation

#### Usage

counts\_ensembl

# Format

An object of class tbl\_df (inherits from tbl, data.frame) with 119 rows and 6 columns.

#### deconvolve\_cellularity

Get cell type proportions from samples

# Description

deconvolve\_cellularity() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with the estimated cell type abundance for each sample

### Usage

```
deconvolve_cellularity(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  reference = NULL,
  method = "cibersort",
  prefix = "",
  action = "add",
  ...
)
```

```
## S4 method for signature 'spec_tbl_df'
deconvolve_cellularity(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  reference = NULL,
 method = "cibersort",
 prefix = "",
  action = "add",
  . . .
)
## S4 method for signature 'tbl_df'
deconvolve_cellularity(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  reference = NULL,
 method = "cibersort",
 prefix = "",
 action = "add",
  . . .
)
## S4 method for signature 'tidybulk'
deconvolve_cellularity(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  reference = NULL,
  method = "cibersort",
  prefix = "",
  action = "add",
  . . .
)
## S4 method for signature 'SummarizedExperiment'
deconvolve_cellularity(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  reference = NULL,
  method = "cibersort",
  prefix = "",
```

```
action = "add",
....)
## S4 method for signature 'RangedSummarizedExperiment'
deconvolve_cellularity(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .transcript = NULL,
  .abundance = NULL,
  reference = NULL,
  method = "cibersort",
  prefix = "",
  action = "add",
  ....
)
```

# Arguments

| .data       | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .sample     | The name of the sample column                                                                                                                                                                                                                                                                                                                                                                 |
| .transcript | The name of the transcript/gene column                                                                                                                                                                                                                                                                                                                                                        |
| .abundance  | The name of the transcript/gene abundance column                                                                                                                                                                                                                                                                                                                                              |
| reference   | A data frame. The methods cibersort and llsr can accept a custom rectangular dataframe with genes as rows names, cell types as column names and gene-<br>transcript abundance as values. For exampler tidybulk::X_cibersort. The tran-<br>script/cell_type data frame of integer transcript abundance. If NULL, the default reference for each algorithm will be used. For llsr will be LM22. |
| method      | A character string. The method to be used. At the moment Cibersort (default, can accept custom reference), epic (can accept custom reference) and llsr (linear least squares regression, can accept custom reference), mcp_counter, quantiseq, xcell are available.                                                                                                                           |
| prefix      | A character string. The prefix you would like to add to the result columns. It is useful if you want to reshape data.                                                                                                                                                                                                                                                                         |
| action      | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).                                                                                                                                                                                                                                             |
|             | Further parameters passed to the function Cibersort                                                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                                                                                                                                                                                               |

### Details

'r lifecycle::badge("maturing")'

This function infers the cell type composition of our samples (with the algorithm Cibersort; Newman et al., 10.1038/nmeth.3337).

Underlying method: CIBERSORT(Y = data, X = reference, ...)

#### Value

A consistent object (to the input) including additional columns for each cell type estimated A consistent object (to the input) including additional columns for each cell type estimated A consistent object (to the input) including additional columns for each cell type estimated A consistent object (to the input) including additional columns for each cell type estimated A consistent object (to the input) including additional columns for each cell type estimated A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

#### Examples

```
# Subsetting for time efficiency
tidybulk::se_mini |> deconvolve_cellularity(cores = 1)
```

describe\_transcript Get DESCRIPTION from gene SYMBOL for Human and Mouse

#### Description

Get DESCRIPTION from gene SYMBOL for Human and Mouse describe\_transcript describe\_transcript describe\_transcript describe\_transcript describe\_transcript describe\_transcript

### Usage

```
describe_transcript(.data, .transcript = NULL)
## S4 method for signature 'spec_tbl_df'
describe_transcript(.data, .transcript = NULL)
## S4 method for signature 'tbl_df'
describe_transcript(.data, .transcript = NULL)
## S4 method for signature 'tidybulk'
describe_transcript(.data, .transcript = NULL)
.describe_transcript_SE(.data, .transcript = NULL)
```

### distinct

```
## S4 method for signature 'SummarizedExperiment'
describe_transcript(.data, .transcript = NULL)
```

```
## S4 method for signature 'RangedSummarizedExperiment'
describe_transcript(.data, .transcript = NULL)
```

#### Arguments

| .data       | A tt or tbl object.                              |
|-------------|--------------------------------------------------|
| .transcript | A character. The name of the gene symbol column. |

# Value

### A tbl

A consistent object (to the input) including additional columns for transcript symbol A consistent object (to the input) including additional columns for transcript symbol A consistent object (to the input) including additional columns for transcript symbol A 'SummarizedExperiment' object

A consistent object (to the input) including additional columns for transcript symbol A consistent object (to the input) including additional columns for transcript symbol

### Examples

describe\_transcript(tidybulk::se\_mini)

| distinct    | distinct                                                                                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                            |
| Description |                                                                                                                            |
| distinct    |                                                                                                                            |
| Arguments   |                                                                                                                            |
| .data       | A tbl. (See dplyr)                                                                                                         |
|             | Data frames to combine (See dplyr)                                                                                         |
| .keep_all   | If TRUE, keep all variables in .data. If a combination of is not distinct, this keeps the first row of values. (See dplyr) |
| Value       |                                                                                                                            |

A tt object

### Examples

tidybulk::se\_mini |> tidybulk() |> distinct()

ensembl\_symbol\_mapping

Data set

### Description

Data set

# Usage

ensembl\_symbol\_mapping

### Format

An object of class spec\_tbl\_df (inherits from tbl\_df, tbl, data.frame) with 291249 rows and 3 columns.

ensembl\_to\_symbol Add transcript symbol column from ensembl id for human and mouse data

#### Description

ensembl\_to\_symbol() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with the additional transcript symbol column

# Usage

```
ensembl_to_symbol(.data, .ensembl, action = "add")
## S4 method for signature 'spec_tbl_df'
ensembl_to_symbol(.data, .ensembl, action = "add")
## S4 method for signature 'tbl_df'
ensembl_to_symbol(.data, .ensembl, action = "add")
## S4 method for signature 'tidybulk'
ensembl_to_symbol(.data, .ensembl, action = "add")
```

# Arguments

| .data    | a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .ensembl | A character string. The column that is represents ensembl gene id                                                                                                                             |
| action   | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).                                             |

#### Details

### [Questioning]

This is useful since different resources use ensembl IDs while others use gene symbol IDs. At the moment this work for human (genes and transcripts) and mouse (genes) data.

#### Value

A consistent object (to the input) including additional columns for transcript symbol

A consistent object (to the input) including additional columns for transcript symbol

A consistent object (to the input) including additional columns for transcript symbol

A consistent object (to the input) including additional columns for transcript symbol

# Examples

# This function was designed for data.frame

 $\ensuremath{\texttt{\#}}$  Convert from SummarizedExperiment for this example. It is NOT recommended.

tidybulk::se\_mini |> tidybulk() |> as\_tibble() |> ensembl\_to\_symbol(.feature)

fill\_missing\_abundance

Fill transcript abundance if missing from sample-transcript pairs

# Description

fill\_missing\_abundance() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with new observations

fill\_missing\_abundance

# Usage

```
fill_missing_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  fill_with
)
## S4 method for signature 'spec_tbl_df'
fill_missing_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 fill_with
)
## S4 method for signature 'tbl_df'
fill_missing_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  fill_with
)
## S4 method for signature 'tidybulk'
fill_missing_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  fill_with
)
```

# Arguments

| A 'tbl' formatted as $ <\!\!\text{SAMPLE}> <\!\!\text{TRANSCRIPT}> <\!\!\text{COUNT}> <\!\!\dots> $ |
|-----------------------------------------------------------------------------------------------------|
| The name of the sample column                                                                       |
| The name of the transcript column                                                                   |
| The name of the transcript abundance column                                                         |
| A numerical abundance with which fill the missing data points                                       |
|                                                                                                     |

# Details

[Questioning]

This function fills the abundance of missing sample-transcript pair using the median of the sample group defined by the formula

#### Value

A consistent object (to the input) non-sparse abundance

A consistent object (to the input) with filled abundance

A consistent object (to the input) with filled abundance

A consistent object (to the input) with filled abundance

#### Examples

print("Not run for build time.")

# tidybulk::se\_mini |> fill\_missing\_abundance( fill\_with = 0)

| fil | ter |
|-----|-----|
|-----|-----|

#### Subset rows using column values

#### Description

'filter()' retains the rows where the conditions you provide a 'TRUE'. Note that, unlike base subsetting with '[', rows where the condition evaluates to 'NA' are dropped.

#### Arguments

| .data     | A tbl. (See dplyr)                                                                                                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <['tidy-eval'][dplyr_tidy_eval]> Logical predicates defined in terms of the variables in '.data'. Multiple conditions are combined with '&'. Only rows where the condition evaluates to 'TRUE' are kept. |
| .preserve | when 'FALSE' (the default), the grouping structure is recalculated based on the resulting data, otherwise it is kept as is.                                                                              |

#### Details

dplyr is not yet smart enough to optimise filtering optimisation on grouped datasets that don't need grouped calculations. For this reason, filtering is often considerably faster on [ungroup()]ed data.

#### Value

An object of the same type as '.data'.

\* Rows are a subset of the input, but appear in the same order. \* Columns are not modified. \* The number of groups may be reduced (if '.preserve' is not 'TRUE'). \* Data frame attributes are preserved.

#### flybaseIDs

#### **Useful filter functions**

\* ['=='], ['>'], ['>='] etc \* ['&'], ['|'], [';], [xor()] \* [is.na()] \* [between()], [near()]

#### Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is involved. Compare this ungrouped filtering:

The former keeps rows with 'mass' greater than the global average whereas the latter keeps rows with 'mass' greater than the gender

average.

### Methods

This function is a \*\*generic\*\*, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages:

# See Also

[filter\_all()], [filter\_if()] and [filter\_at()].

Other single table verbs: arrange(), mutate(), rename(), summarise()

#### Examples

data(se)

se |> tidybulk() |> filter(dex=="untrt")

# Learn more in ?dplyr\_tidy\_eval

flybaseIDs flybaseIDs

#### Description

flybaseIDs

#### Usage

flybaseIDs

#### Format

An object of class character of length 14599.

get\_bibliography

#### Description

get\_bibliography() takes as input a 'tidybulk'

#### Usage

```
get_bibliography(.data)
## S4 method for signature 'tbl'
get_bibliography(.data)
## S4 method for signature 'tbl_df'
get_bibliography(.data)
## S4 method for signature 'spec_tbl_df'
get_bibliography(.data)
## S4 method for signature 'tidybulk'
get_bibliography(.data)
## S4 method for signature 'SummarizedExperiment'
get_bibliography(.data)
## S4 method for signature 'RangedSummarizedExperiment'
get_bibliography(.data)
```

# Arguments

.data A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

#### Details

'r lifecycle::badge("maturing")'

This methods returns the bibliography list of your workflow from the internals of a tidybulk object (attr(., "internals"))

### Value

NULL. It prints a list of bibliography references for the software used through the workflow.

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

### Examples

get\_bibliography(tidybulk::se\_mini)

# Description

Get UMAP

# Usage

```
get_reduced_dimensions_UMAP_bulk(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
  .dims = 2,
  top = 500,
  of_samples = TRUE,
  transform = log1p,
  scale = TRUE,
  calculate_for_pca_dimensions = min(20, top),
  ...
)
```

# Arguments

| A tibble                                                                                       |
|------------------------------------------------------------------------------------------------|
| A column symbol. The column that is used to calculate distance (i.e., normally samples)        |
| A column symbol. The column that is represents entities to cluster (i.e., nor-<br>mally genes) |
| A column symbol with the value the clustering is based on (e.g., 'count')                      |
| A integer vector corresponding to principal components of interest (e.g., 1:6)                 |
| An integer. How many top genes to select                                                       |
| A boolean                                                                                      |
|                                                                                                |

| calculate_for_pca_dimensions |                                                                                                                                      |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                              | An integer of length one. The number of PCA dimensions to based the UMAP calculatio on. If NULL all variable features are considered |
|                              | Further parameters passed to the function uwot                                                                                       |
| log_transform                | A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data)                                          |

# Value

A tibble with additional columns

# Description

Get UMAP

# Usage

```
get_reduced_dimensions_UMAP_bulk_SE(
  .data,
  .dims = 2,
  top = 500,
  of_samples = TRUE,
  transform = log1p,
  scale = NULL,
  calculate_for_pca_dimensions = min(20, top),
  ...
)
```

# Arguments

| .data                        | A tibble                                                                                                                                            |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| .dims                        | A integer vector corresponding to principal components of interest (e.g., 1:6)                                                                      |
| top                          | An integer. How many top genes to select                                                                                                            |
| of_samples                   | A boolean                                                                                                                                           |
| transform                    | A function that will tranform the counts, by default it is log1p for RNA sequenc-<br>ing data, but for avoinding tranformation you can use identity |
| calculate_for_pca_dimensions |                                                                                                                                                     |
|                              | An integer of length one. The number of PCA dimensions to based the UMAP calculatio on. If NULL all variable features are considered                |
|                              | Further parameters passed to the function uwot                                                                                                      |
| .abundance                   | A column symbol with the value the clustering is based on (e.g., 'count')                                                                           |

#### group\_by

| .feature | A column symbol. The column that is represents entities to cluster (i.e., nor-<br>mally genes) |
|----------|------------------------------------------------------------------------------------------------|
| .element | A column symbol. The column that is used to calculate distance (i.e., normally samples)        |

# Value

A tibble with additional columns

| group_by G | Group by one or more variables |
|------------|--------------------------------|
|------------|--------------------------------|

# Description

Most data operations are done on groups defined by variables. 'group\_by()' takes an existing tbl and converts it into a grouped tbl where operations are performed "by group". 'ungroup()' removes grouping.

# Arguments

| .data | A tbl. (See dplyr)                                                                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | In 'group_by()', variables or computations to group by. In 'ungroup()', variables to remove from the grouping.                                          |
| . add | When 'FALSE', the default, 'group_by()' will override existing groups. To add to the existing groups, use '.add = TRUE'.                                |
|       | This argument was previously called 'add', but that prevented creating a new grouping variable called 'add', and conflicts with our naming conventions. |
| .drop | When '.drop = TRUE', empty groups are dropped. See [group_by_drop_default()] for what the default value is for this argument.                           |

# Value

A [grouped data frame][grouped\_df()], unless the combination of '...' and 'add' yields a non empty set of grouping columns, a regular (ungrouped) data frame otherwise.

# Methods

These function are \*\*generic\*\*s, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

Methods available in currently loaded packages:

# Examples

by\_cyl <- mtcars |> group\_by(cyl)

identify\_abundant find abundant transcripts

#### Description

identify\_abundant() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test.

#### Usage

```
identify_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'spec_tbl_df'
identify_abundant(
  .data.
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'tbl_df'
identify_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'tidybulk'
identify_abundant(
  .data,
```

```
.sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'SummarizedExperiment'
identify_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'RangedSummarizedExperiment'
identify_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
```

# Arguments

| .data              | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))                          |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| .sample            | The name of the sample column                                                                                                                                                                                          |  |
| .transcript        | The name of the transcript/gene column                                                                                                                                                                                 |  |
| .abundance         | The name of the transcript/gene abundance column                                                                                                                                                                       |  |
| factor_of_interest |                                                                                                                                                                                                                        |  |
|                    | The name of the column of the factor of interest. This is used for defining sample groups for the filtering process. It uses the filterByExpr function from edgeR.                                                     |  |
| minimum_counts     | A real positive number. It is the threshold of count per million that is used to filter transcripts/genes out from the scaling procedure.                                                                              |  |
| minimum_proportion |                                                                                                                                                                                                                        |  |
|                    | A real positive number between 0 and 1. It is the threshold of proportion of samples for each transcripts/genes that have to be characterised by a cmp bigger than the threshold to be included for scaling procedure. |  |

### Details

'r lifecycle::badge("maturing")'

At the moment this function uses edgeR (DOI: 10.1093/bioinformatics/btp616)

Underlying method: edgeR::filterByExpr( data, min.count = minimum\_counts, group = string\_factor\_of\_interest, min.prop = minimum\_proportion )

### Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

# Examples

```
identify_abundant(
tidybulk::se_mini
)
```

impute\_missing\_abundance

impute transcript abundance if missing from sample-transcript pairs

# Description

impute\_missing\_abundance() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional sample-transcript pairs with imputed transcript abundance.
```
impute_missing_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  suffix = "",
  force_scaling = FALSE
)
## S4 method for signature 'spec_tbl_df'
impute_missing_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  suffix = "",
  force_scaling = FALSE
)
## S4 method for signature 'tbl_df'
impute_missing_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  suffix = "",
  force_scaling = FALSE
)
## S4 method for signature 'tidybulk'
impute_missing_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  suffix = "",
  force_scaling = FALSE
)
## S4 method for signature 'SummarizedExperiment'
impute_missing_abundance(
  .data,
  .formula,
```

```
.sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  suffix = "",
 force_scaling = FALSE
)
## S4 method for signature 'RangedSummarizedExperiment'
impute_missing_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 suffix = "",
 force_scaling = FALSE
)
```

| .data         | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .formula      | A formula with no response variable, representing the desired linear model where the first covariate is the factor of interest and the second covariate is the unwanted variation (of the kind ~ factor_of_interest + batch)       |
| .sample       | The name of the sample column                                                                                                                                                                                                      |
| .transcript   | The name of the transcript/gene column                                                                                                                                                                                             |
| .abundance    | The name of the transcript/gene abundance column                                                                                                                                                                                   |
| suffix        | A character string. This is added to the imputed count column names. If empty the count column are overwritten                                                                                                                     |
| force_scaling | A boolean. In case a abundance-containing column is not scaled (columns with _scale suffix), setting force_scaling = TRUE will result in a scaling by library size, to compensating for a possible difference in sequencing depth. |

# Details

'r lifecycle::badge("maturing")'

This function imputes the abundance of missing sample-transcript pair using the median of the sample group defined by the formula

## Value

A consistent object (to the input) non-sparse abundance

A consistent object (to the input) with imputed abundance

A consistent object (to the input) with imputed abundance

# inner\_join

- A consistent object (to the input) with imputed abundance
- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object

# Examples

```
res =
impute_missing_abundance(
tidybulk::se_mini,
~ condition
)
```

inner\_join

# Inner join datasets

# Description

Inner join datasets

Right join datasets

Full join datasets

# Arguments

| х      | tbls to join. (See dplyr)                                                                                                                                                            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| У      | tbls to join. (See dplyr)                                                                                                                                                            |
| by     | A character vector of variables to join by. (See dplyr)                                                                                                                              |
| сору   | If x and y are not from the same data source, and copy is TRUE, then y will be copied into the same src as x. (See dplyr)                                                            |
| suffix | If there are non-joined duplicate variables in x and y, these suffixes will be added<br>to the output to disambiguate them. Should be a character vector of length 2.<br>(See dplyr) |
|        | Data frames to combine (See dplyr)                                                                                                                                                   |

#### Value

A tt object

A tt object

A tt object

## Examples

```
annotation = tidybulk::se_mini |> tidybulk() |> as_tibble() |> distinct(.sample) |> mutate(source = "AU")
tidybulk::se_mini |> tidybulk() |> as_tibble() |> inner_join(annotation)
```

```
annotation = tidybulk::se_mini |> tidybulk() |> as_tibble() |> distinct(.sample) |> mutate(source = "AU")
tidybulk::se_mini |> tidybulk() |> as_tibble() |> right_join(annotation)
```

```
annotation = tidybulk::se_mini |> tidybulk() |> as_tibble() |> distinct(.sample) |> mutate(source = "AU")
tidybulk::se_mini |> tidybulk() |> as_tibble() |> full_join(annotation)
```

keep\_abundant Keep abundant transcripts

# Description

keep\_abundant() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test.

#### Usage

```
keep_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
  minimum_counts = 10,
  minimum_proportion = 0.7
)
## S4 method for signature 'spec_tbl_df'
keep_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
  minimum_counts = 10,
  minimum_proportion = 0.7
)
## S4 method for signature 'tbl_df'
```

```
keep_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'tidybulk'
keep_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'SummarizedExperiment'
keep_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
## S4 method for signature 'RangedSummarizedExperiment'
keep_abundant(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  factor_of_interest = NULL,
 minimum_counts = 10,
 minimum_proportion = 0.7
)
```

```
.data
```

A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

| .sample                   | The name of the sample column                                                                                                                                                                                          |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| .transcript               | The name of the transcript/gene column                                                                                                                                                                                 |  |
| .abundance                | The name of the transcript/gene abundance column                                                                                                                                                                       |  |
| factor_of_interest        |                                                                                                                                                                                                                        |  |
|                           | The name of the column of the factor of interest. This is used for defining sample groups for the filtering process. It uses the filterByExpr function from edgeR.                                                     |  |
| <pre>minimum_counts</pre> | A real positive number. It is the threshold of count per million that is used to filter transcripts/genes out from the scaling procedure.                                                                              |  |
| minimum_proportion        |                                                                                                                                                                                                                        |  |
|                           | A real positive number between 0 and 1. It is the threshold of proportion of samples for each transcripts/genes that have to be characterised by a cmp bigger than the threshold to be included for scaling procedure. |  |

#### Details

### [Questioning]

At the moment this function uses edgeR (DOI: 10.1093/bioinformatics/btp616)

Underlying method: edgeR::filterByExpr( data, min.count = minimum\_counts, group = string\_factor\_of\_interest, min.prop = minimum\_proportion )

# Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

# Examples

```
keep_abundant(
tidybulk::se_mini
)
```

keep\_variable

#### Description

keep\_variable() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test.

```
keep_variable(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  top = 500,
  transform = log1p,
  log_transform = TRUE
)
## S4 method for signature 'spec_tbl_df'
keep_variable(
  .data.
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  top = 500,
  transform = log1p,
  log_transform = NULL
)
## S4 method for signature 'tbl_df'
keep_variable(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  top = 500,
  transform = log1p,
  log_transform = NULL
)
## S4 method for signature 'tidybulk'
keep_variable(
  .data,
```

```
.sample = NULL,
.transcript = NULL,
.abundance = NULL,
top = 500,
transform = log1p,
log_transform = NULL
)
## S4 method for signature 'SummarizedExperiment'
keep_variable(.data, top = 500, transform = log1p)
## S4 method for signature 'RangedSummarizedExperiment'
keep_variable(.data, top = 500, transform = log1p)
```

| .data         | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .sample       | The name of the sample column                                                                                                                                                                 |
| .transcript   | The name of the transcript/gene column                                                                                                                                                        |
| .abundance    | The name of the transcript/gene abundance column                                                                                                                                              |
| top           | Integer. Number of top transcript to consider                                                                                                                                                 |
| transform     | A function that will tranform the counts, by default it is log1p for RNA sequenc-<br>ing data, but for avoinding tranformation you can use identity                                           |
| log_transform | DEPRECATED - A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data)                                                                                      |

### Details

'r lifecycle::badge("maturing")'

At the moment this function uses edgeR https://doi.org/10.1093/bioinformatics/btp616

### Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

Underlying method: s <- rowMeans((x - rowMeans(x)) ^ 2) o <- order(s, decreasing = TRUE) x <- x[o[1L:top], , drop = FALSE] variable\_trancripts = rownames(x)

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object

# Examples

```
keep_variable(tidybulk::se_mini, top = 500)
```

log10\_reverse\_trans log10\_reverse\_trans

# Description

it perform log scaling and reverse the axis. Useful to plot negative log probabilities. To not be used directly but with ggplot (e.g.  $scale_y_continuous(trans = "log10_reverse")$ )

# Usage

```
log10_reverse_trans()
```

## Details

```
'r lifecycle::badge("maturing")'
```

# Value

A scales object

# Examples

```
library(ggplot2)
library(tibble)
```

```
tibble(pvalue = c(0.001, 0.05, 0.1), fold_change = 1:3) %>%
ggplot(aes(fold_change , pvalue)) +
geom_point() +
scale_y_continuous(trans = "log10_reverse")
```

logit\_trans

#### Description

it perform logit scaling with right axis formatting. To not be used directly but with ggplot (e.g. scale\_y\_continuous(trans = "log10\_reverse"))

# Usage

logit\_trans()

#### Details

'r lifecycle::badge("maturing")'

# Value

A scales object

## Examples

```
library(ggplot2)
library(tibble)
tibble(pvalue = c(0.001, 0.05, 0.1), fold_change = 1:3) %>%
ggplot(aes(fold_change , pvalue)) +
geom_point() +
scale_y_continuous(trans = "log10_reverse")
```

mutate

Create, modify, and delete columns

# Description

'mutate()' adds new variables and preserves existing ones; 'transmute()' adds new variables and drops existing ones. New variables overwrite existing variables of the same name. Variables can be removed by setting their value to 'NULL'.

#### mutate

#### Arguments

| .data | A tbl. (See dplyr)                                                                                                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <['tidy-eval'][dplyr_tidy_eval]> Name-value pairs. The name gives the name of the column in the output.                                                                                                                                                           |
|       | The value can be:                                                                                                                                                                                                                                                 |
|       | * A vector of length 1, which will be recycled to the correct length. * A vector the same length as the current group (or the whole data frame if ungrouped). * 'NULL', to remove the column. * A data frame or tibble, to create multiple columns in the output. |

# Value

An object of the same type as '.data'.

For 'mutate()':

\* Rows are not affected. \* Existing columns will be preserved unless explicitly modified. \* New columns will be added to the right of existing columns. \* Columns given value 'NULL' will be removed \* Groups will be recomputed if a grouping variable is mutated. \* Data frame attributes are preserved.

For 'transmute()':

\* Rows are not affected. \* Apart from grouping variables, existing columns will be remove unless explicitly kept. \* Column order matches order of expressions. \* Groups will be recomputed if a grouping variable is mutated. \* Data frame attributes are preserved.

## Useful mutate functions

\* ['+'], ['-'], [log()], etc., for their usual mathematical meanings

\* [lead()], [lag()]

- \* [dense\_rank()], [min\_rank()], [percent\_rank()], [row\_number()], [cume\_dist()], [ntile()]
- \* [cumsum()], [cummean()], [cummin()], [cummax()], [cumany()], [cumall()]
- \* [na\_if()], [coalesce()]
- \* [if\_else()], [recode()], [case\_when()]

### **Grouped tibbles**

Because mutating expressions are computed within groups, they may yield different results on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is involved. Compare this ungrouped mutate:

With the grouped equivalent:

The former normalises 'mass' by the global average whereas the latter normalises by the averages within gender levels.

# Methods

These function are \*\*generic\*\*s, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

Methods available in currently loaded packages:

### See Also

```
Other single table verbs: arrange(), filter(), rename(), summarise()
```

#### Examples

```
# Newly created variables are available immediately
mtcars |> as_tibble() |> mutate(
  cyl2 = cyl * 2,
  cyl4 = cyl2 * 2
)
```

pivot\_sample

Extract sample-wise information

# Description

pivot\_sample() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' with only sample-related columns

# Usage

```
pivot_sample(.data, .sample = NULL)
## S4 method for signature 'spec_tbl_df'
pivot_sample(.data, .sample = NULL)
## S4 method for signature 'tbl_df'
pivot_sample(.data, .sample = NULL)
## S4 method for signature 'tidybulk'
pivot_sample(.data, .sample = NULL)
## S4 method for signature 'SummarizedExperiment'
pivot_sample(.data, .sample = NULL)
## S4 method for signature 'RangedSummarizedExperiment'
pivot_sample(.data, .sample = NULL)
```

#### pivot\_transcript

#### Arguments

| .data   | A 'tbl' (with at least three columns for sample, feature and transcript abunda<br>or 'SummarizedExperiment' (more convenient if abstracted to tibble wi |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | brary(tidySummarizedExperiment))                                                                                                                        |  |
| .sample | The name of the sample column                                                                                                                           |  |

#### Details

'r lifecycle::badge("maturing")'

This functon extracts only sample-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to tidybulk function.

# Value

A 'tbl' with transcript-related information

A consistent object (to the input)

A consistent object (to the input)

# Examples

pivot\_sample(tidybulk::se\_mini )

pivot\_transcript Extract transcript-wise information

#### Description

pivot\_transcript() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' with only transcript-related columns

```
pivot_transcript(.data, .transcript = NULL)
## S4 method for signature 'spec_tbl_df'
pivot_transcript(.data, .transcript = NULL)
## S4 method for signature 'tbl_df'
pivot_transcript(.data, .transcript = NULL)
## S4 method for signature 'tidybulk'
pivot_transcript(.data, .transcript = NULL)
```

```
## S4 method for signature 'SummarizedExperiment'
pivot_transcript(.data, .transcript = NULL)
## S4 method for signature 'RangedSummarizedExperiment'
pivot_transcript(.data, .transcript = NULL)
```

| .data       | A 'tbl' (with at least three columns for sample, feature and transcript abundance) |
|-------------|------------------------------------------------------------------------------------|
|             | or 'SummarizedExperiment' (more convenient if abstracted to tibble with li-        |
|             | brary(tidySummarizedExperiment))                                                   |
| .transcript | The name of the transcript column                                                  |

# Details

'r lifecycle::badge("maturing")'

This function extracts only transcript-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to tidybulk function.

#### Value

A 'tbl' with transcript-related information

A consistent object (to the input)

A consistent object (to the input)

#### Examples

pivot\_transcript(tidybulk::se\_mini )

quantile\_normalise\_abundance

Normalise by quantiles the counts of transcripts/genes

## Description

quantile\_normalise\_abundance() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and Scales transcript abundance compansating for sequencing depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25).

```
quantile_normalise_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  method = "limma_normalize_quantiles",
  action = "add"
)
## S4 method for signature 'spec_tbl_df'
quantile_normalise_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "limma_normalize_quantiles",
  action = "add"
)
## S4 method for signature 'tbl_df'
quantile_normalise_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  method = "limma_normalize_quantiles",
  action = "add"
)
## S4 method for signature 'tidybulk'
quantile_normalise_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "limma_normalize_quantiles",
  action = "add"
)
## S4 method for signature 'SummarizedExperiment'
quantile_normalise_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  method = "limma_normalize_quantiles",
  action = NULL
```

```
## S4 method for signature 'RangedSummarizedExperiment'
quantile_normalise_abundance(
   .data,
   .sample = NULL,
   .transcript = NULL,
   .abundance = NULL,
   method = "limma_normalize_quantiles",
   action = NULL
)
```

| .data       | A 'tbl' (with at least three columns for sample, feature and transcript abundance)<br>or 'SummarizedExperiment' (more convenient if abstracted to tibble with li-<br>brary(tidySummarizedExperiment))                                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .sample     | The name of the sample column                                                                                                                                                                                                                                   |
| .transcript | The name of the transcript/gene column                                                                                                                                                                                                                          |
| .abundance  | The name of the transcript/gene abundance column                                                                                                                                                                                                                |
| method      | A character string. Either "limma_normalize_quantiles" for limma::normalizeQuantiles<br>or "preprocesscore_normalize_quantiles_use_target" for preprocessCore::normalize.quantiles.use.target<br>for large-scale dataset, where limmma could not be compatible. |
| action      | A character string between "add" (default) and "only". "add" joins the new information to the input tbl (default), "only" return a non-redundant tbl with the just new information.                                                                             |

#### Details

'r lifecycle::badge("maturing")'

Scales transcript abundance compensating for sequencing depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25). Lowly transcribed transcripts/genes (defined with minimum\_counts and minimum\_proportion parameters) are filtered out from the scaling procedure. The scaling inference is then applied back to all unfiltered data.

Underlying method edgeR::calcNormFactors(.data, method = c("TMM", "TMMwsp", "RLE", "upperquartile"))

## Value

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

52

)

reduce\_dimensions

## Examples

tidybulk::se\_mini |>
quantile\_normalise\_abundance()

reduce\_dimensions Dimension reduction of the transcript abundance data

#### Description

reduce\_dimensions() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and calculates the reduced dimensional space of the transcript abundance.

```
reduce_dimensions(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
  .dims = 2,
  top = 500,
  of_samples = TRUE,
  transform = log1p,
  scale = TRUE,
  action = "add",
  ...,
  log_transform = NULL
)
## S4 method for signature 'spec_tbl_df'
reduce_dimensions(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
  .dims = 2,
  top = 500,
  of_samples = TRUE,
  transform = log1p,
```

```
scale = TRUE,
 action = "add",
  ...,
 log_transform = NULL
)
## S4 method for signature 'tbl_df'
reduce_dimensions(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
  .dims = 2,
  top = 500,
  of_samples = TRUE,
  transform = log1p,
  scale = TRUE,
 action = "add",
  . . . ,
 log_transform = NULL
)
## S4 method for signature 'tidybulk'
reduce_dimensions(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
  .dims = 2,
  top = 500,
  of_samples = TRUE,
  transform = log1p,
  scale = TRUE,
  action = "add",
  . . . ,
 log_transform = NULL
)
## S4 method for signature 'SummarizedExperiment'
reduce_dimensions(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
```

```
.dims = 2,
```

```
top = 500,
of_samples = TRUE,
transform = log1p,
scale = TRUE,
action = "add",
...,
log_transform = NULL
```

)

## S4 method for signature 'RangedSummarizedExperiment'
reduce\_dimensions(

```
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
.dims = 2,
top = 500,
of_samples = TRUE,
transform = log1p,
scale = TRUE,
action = "add",
...,
log_transform = NULL
```

# Arguments

)

| .data       | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .element    | The name of the element column (normally samples).                                                                                                                                                  |
| .feature    | The name of the feature column (normally transcripts/genes)                                                                                                                                         |
| . abundance | The name of the column including the numerical value the clustering is based<br>on (normally transcript abundance)                                                                                  |
| method      | A character string. The dimension reduction algorithm to use (PCA, MDS, tSNE).                                                                                                                      |
| .dims       | An integer. The number of dimensions your are interested in (e.g., 4 for return-<br>ing the first four principal components).                                                                       |
| top         | An integer. How many top genes to select for dimensionality reduction                                                                                                                               |
| of_samples  | A boolean. In case the input is a tidybulk object, it indicates Whether the ele-<br>ment column will be sample or transcript column                                                                 |
| transform   | A function that will tranform the counts, by default it is log1p for RNA sequenc-<br>ing data, but for avoinding tranformation you can use identity                                                 |
| scale       | A boolean for method="PCA", this will be passed to the 'prcomp' function. It is not included in the argument because although the default for 'prcomp' if FALSE, it is advisable to set it as TRUE. |

| action        | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get). |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Further parameters passed to the function prcomp if you choose method="PCA" or Rtsne if you choose method="tSNE"                                  |
| log_transform | DEPRECATED - A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data)                                          |

## Details

'r lifecycle::badge("maturing")'

This function reduces the dimensions of the transcript abundances. It can use multi-dimensional scaling (MDS; DOI.org/10.1186/gb-2010-11-3-r25), principal component analysis (PCA), or tSNE (Jesse Krijthe et al. 2018)

Underlying method for PCA: prcomp(scale = scale, ...)

Underlying method for MDS: limma::plotMDS(ndim = .dims, plot = FALSE, top = top)

Underlying method for tSNE: Rtsne::Rtsne(data, ...)

Underlying method for UMAP:

df\_source = .data |>

# Filter NA symbol filter(!!.feature |> is.na() |> not()) |>

# Prepare data frame distinct(!!.feature,!!.element,!!.abundance) |>

# Filter most variable genes keep\_variable\_transcripts(top) |> reduce\_dimensions(method="PCA", .dims = calculate\_for\_pca\_dimensions, action="get") |> as\_matrix(rownames = quo\_name(.element)) |> uwot::tumap(...)

## Value

A tbl object with additional columns for the reduced dimensions

A tbl object with additional columns for the reduced dimensions

A tbl object with additional columns for the reduced dimensions

A tbl object with additional columns for the reduced dimensions

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

# Examples

```
counts.MDS =
  tidybulk::se_mini |>
  identify_abundant() |>
  reduce_dimensions( method="MDS", .dims = 3)
counts.PCA =
  tidybulk::se_mini |>
```

### reexports

```
identify_abundant() |>
reduce_dimensions(method="PCA", .dims = 3)
```

reexports

#### Objects exported from other packages

# Description

These objects are imported from other packages. Follow the links below to see their documentation.

dplyr do, select
tibble as\_tibble, tibble

| remove_redundancy | Drop redundant elements (e.g., samples) for which feature (e.g., tran- |
|-------------------|------------------------------------------------------------------------|
|                   | script/gene) abundances are correlated                                 |

# Description

remove\_redundancy() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) for correlation method or | <DIMENSION 1> | <DIMENSION 2> | <...> | for reduced\_dimensions method, and returns a consistent object (to the input) with dropped elements (e.g., samples).

```
remove_redundancy(
   .data,
   .element = NULL,
   .feature = NULL,
   .abundance = NULL,
   method,
   of_samples = TRUE,
   correlation_threshold = 0.9,
   top = Inf,
   transform = identity,
   Dim_a_column,
   lom_b_column,
   log_transform = NULL
)
```

```
## S4 method for signature 'spec_tbl_df'
remove_redundancy(
  .data.
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
 of_samples = TRUE,
  correlation_threshold = 0.9,
  top = Inf,
  transform = identity,
 Dim_a_column = NULL,
 Dim_b_column = NULL,
 log_transform = NULL
)
## S4 method for signature 'tbl_df'
remove_redundancy(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
 of_samples = TRUE,
  correlation_threshold = 0.9,
  top = Inf,
  transform = identity,
 Dim_a_column = NULL,
 Dim_b_column = NULL,
 log_transform = NULL
)
## S4 method for signature 'tidybulk'
remove_redundancy(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
 of_samples = TRUE,
  correlation_threshold = 0.9,
  top = Inf,
  transform = identity,
 Dim_a_column = NULL,
 Dim_b_column = NULL,
  log_transform = NULL
```

```
)
```

```
## S4 method for signature 'SummarizedExperiment'
remove_redundancy(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
 of_samples = TRUE,
  correlation_threshold = 0.9,
  top = Inf,
  transform = identity,
 Dim_a_column = NULL,
 Dim_b_column = NULL,
 log_transform = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
remove_redundancy(
  .data,
  .element = NULL,
  .feature = NULL,
  .abundance = NULL,
 method,
 of_samples = TRUE,
 correlation_threshold = 0.9,
  top = Inf,
  transform = identity,
 Dim_a_column = NULL,
```

```
)
```

Dim\_b\_column = NULL, log\_transform = NULL

# Arguments

| .data                 | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .element              | The name of the element column (normally samples).                                                                                                                                            |
| .feature              | The name of the feature column (normally transcripts/genes)                                                                                                                                   |
| . abundance           | The name of the column including the numerical value the clustering is based<br>on (normally transcript abundance)                                                                            |
| method                | A character string. The method to use, correlation and reduced_dimensions are available. The latter eliminates one of the most proximar pairs of samples in PCA reduced dimensions.           |
| of_samples            | A boolean. In case the input is a tidybulk object, it indicates Whether the ele-<br>ment column will be sample or transcript column                                                           |
| correlation_threshold |                                                                                                                                                                                               |
|                       | A real number between 0 and 1. For correlation based calculation.                                                                                                                             |

| top           | An integer. How many top genes to select for correlation based method                                                                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| transform     | A function that will tranform the counts, by default it is log1p for RNA sequenc-<br>ing data, but for avoinding tranformation you can use identity |
| Dim_a_column  | A character string. For reduced_dimension based calculation. The column of one principal component                                                  |
| Dim_b_column  | A character string. For reduced_dimension based calculation. The column of another principal component                                              |
| log_transform | DEPRECATED - A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data)                                            |

# Details

'r lifecycle::badge("maturing")'

This function removes redundant elements from the original data set (e.g., samples or transcripts). For example, if we want to define cell-type specific signatures with low sample redundancy. This function returns a tibble with dropped redundant elements (e.g., samples). Two redundancy estimation approaches are supported: (i) removal of highly correlated clusters of elements (keeping a representative) with method="correlation"; (ii) removal of most proximal element pairs in a reduced dimensional space.

Underlying method for correlation: widyr::pairwise\_cor(sample, transcript,count, sort = TRUE, diag = FALSE, upper = FALSE)

Underlying custom method for reduced dimensions: select\_closest\_pairs = function(df) couples <- df l> head(n = 0)

while (df |> nrow() > 0) pair <- df |> arrange(dist) |> head(n = 1) couples <- couples  $|> bind_rows(pair)$  df <- df |> filter( ;sample 1' ;sample 2' )

couples

# Value

A tbl object with with dropped redundant elements (e.g., samples).

A tbl object with with dropped redundant elements (e.g., samples).

A tbl object with dropped redundant elements (e.g., samples).

A tbl object with with dropped redundant elements (e.g., samples).

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

# Examples

```
tidybulk::se_mini |>
identify_abundant() |>
remove_redundancy(
  .element = sample,
  .feature = transcript,
  .abundance = count,
```

#### rename

```
method = "correlation"
)

counts.MDS =
  tidybulk::se_mini |>
  identify_abundant() |>
  reduce_dimensions( method="MDS", .dims = 3)

remove_redundancy(
  counts.MDS,
  Dim_a_column = `Dim1`,
  Dim_b_column = `Dim2`,
  .element = sample,
   method = "reduced_dimensions"
)
```

rename

Rename columns

#### Description

Rename individual variables using 'new\_name = old\_name' syntax.

## Arguments

| .data | A tbl. (See dplyr)                                                                                |
|-------|---------------------------------------------------------------------------------------------------|
|       | <['tidy-select'][dplyr_tidy_select]> Use 'new_name = old_name' to rename se-<br>lected variables. |

# Value

An object of the same type as '.data'. \* Rows are not affected. \* Column names are changed; column order is preserved \* Data frame attributes are preserved. \* Groups are updated to reflect new names.

# Scoped selection and renaming

Use the three scoped variants ([rename\_all()], [rename\_if()], [rename\_at()]) to renaming a set of variables with a function.

# Methods

This function is a \*\*generic\*\*, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages:

### See Also

Other single table verbs: arrange(), filter(), mutate(), summarise()

#### Examples

```
iris <- as_tibble(iris) # so it prints a little nicer
rename(iris, petal_length = Petal.Length)
```

| rotate_dimensions | Rotate two dimensions (e.g., principal components) of an arbitrary |
|-------------------|--------------------------------------------------------------------|
|                   | angle                                                              |

### Description

rotate\_dimensions() takes as input a 'tbl' formatted as | <DIMENSION 1> | <DIMENSION 2> | <...> | and calculates the rotated dimensional space of the transcript abundance.

# Usage

```
rotate_dimensions(
  .data,
  dimension_1_column,
 dimension_2_column,
  rotation_degrees,
  .element = NULL,
 of_samples = TRUE,
  dimension_1_column_rotated = NULL,
 dimension_2_column_rotated = NULL,
  action = "add"
)
## S4 method for signature 'spec_tbl_df'
rotate_dimensions(
  .data,
 dimension_1_column,
 dimension_2_column,
  rotation_degrees,
  .element = NULL,
 of_samples = TRUE,
  dimension_1_column_rotated = NULL,
 dimension_2_column_rotated = NULL,
 action = "add"
)
## S4 method for signature 'tbl_df'
rotate_dimensions(
```

```
.data,
  dimension_1_column,
  dimension_2_column,
  rotation_degrees,
  .element = NULL,
  of_samples = TRUE,
  dimension_1_column_rotated = NULL,
  dimension_2_column_rotated = NULL,
  action = "add"
)
## S4 method for signature 'tidybulk'
rotate_dimensions(
  .data,
  dimension_1_column,
  dimension_2_column,
  rotation_degrees,
  .element = NULL,
  of_samples = TRUE,
  dimension_1_column_rotated = NULL,
  dimension_2_column_rotated = NULL,
  action = "add"
)
## S4 method for signature 'SummarizedExperiment'
rotate_dimensions(
  .data,
  dimension_1_column,
  dimension_2_column,
  rotation_degrees,
  .element = NULL,
 of_samples = TRUE,
  dimension_1_column_rotated = NULL,
  dimension_2_column_rotated = NULL,
  action = "add"
)
## S4 method for signature 'RangedSummarizedExperiment'
rotate_dimensions(
  .data,
  dimension_1_column,
  dimension_2_column,
  rotation_degrees,
  .element = NULL,
  of_samples = TRUE,
  dimension_1_column_rotated = NULL,
  dimension_2_column_rotated = NULL,
  action = "add"
```

)

| .data           | A 'tbl' (with at least three columns for sample, feature and transcript abundance)                                                                |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | or 'SummarizedExperiment' (more convenient if abstracted to tibble with li-                                                                       |
|                 | brary(tidySummarizedExperiment))                                                                                                                  |
| dimension_1_col | .umn                                                                                                                                              |
|                 | A character string. The column of the dimension 1                                                                                                 |
| dimension_2_col | umn                                                                                                                                               |
|                 | A character string. The column of the dimension 2                                                                                                 |
| rotation_degree | 2S                                                                                                                                                |
|                 | A real number between 0 and 360                                                                                                                   |
| .element        | The name of the element column (normally samples).                                                                                                |
| of_samples      | A boolean. In case the input is a tidybulk object, it indicates Whether the ele-<br>ment column will be sample or transcript column               |
| dimension_1_col | _umn_rotated                                                                                                                                      |
|                 | A character string. The column of the rotated dimension 1 (optional)                                                                              |
| dimension_2_col | _umn_rotated                                                                                                                                      |
|                 | A character string. The column of the rotated dimension 2 (optional)                                                                              |
| action          | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get). |

### Details

'r lifecycle::badge("maturing")'

This function to rotate two dimensions such as the reduced dimensions.

Underlying custom method: rotation = function(m, d) // r = the angle // m data matrix r = d \* pi / 180 ((bind\_rows( c('1' = cos(r), '2' = -sin(r)), c('1' = sin(r), '2' = cos(r)) )  $\Rightarrow$  as\_matrix())

## Value

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION> rotated <ANGLE>' by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION> rotated <ANGLE>' by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION> rotated <ANGLE>' by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION> rotated <ANGLE>' by default, or as specified in the input arguments.

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

#### rowwise

## Examples

```
counts.MDS =
  tidybulk::se_mini |>
  identify_abundant() |>
  reduce_dimensions( method="MDS", .dims = 3)
```

counts.MDS.rotated = rotate\_dimensions(counts.MDS, `Dim1`, `Dim2`, rotation\_degrees = 45, .element = sample)

rowwise

Group input by rows

# Description

See [this repository](https://github.com/jennybc/row-oriented-workflows) for alternative ways to perform row-wise operations.

## Arguments

| data | Input data frame.                                                                                                                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Variables to be preserved when calling summarise(). This is typically a set of variables whose combination uniquely identify each row. NB: unlike group_by() you can not create new variables here but instead you can select multiple variables with (e.g.) everything(). |
|      |                                                                                                                                                                                                                                                                            |

#### Details

'rowwise()' is used for the results of [do()] when you create list-variables. It is also useful to support arbitrary complex operations that need to be applied to each row.

Currently, rowwise grouping only works with data frames. Its main impact is to allow you to work with list-variables in [summarise()] and [mutate()] without having to use [[1]]. This makes 'summarise()' on a rowwise tbl effectively equivalent to [plyr::ldply()].

# Value

A consistent object (to the input)

A 'tbl'

### Examples

df <- expand.grid(x = 1:3, y = 3:1)
df\_done <- df |> rowwise()

scale\_abundance

#### Description

scale\_abundance() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and Scales transcript abundance compansating for sequencing depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25).

```
scale_abundance(
  .data.
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "TMM",
  reference_sample = NULL,
  .subset_for_scaling = NULL,
  action = "add",
  reference_selection_function = NULL
)
## S4 method for signature 'spec_tbl_df'
scale_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "TMM",
  reference_sample = NULL,
  .subset_for_scaling = NULL,
  action = "add",
  reference_selection_function = NULL
)
## S4 method for signature 'tbl_df'
scale_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "TMM",
  reference_sample = NULL,
  .subset_for_scaling = NULL,
  action = "add",
```

```
reference_selection_function = NULL
)
## S4 method for signature 'tidybulk'
scale_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "TMM",
  reference_sample = NULL,
  .subset_for_scaling = NULL,
  action = "add",
  reference_selection_function = NULL
)
## S4 method for signature 'SummarizedExperiment'
scale_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "TMM",
  reference_sample = NULL,
  .subset_for_scaling = NULL,
  action = NULL,
  reference_selection_function = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
scale_abundance(
  .data,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "TMM",
  reference_sample = NULL,
  .subset_for_scaling = NULL,
  action = NULL,
  reference_selection_function = NULL
)
```

.

| A 'tbl' (with at least three columns for sample, feature and transcript abundance)                         |
|------------------------------------------------------------------------------------------------------------|
| or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
| The name of the sample column                                                                              |
|                                                                                                            |

| .transcript                  | The name of the transcript/gene column                                                                                                                                              |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . abundance                  | The name of the transcript/gene abundance column                                                                                                                                    |
| method                       | A character string. The scaling method passed to the back-end function (i.e., edgeR::calcNormFactors; "TMM","TMMwsp","RLE","upperquartile")                                         |
| reference_sample             |                                                                                                                                                                                     |
|                              | A character string. The name of the reference sample. If NULL the sample with highest total read count will be selected as reference.                                               |
| .subset_for_scaling          |                                                                                                                                                                                     |
|                              | A gene-wise quosure condition. This will be used to filter rows (features/genes) of the dataset. For example                                                                        |
| action                       | A character string between "add" (default) and "only". "add" joins the new information to the input tbl (default), "only" return a non-redundant tbl with the just new information. |
| reference_selection_function |                                                                                                                                                                                     |
|                              | DEPRECATED. please use reference_sample.                                                                                                                                            |

## Details

'r lifecycle::badge("maturing")'

Scales transcript abundance compensating for sequencing depth (e.g., with TMM algorithm, Robinson and Oshlack doi.org/10.1186/gb-2010-11-3-r25). Lowly transcribed transcripts/genes (defined with minimum\_counts and minimum\_proportion parameters) are filtered out from the scaling procedure. The scaling inference is then applied back to all unfiltered data.

Underlying method edgeR::calcNormFactors(.data, method = c("TMM", "TMMwsp", "RLE", "upperquartile"))

#### Value

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

A tbl object with additional columns with scaled data as '<NAME OF COUNT COLUMN>\_scaled'

- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object

## Examples

```
tidybulk::se_mini |>
   identify_abundant() |>
   scale_abundance()
```

se

# Description

SummarizedExperiment

# Usage

se

# Format

An object of class RangedSummarizedExperiment with 100 rows and 8 columns.

| mır |  |
|-----|--|
|     |  |
|     |  |

SummarizedExperiment mini for vignette

## Description

SummarizedExperiment mini for vignette

#### Usage

se\_mini

# Format

An object of class SummarizedExperiment with 527 rows and 5 columns.

summarise

Summarise each group to fewer rows

# Description

'summarise()' creates a new data frame. It will have one (or more) rows for each combination of grouping variables; if there are no grouping variables, the output will have a single row summarising all observations in the input. It will contain one column for each grouping variable and one column for each of the summary statistics that you have specified.

'summarise()' and 'summarize()' are synonyms.

| .data | A tbl. (See dplyr)                                                                                                                                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <['tidy-eval'][dplyr_tidy_eval]> Name-value pairs of summary functions. The name will be the name of the variable in the result.                                                                                                          |
|       | The value can be:                                                                                                                                                                                                                         |
|       | * A vector of length 1, e.g. $(\min(x))$ , $(n)$ , or $(\operatorname{sum}(\operatorname{is.na}(y)))$ . * A vector of length $(n)$ , e.g. $(\operatorname{quantile})$ . * A data frame, to add multiple columns from a single expression. |

#### Value

An object \_usually\_ of the same type as '.data'.

\* The rows come from the underlying 'group\_keys()'. \* The columns are a combination of the grouping keys and the summary expressions that you provide. \* If 'x' is grouped by more than one variable, the output will be another [grouped\_df] with the right-most group removed. \* If 'x' is grouped by one variable, or is not grouped, the output will be a [tibble]. \* Data frame attributes are \*\*not\*\* preserved, because 'summarise()' fundamentally creates a new data frame.

# **Useful functions**

\* Center: [mean()], [median()] \* Spread: [sd()], [IQR()], [mad()] \* Range: [min()], [max()], [quantile()] \* Position: [first()], [last()], [nth()], \* Count: [n()], [n\_distinct()] \* Logical: [any()], [all()]

#### **Backend variations**

The data frame backend supports creating a variable and using it in the same summary. This means that previously created summary variables can be further transformed or combined within the summary, as in [mutate()]. However, it also means that summary variables with the same names as previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider using new names for your summary variables, especially when creating multiple summaries.

### Methods

This function is a \*\*generic\*\*, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages:

# See Also

Other single table verbs: arrange(), filter(), mutate(), rename()

symbol\_to\_entrez

# Examples

# A summary applied to ungrouped tbl returns a single row

```
mtcars |>
   summarise(mean = mean(disp))
```

symbol\_to\_entrez Get ENTREZ id from gene SYMBOL

# Description

Get ENTREZ id from gene SYMBOL

### Usage

```
symbol_to_entrez(.data, .transcript = NULL, .sample = NULL)
```

# Arguments

| .data       | A tt or tbl object.                              |
|-------------|--------------------------------------------------|
| .transcript | A character. The name of the gene symbol column. |
| .sample     | The name of the sample column                    |

### Value

A tbl

# Examples

- # This function was designed for data.frame
- # Convert from SummarizedExperiment for this example. It is NOT reccomended.

tidybulk::se\_mini |> tidybulk() |> as\_tibble() |> symbol\_to\_entrez(.transcript = .feature, .sample = .sample)

test\_differential\_abundance

Perform differential transcription testing using edgeR quasi-likelihood (QLT), edgeR likelihood-ratio (LR), limma-voom, limma-voom-withquality-weights or DESeq2

#### Description

test\_differential\_abundance() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test.

```
test_differential_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  contrasts = NULL,
 method = "edgeR_quasi_likelihood",
  test_above_log2_fold_change = NULL,
  scaling_method = "TMM",
  omit_contrast_in_colnames = FALSE,
  prefix = "",
  action = "add",
  ...,
  significance_threshold = NULL,
  fill_missing_values = NULL,
  .contrasts = NULL
)
## S4 method for signature 'spec_tbl_df'
test_differential_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  contrasts = NULL,
 method = "edgeR_quasi_likelihood",
  test_above_log2_fold_change = NULL,
  scaling_method = "TMM",
  omit_contrast_in_colnames = FALSE,
  prefix = "",
```
```
action = "add",
  ...,
  significance_threshold = NULL,
  fill_missing_values = NULL,
  .contrasts = NULL
)
## S4 method for signature 'tbl_df'
test_differential_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  contrasts = NULL,
 method = "edgeR_quasi_likelihood",
  test_above_log2_fold_change = NULL,
  scaling_method = "TMM",
  omit_contrast_in_colnames = FALSE,
  prefix = "",
  action = "add",
  ...,
  significance_threshold = NULL,
  fill_missing_values = NULL,
  .contrasts = NULL
)
## S4 method for signature 'tidybulk'
test_differential_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  contrasts = NULL,
 method = "edgeR_quasi_likelihood",
  test_above_log2_fold_change = NULL,
  scaling_method = "TMM",
  omit_contrast_in_colnames = FALSE,
  prefix = "",
  action = "add",
  . . . ,
  significance_threshold = NULL,
  fill_missing_values = NULL,
  .contrasts = NULL
)
```

## S4 method for signature 'SummarizedExperiment'

```
test_differential_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  contrasts = NULL,
 method = "edgeR_quasi_likelihood",
  test_above_log2_fold_change = NULL,
  scaling_method = "TMM",
  omit_contrast_in_colnames = FALSE,
  prefix = "",
  action = "add",
  . . . ,
  significance_threshold = NULL,
  fill_missing_values = NULL,
  .contrasts = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
test_differential_abundance(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
  contrasts = NULL,
 method = "edgeR_quasi_likelihood",
  test_above_log2_fold_change = NULL,
  scaling_method = "TMM",
  omit_contrast_in_colnames = FALSE,
  prefix = "",
  action = "add",
  . . . ,
  significance_threshold = NULL,
  fill_missing_values = NULL,
  .contrasts = NULL
)
```

#### Arguments

| .data       | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .formula    | A formula representing the desired linear model. If there is more than one factor, they should be in the order factor of interest + additional factors.                                       |
| .sample     | The name of the sample column                                                                                                                                                                 |
| .transcript | The name of the transcript/gene column                                                                                                                                                        |

| .abundance          | The name of the transcript/gene abundance column                                                                                                                                                                                                                                                                    |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| contrasts           | This parameter takes the format of the contrast parameter of the method of choice. For edgeR and limma-voom is a character vector. For DESeq2 is a list including a character vector of length three. The first covariate is the one the model is tested against (e.g., ~ factor_of_interest)                       |  |
| method              | A string character. Either "edgeR_quasi_likelihood" (i.e., QLF), "edgeR_likelihood_ratio" (i.e., LRT), "edger_robust_likelihood_ratio", "DESeq2", "limma_voom", "limma_voom_sample_weights                                                                                                                          |  |
| test_above_log2     | 2_fold_change                                                                                                                                                                                                                                                                                                       |  |
|                     | A positive real value. This works for edgeR and limma_voom methods. It uses the 'treat' function, which tests that the difference in abundance is big-<br>ger than this threshold rather than zero https://pubmed.ncbi.nlm.nih.gov/<br>19176553.                                                                    |  |
| scaling_method      | A character string. The scaling method passed to the back-end functions: edgeR<br>and limma-voom (i.e., edgeR::calcNormFactors; "TMM","TMMwsp","RLE","upperquartile").<br>Setting the parameter to \"none\" will skip the compensation for sequencing-<br>depth for the method edgeR or limma-voom.                 |  |
| omit_contrast_i     | in_colnames                                                                                                                                                                                                                                                                                                         |  |
|                     | If just one contrast is specified you can choose to omit the contrast label in the colnames.                                                                                                                                                                                                                        |  |
| prefix              | A character string. The prefix you would like to add to the result columns. It is useful if you want to compare several methods.                                                                                                                                                                                    |  |
| action              | A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).                                                                                                                                                                   |  |
|                     | Further arguments passed to some of the internal functions. Currently, it is needed just for internal debug.                                                                                                                                                                                                        |  |
| significance_th     | nreshold<br>DEPRECATED - A real between 0 and 1 (usually 0.05).                                                                                                                                                                                                                                                     |  |
| fill_missing_values |                                                                                                                                                                                                                                                                                                                     |  |
|                     | DEPRECATED - A boolean. Whether to fill missing sample/transcript values with the median of the transcript. This is rarely needed.                                                                                                                                                                                  |  |
| .contrasts          | DEPRECATED - This parameter takes the format of the contrast parameter of<br>the method of choice. For edgeR and limma-voom is a character vector. For<br>DESeq2 is a list including a character vector of length three. The first covariate<br>is the one the model is tested against (e.g., ~ factor_of_interest) |  |

# Details

'r lifecycle::badge("maturing")'

This function provides the option to use edgeR https://doi.org/10.1093/bioinformatics/ btp616, limma-voom https://doi.org/10.1186/gb-2014-15-2-r29, limma\_voom\_sample\_weights https://doi.org/10.1093/nar/gkv412 or DESeq2 https://doi.org/10.1186/s13059-014-0550-8 to perform the testing. All methods use raw counts, irrespective of if scale\_abundance or adjust\_abundance have been calculated, therefore it is essential to add covariates such as batch effects (if applicable) in the formula.

Underlying method for edgeR framework:

.data |>

76

# Filter keep\_abundant( factor\_of\_interest = !!(as.symbol(parse\_formula(.formula)[1])), minimum\_counts = minimum\_counts, minimum\_proportion = minimum\_proportion ) |>

# Format select(!!.transcript,!!.sample,!!.abundance) |> spread(!!.sample,!!.abundance) |> as\_matrix(rownames
= !!.transcript)

# edgeR edgeR::DGEList(counts = .) |> edgeR::calcNormFactors(method = scaling\_method) |>
edgeR::estimateDisp(design) |>

# Fit edgeR::glmQLFit(design) |> // or glmFit according to choice edgeR::glmQLFTest(coef = 2, contrast = my\_contrasts) // or glmLRT according to choice

Underlying method for DESeq2 framework:

keep\_abundant( factor\_of\_interest = !!as.symbol(parse\_formula(.formula)[[1]]), minimum\_counts = minimum\_counts, minimum\_proportion = minimum\_proportion ) |>

# DESeq2::DESeqDataSet(design = .formula) |> DESeq2::DESeq() |> DESeq2::results()

Underlying method for glmmSeq framework:

counts = .data assay(my\_assay)

# Create design matrix for dispersion, removing random effects design = model.matrix( object =
.formula |> lme4::nobars(), data = metadata )

dispersion = counts |> edgeR::estimateDisp(design = design)

glmmSeq( .formula, countdata = counts , metadata = metadata |> as.data.frame(), dispersion = dispersion, progress = TRUE, method = method |> str\_remove("(?i)^glmmSeq\_"), )

# Value

A consistent object (to the input) with additional columns for the statistics from the test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

- A 'SummarizedExperiment' object
- A 'SummarizedExperiment' object

# Examples

```
# edgeR
```

```
tidybulk::se_mini |>
identify_abundant() |>
test_differential_abundance( ~ condition )
```

# The function `test\_differential\_abundance` operates with contrasts too

```
tidybulk::se_mini |>
 identify_abundant(factor_of_interest = condition) |>
 test_differential_abundance(
    \sim 0 + \text{condition},
    contrasts = c( "conditionTRUE - conditionFALSE")
)
 # DESeq2 - equivalent for limma-voom
my_se_mini = tidybulk::se_mini
my_se_mini$condition = factor(my_se_mini$condition)
# demontrating with `fitType` that you can access any arguments to DESeq()
my_se_mini |>
   identify_abundant(factor_of_interest = condition) |>
       test_differential_abundance( ~ condition, method="deseq2", fitType="local")
# testing above a log2 threshold, passes along value to lfcThreshold of results()
res <- my_se_mini |>
   identify_abundant(factor_of_interest = condition) |>
        test_differential_abundance( ~ condition, method="deseq2",
            fitType="local",
            test_above_log2_fold_change=4 )
# Use random intercept and random effect models
se_mini[1:50,] |>
 identify_abundant(factor_of_interest = condition) |>
 test_differential_abundance(
   ~ condition + (1 + condition | time),
   method = "glmmseq_lme4", cores = 1
 )
# confirm that lfcThreshold was used
## Not run:
   res |>
        mcols() |>
        DESeq2::DESeqResults() |>
        DESeq2::plotMA()
## End(Not run)
# The function `test_differential_abundance` operates with contrasts too
my_se_mini |>
identify_abundant() |>
 test_differential_abundance(
    \sim 0 + \text{condition},
   contrasts = list(c("condition", "TRUE", "FALSE")),
   method="deseq2",
         fitType="local"
)
```

test\_differential\_cellularity

Add differential tissue composition information to a tbl

#### Description

test\_differential\_cellularity() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test.

# Usage

```
test_differential_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  significance_threshold = 0.05,
  . . .
)
## S4 method for signature 'spec_tbl_df'
test_differential_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  significance_threshold = 0.05,
  . . .
)
## S4 method for signature 'tbl_df'
test_differential_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
```

```
significance_threshold = 0.05,
  . . .
)
## S4 method for signature 'tidybulk'
test_differential_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  significance_threshold = 0.05,
  . . .
)
## S4 method for signature 'SummarizedExperiment'
test_differential_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
 reference = X_cibersort,
  significance_threshold = 0.05,
  . . .
)
## S4 method for signature 'RangedSummarizedExperiment'
test_differential_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
 significance_threshold = 0.05,
  . . .
)
```

#### Arguments

```
.data
```

A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

| .formula        | A formula representing the desired linear model. The formula can be of two forms: multivariable (recommended) or univariable Respectively: \"factor_of_interest ~ .\" or \". ~ factor_of_interest\". The dot represents cell-type proportions, and it is mandatory. If censored regression is desired (coxph) the formula should be of the form \"survival::Surv\(y, dead\) ~ .\" |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .sample         | The name of the sample column                                                                                                                                                                                                                                                                                                                                                     |
| .transcript     | The name of the transcript/gene column                                                                                                                                                                                                                                                                                                                                            |
| .abundance      | The name of the transcript/gene abundance column                                                                                                                                                                                                                                                                                                                                  |
| method          | A string character. Either \"cibersort\", \"epic\" or \"llsr\". The regression method<br>will be chosen based on being multivariable: Im or cox-regression (both on<br>logit-transformed proportions); or univariable: beta or cox-regression (on logit-<br>transformed proportions). See .formula for multi- or univariable choice.                                              |
| reference       | A data frame. The transcript/cell_type data frame of integer transcript abundance                                                                                                                                                                                                                                                                                                 |
| significance_th | reshold                                                                                                                                                                                                                                                                                                                                                                           |
|                 | A real between 0 and 1 (usually 0.05).                                                                                                                                                                                                                                                                                                                                            |
| •••             | Further parameters passed to the method deconvolve_cellularity                                                                                                                                                                                                                                                                                                                    |

# Details

'r lifecycle::badge("maturing")'

This routine applies a deconvolution method (e.g., Cibersort; DOI: 10.1038/nmeth.3337) and passes the proportions inferred into a generalised linear model (DOI:dx.doi.org/10.1007/s11749-010-0189z) or a cox regression model (ISBN: 978-1-4757-3294-8)

Underlying method for the generalised linear model: data |> deconvolve\_cellularity( !!.sample, !!.transcript, !!.abundance, method=method, reference = reference, action="get", ... ) [..] betareg::betareg(.my\_formula, .)

Underlying method for the cox regression: data > deconvolve cellularity( !!.sample, !!.transcript, !!.abundance, method=method, reference = reference, action="get", ... ) [..] mutate(.proportion\_0\_corrected = .proportion\_0\_corrected > boot::logit()) survival::coxph(.my\_formula, .)

#### Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A 'SummarizedExperiment' object

A 'SummarizedExperiment' object

#### Examples

```
# Regular regression
test_differential_cellularity(
tidybulk::se_mini ,
   . ~ condition,
   cores = 1
)
```

```
# Cox regression - multiple
tidybulk::se_mini |>
# Test
test_differential_cellularity(
    survival::Surv(days, dead) ~ .,
    cores = 1
)
```

test\_gene\_enrichment analyse gene enrichment with EGSEA

## Description

test\_gene\_enrichment() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' of gene set information

#### Usage

```
test_gene_enrichment(
  .data,
  .formula,
  .sample = NULL,
  .entrez,
  .abundance = NULL,
  contrasts = NULL,
 methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
    "kegg_metabolism", "kegg_signaling"),
  species,
  cores = 10,
 method = NULL,
  .contrasts = NULL
)
## S4 method for signature 'spec_tbl_df'
test_gene_enrichment(
  .data,
  .formula,
  .sample = NULL,
  .entrez,
  .abundance = NULL,
```

```
contrasts = NULL,
 methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
    "kegg_metabolism", "kegg_signaling"),
  species,
  cores = 10,
 method = NULL,
  .contrasts = NULL
)
## S4 method for signature 'tbl_df'
test_gene_enrichment(
  .data,
  .formula,
  .sample = NULL,
  .entrez,
  .abundance = NULL,
  contrasts = NULL,
 methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
    "kegg_metabolism", "kegg_signaling"),
  species,
  cores = 10,
 method = NULL,
  .contrasts = NULL
)
## S4 method for signature 'tidybulk'
test_gene_enrichment(
  .data,
  .formula,
  .sample = NULL,
  .entrez,
  .abundance = NULL,
  contrasts = NULL,
 methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
    "kegg_metabolism", "kegg_signaling"),
  species,
  cores = 10,
 method = NULL,
  .contrasts = NULL
)
## S4 method for signature 'SummarizedExperiment'
test_gene_enrichment(
  .data,
  .formula,
```

```
.sample = NULL,
  .entrez,
  .abundance = NULL,
  contrasts = NULL,
 methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
    "kegg_metabolism", "kegg_signaling"),
  species,
  cores = 10,
 method = NULL,
  .contrasts = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
test_gene_enrichment(
  .data,
  .formula,
  .sample = NULL,
  .entrez,
  .abundance = NULL,
 contrasts = NULL,
 methods = c("camera", "roast", "safe", "gage", "padog", "globaltest", "ora"),
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "kegg_disease",
   "kegg_metabolism", "kegg_signaling"),
  species,
 cores = 10,
 method = NULL,
  .contrasts = NULL
)
```

#### Arguments

| .data      | A 'tbl' (with at least three columns for sample, feature and transcript abundance)<br>or 'SummarizedExperiment' (more convenient if abstracted to tibble with li-<br>brary(tidySummarizedExperiment))                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .formula   | A formula with no response variable, representing the desired linear model                                                                                                                                                                                                                    |
| .sample    | The name of the sample column                                                                                                                                                                                                                                                                 |
| .entrez    | The ENTREZ ID of the transcripts/genes                                                                                                                                                                                                                                                        |
| .abundance | The name of the transcript/gene abundance column                                                                                                                                                                                                                                              |
| contrasts  | This parameter takes the format of the contrast parameter of the method of choice. For edgeR and limma-voom is a character vector. For DESeq2 is a list including a character vector of length three. The first covariate is the one the model is tested against (e.g., ~ factor_of_interest) |
| methods    | A character vector. One or 3 or more methods to use in the testing (currently EGSEA errors if 2 are used). Type EGSEA::egsea.base() to see the supported GSE methods.                                                                                                                         |

| gene_sets  | A character vector or a list. It can take one or more of the following built-<br>in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6",<br>"c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"), to be used with<br>EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied<br>gene sets can be provided, to be used with EGSEA buildCustomIdx. In that<br>case, each gene set is a character vector of Entrez IDs and the names of the list<br>are the gene set names. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| species    | A character. It can be human, mouse or rat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| cores      | An integer. The number of cores available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| method     | DEPRECATED. Please use methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .contrasts | DEPRECATED - This parameter takes the format of the contrast parameter of the method of choice. For edgeR and limma-voom is a character vector. For DESeq2 is a list including a character vector of length three. The first covariate is the one the model is tested against (e.g., ~ factor_of_interest)                                                                                                                                                                                                                   |

# Details

'r lifecycle::badge("maturing")'

This wrapper executes ensemble gene enrichment analyses of the dataset using EGSEA (DOI:0.12688/f1000research.12544.1

dge = data |> keep\_abundant( factor\_of\_interest = !!as.symbol(parse\_formula(.formula)[[1]]), !!.sample, !!.entrez, !!.abundance )

# Make sure transcript names are adjacent [...] as\_matrix(rownames = !!.entrez) edgeR::DGEList(counts = .)

idx = buildIdx(entrezIDs = rownames(dge), species = species, msigdb.gsets = msigdb.gsets, kegg.exclude = kegg.exclude)

dge |>

# Calculate weights limma::voom(design, plot = FALSE) |>

# Execute EGSEA egsea( contrasts = my\_contrasts, baseGSEAs = methods, gs.annots = idx, sort.by = "med.rank", num.threads = cores, report = FALSE )

# Value

A consistent object (to the input)

#### Examples

## Not run:

library(SummarizedExperiment)

test\_gene\_overrepresentation

analyse gene over-representation with GSEA

#### Description

test\_gene\_overrepresentation() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' with the GSEA statistics

#### Usage

```
test_gene_overrepresentation(
  .data,
  .entrez,
  .do_test,
  species,
  .sample = NULL,
  gene_sets = NULL,
  gene_set = NULL
)
## S4 method for signature 'spec_tbl_df'
test_gene_overrepresentation(
  .data,
  .entrez,
  .do_test,
```

```
species,
  .sample = NULL,
  gene_sets = NULL,
 gene_set = NULL
)
## S4 method for signature 'tbl_df'
test_gene_overrepresentation(
  .data,
  .entrez,
  .do_test,
  species,
  .sample = NULL,
  gene_sets = NULL,
 gene_set = NULL
)
## S4 method for signature 'tidybulk'
test_gene_overrepresentation(
  .data,
  .entrez,
  .do_test,
  species,
  .sample = NULL,
  gene_sets = NULL,
  gene_set = NULL
)
## S4 method for signature 'SummarizedExperiment'
test_gene_overrepresentation(
  .data,
  .entrez,
  .do_test,
  species,
  .sample = NULL,
  gene_sets = NULL,
  gene_set = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
test_gene_overrepresentation(
  .data,
  .entrez,
  .do_test,
  species,
  .sample = NULL,
  gene_sets = NULL,
  gene_set = NULL
```

)

#### Arguments

| .data     | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .entrez   | The ENTREZ ID of the transcripts/genes                                                                                                                                                                |
| .do_test  | A boolean column name symbol. It indicates the transcript to check                                                                                                                                    |
| species   | A character. For example, human or mouse. MSigDB uses the latin species names (e.g., \"Mus musculus\", \"Homo sapiens\")                                                                              |
| .sample   | The name of the sample column                                                                                                                                                                         |
| gene_sets | A character vector. The subset of MSigDB datasets you want to test against (e.g. \"C2\"). If NULL all gene sets are used (suggested). This argument was added to avoid time overflow of the examples. |
| gene_set  | DEPRECATED. Use gene_sets instead.                                                                                                                                                                    |
|           |                                                                                                                                                                                                       |

#### Details

'r lifecycle::badge("maturing")'

This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA. This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.

Undelying method: msigdbr::msigdbr(species = species) |> nest(data = -gs\_cat) |> mutate(test = map( data, ~ clusterProfiler::enricher( my\_entrez\_rank, TERM2GENE=.x |> select(gs\_name, entrez\_gene), pvalueCutoff = 1 ) |> as\_tibble() ))

#### Value

A consistent object (to the input)

- A 'spec\_tbl\_df' object
- A 'tbl\_df' object
- A 'tidybulk' object
- A 'SummarizedExperiment' object
- A 'RangedSummarizedExperiment' object

# Examples

print("Not run for build time.")

```
#se_mini = aggregate_duplicates(tidybulk::se_mini, .transcript = entrez)
#df_entrez = mutate(df_entrez, do_test = feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
```

```
## Not run:
test_gene_overrepresentation(
df_entrez,
.sample = sample,
```

```
.entrez = entrez,
.do_test = do_test,
species="Homo sapiens",
  gene_sets =c("C2")
)
## End(Not run)
```

test\_gene\_rank analyse gene rank with GSEA

#### Description

test\_gene\_rank() takes as input a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a 'tbl' with the GSEA statistics

#### Usage

```
test_gene_rank(
  .data,
  .entrez,
  .arrange_desc,
  species,
  .sample = NULL,
  gene_sets = NULL,
 gene_set = NULL
)
## S4 method for signature 'spec_tbl_df'
test_gene_rank(
  .data,
  .entrez,
  .arrange_desc,
  species,
  .sample = NULL,
 gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
  gene_set = NULL
)
## S4 method for signature 'tbl_df'
test_gene_rank(
  .data,
  .entrez,
  .arrange_desc,
  species,
  .sample = NULL,
```

```
gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
 gene_set = NULL
)
## S4 method for signature 'tidybulk'
test_gene_rank(
  .data,
  .entrez,
  .arrange_desc,
 species,
  .sample = NULL,
  gene_sets = c("h", "c1", "c2", "c3", "c4", "c5", "c6", "c7"),
 gene_set = NULL
)
## S4 method for signature 'SummarizedExperiment'
test_gene_rank(
  .data,
  .entrez,
  .arrange_desc,
 species,
  .sample = NULL,
 gene_sets = NULL,
 gene_set = NULL
)
## S4 method for signature 'RangedSummarizedExperiment'
test_gene_rank(
  .data,
  .entrez,
  .arrange_desc,
  species,
  .sample = NULL,
 gene_sets = NULL,
 gene_set = NULL
)
```

#### Arguments

| .data         | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .entrez       | The ENTREZ ID of the transcripts/genes                                                                                                                                                        |
| .arrange_desc | A column name of the column to arrange in decreasing order                                                                                                                                    |
| species       | A character. For example, human or mouse. MSigDB uses the latin species names (e.g., \"Mus musculus\", \"Homo sapiens\")                                                                      |
| .sample       | The name of the sample column                                                                                                                                                                 |

| gene_sets          | A character vector or a list. It can take one or more of the following built-<br>in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6",<br>"c7", "kegg_disease", "kegg_metabolism", "kegg_signaling"), to be used with<br>EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Serie_20000</u> | in collections as a character vector: c("h", "c1", "c2", "c3", "c4", "c5", "c6",                                                                                                                                                                                                                                                 |
|                    | EGSEA buildIdx. c1 is human specific. Alternatively, a list of user-supplied gene sets can be provided, to be used with EGSEA buildCustomIdx. In that case, each gene set is a character vector of Entrez IDs and the names of the list are the gene set names.                                                                  |
| gene_set           | DEPRECATED. Use gene_sets instead.                                                                                                                                                                                                                                                                                               |

# Details

## [Maturing]

This wrapper execute gene enrichment analyses of the dataset using a list of transcripts and GSEA. This wrapper uses clusterProfiler (DOI: doi.org/10.1089/omi.2011.0118) on the back-end.

Undelying method: # Get gene sets signatures msigdbr::msigdbr(species = species)

# Filter specific gene\_sets if specified. This was introduced to speed up examples executionS when( !is.null(gene\_sets ) ~ filter(., gs\_cat ~ (.) ) >

# Execute calculation nest(data = -gs\_cat) |> mutate(fit = map( data, ~ clusterProfiler::GSEA( my\_entrez\_rank, TERM2GENE=.x |> select(gs\_name, entrez\_gene), pvalueCutoff = 1 )

))

# Value

A consistent object (to the input)

A 'spec\_tbl\_df' object

A 'tbl\_df' object

A 'tidybulk' object

A 'SummarizedExperiment' object

A 'RangedSummarizedExperiment' object

#### Examples

print("Not run for build time.")

## Not run:

```
df_entrez = tidybulk::se_mini
df_entrez = mutate(df_entrez, do_test = .feature %in% c("TNFRSF4", "PLCH2", "PADI4", "PAX7"))
df_entrez = df_entrez |> test_differential_abundance(~ condition)
```

```
test_gene_rank(
df_entrez,
.sample = .sample,
.entrez = entrez,
species="Homo sapiens",
   gene_sets =c("C2"),
```

```
.arrange_desc = logFC
)
## End(Not run)
```

test\_stratification\_cellularity

Test of stratification of biological replicates based on tissue composition, one cell-type at the time, using Kaplan-meier curves.

# Description

test\_stratification\_cellularity() takes as input A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) and returns a consistent object (to the input) with additional columns for the statistics from the hypothesis test.

# Usage

```
test_stratification_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  . . .
)
## S4 method for signature 'spec_tbl_df'
test_stratification_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  . . .
)
## S4 method for signature 'tbl_df'
test_stratification_cellularity(
  .data,
  .formula,
```

```
.sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
)
## S4 method for signature 'tidybulk'
test_stratification_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  . . .
)
## S4 method for signature 'SummarizedExperiment'
test_stratification_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
 reference = X_cibersort,
  . . .
)
## S4 method for signature 'RangedSummarizedExperiment'
test_stratification_cellularity(
  .data,
  .formula,
  .sample = NULL,
  .transcript = NULL,
  .abundance = NULL,
 method = "cibersort",
  reference = X_cibersort,
  . . .
)
```

# Arguments

```
.data
```

A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

| .formula    | A formula representing the desired linear model. The formula can be of two forms: multivariable (recommended) or univariable Respectively: \"factor_of_interest ~ .\" or \". ~ factor_of_interest\". The dot represents cell-type proportions, and it is mandatory. If censored regression is desired (coxph) the formula should be of the form \"survival::Surv\(y, dead\) ~ .\" |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .sample     | The name of the sample column                                                                                                                                                                                                                                                                                                                                                     |
| .transcript | The name of the transcript/gene column                                                                                                                                                                                                                                                                                                                                            |
| . abundance | The name of the transcript/gene abundance column                                                                                                                                                                                                                                                                                                                                  |
| method      | A string character. Either \"cibersort\", \"epic\" or \"llsr\". The regression method will be chosen based on being multivariable: Im or cox-regression (both on logit-transformed proportions); or univariable: beta or cox-regression (on logit-transformed proportions). See .formula for multi- or univariable choice.                                                        |
| reference   | A data frame. The transcript/cell_type data frame of integer transcript abun-<br>dance                                                                                                                                                                                                                                                                                            |
|             | Further parameters passed to the method deconvolve_cellularity                                                                                                                                                                                                                                                                                                                    |

#### Details

'r lifecycle::badge("maturing")'

This routine applies a deconvolution method (e.g., Cibersort; DOI: 10.1038/nmeth.3337) and passes the proportions inferred into a generalised linear model (DOI:dx.doi.org/10.1007/s11749-010-0189-z) or a cox regression model (ISBN: 978-1-4757-3294-8)

Underlying method for the test: data |> deconvolve\_cellularity( !!.sample, !!.transcript, !!.abundance, method=method, reference = reference, action="get", ... ) [..] |> mutate(.high\_cellularity = .proportion > median(.proportion)) |> survival::survdiff(data = data, .my\_formula)

# Value

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

A consistent object (to the input) with additional columns for the statistics from the hypothesis test (e.g., log fold change, p-value and false discovery rate).

#### Examples

```
tidybulk::se_mini |>
test_stratification_cellularity(
survival::Surv(days, dead) ~ .,
cores = 1
)
```

tidybulk

#### Description

tidybulk() creates an annotated 'tidybulk' tibble from a 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

#### Usage

```
tidybulk(.data, .sample, .transcript, .abundance, .abundance_scaled = NULL)
## S4 method for signature 'spec_tbl_df'
tidybulk(.data, .sample, .transcript, .abundance, .abundance_scaled = NULL)
## S4 method for signature 'tbl_df'
tidybulk(.data, .sample, .transcript, .abundance, .abundance_scaled = NULL)
## S4 method for signature 'SummarizedExperiment'
tidybulk(.data, .sample, .transcript, .abundance, .abundance_scaled = NULL)
## S4 method for signature 'RangedSummarizedExperiment'
tidybulk(.data, .sample, .transcript, .abundance, .abundance_scaled = NULL)
```

#### Arguments

| .data          | A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment)) |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .sample        | The name of the sample column                                                                                                                                                                 |
| .transcript    | The name of the transcript/gene column                                                                                                                                                        |
| .abundance     | The name of the transcript/gene abundance column                                                                                                                                              |
| .abundance_sca | led                                                                                                                                                                                           |
|                | The name of the transcript/gene scaled abundance column                                                                                                                                       |

#### Details

'r lifecycle::badge("maturing")'

This function creates a tidybulk object and is useful if you want to avoid to specify .sample, .transcript and .abundance arguments all the times. The tidybulk object have an attribute called internals where these three arguments are stored as metadata. They can be extracted as attr(<object>, "internals").

#### Value

A 'tidybulk' object A 'tidybulk' object A 'tidybulk' object A 'tidybulk' object A 'tidybulk' object

# Examples

tidybulk(tidybulk::se\_mini)

tidybulk\_SAM\_BAM Creates a 'tt' object from a list of file names of BAM/SAM

#### Description

tidybulk\_SAM\_BAM() creates a 'tt' object from A 'tbl' (with at least three columns for sample, feature and transcript abundance) or 'SummarizedExperiment' (more convenient if abstracted to tibble with library(tidySummarizedExperiment))

#### Usage

tidybulk\_SAM\_BAM(file\_names, genome = "hg38", ...)
## S4 method for signature 'character, character'
tidybulk\_SAM\_BAM(file\_names, genome = "hg38", ...)

#### Arguments

| file_names | A character vector                                                                                                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| genome     | A character string specifying an in-built annotation used for read summarization. It has four possible values including "mm10", "mm9", "hg38" and "hg19" |
|            | Further parameters passed to the function Rsubread::featureCounts                                                                                        |

# Details

'r lifecycle::badge("maturing")'

This function is based on FeatureCounts package (DOI: 10.1093/bioinformatics/btt656). This function creates a tidybulk object and is useful if you want to avoid to specify .sample, .transcript and .abundance arguments all the times. The tidybulk object have an attribute called internals where these three arguments are stored as metadata. They can be extracted as attr(<object>, "internals").

Underlying core function Rsubread::featureCounts(annot.inbuilt = genome,nthreads = n\_cores, ...)

unnest

# Value

A 'tidybulk' object A 'tidybulk' object

# tximeta\_summarizeToGene\_object

Needed for tests tximeta\_summarizeToGene\_object, It is Summarized-Experiment from tximeta

# Description

Needed for tests tximeta\_summarizeToGene\_object, It is SummarizedExperiment from tximeta

# Usage

tximeta\_summarizeToGene\_object

# Format

An object of class RangedSummarizedExperiment with 10 rows and 1 columns.

| unnest      | unnest                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description |                                                                                                                                                                                                                                                                                                                                                                                                           |
| -           |                                                                                                                                                                                                                                                                                                                                                                                                           |
| unnest      |                                                                                                                                                                                                                                                                                                                                                                                                           |
| nest        |                                                                                                                                                                                                                                                                                                                                                                                                           |
| Arguments   |                                                                                                                                                                                                                                                                                                                                                                                                           |
| data        | A tbl. (See tidyr)                                                                                                                                                                                                                                                                                                                                                                                        |
| cols        | <['tidy-select'][tidyr_tidy_select]> Columns to unnest. If you 'unnest()' mul-<br>tiple columns, parallel entries must be of compatibble sizes, i.e. they're either<br>equal or length 1 (following the standard tidyverse recycling rules).                                                                                                                                                              |
| names_sep   | If 'NULL', the default, the names will be left as is. In 'nest()', inner names will come from the former outer names; in 'unnest()', the new outer names will come from the inner names.                                                                                                                                                                                                                  |
|             | If a string, the inner and outer names will be used together. In 'nest()', the names<br>of the new outer columns will be formed by pasting together the outer and the<br>inner column names, separated by 'names_sep'. In 'unnest()', the new inner<br>names will have the outer names (+ 'names_sep') automatically stripped. This<br>makes 'names_sep' roughly symmetric between nesting and unnesting. |

# vignette\_manuscript\_signature\_boxplot

| keep_empty   | See tidyr::unnest                                                           |
|--------------|-----------------------------------------------------------------------------|
| names_repair | See tidyr::unnest                                                           |
| ptype        | See tidyr::unnest                                                           |
| .drop        | See tidyr::unnest                                                           |
| .id          | tidyr::unnest                                                               |
| .sep         | tidyr::unnest                                                               |
| .preserve    | See tidyr::unnest                                                           |
| .data        | A tbl. (See tidyr)                                                          |
|              | Name-variable pairs of the form new_col = $c(col1, col2, col3)$ (See tidyr) |

# Value

A tidySummarizedExperiment objector a tibble depending on input

A tt object

# Examples

tidybulk::se\_mini |> tidybulk() |> nest( data = -.feature) |> unnest(data)

tidybulk::se\_mini %>% tidybulk() %>% nest( data = -.feature)

vignette\_manuscript\_signature\_boxplot

Needed for vignette vignette\_manuscript\_signature\_boxplot

# Description

Needed for vignette vignette\_manuscript\_signature\_boxplot

# Usage

vignette\_manuscript\_signature\_boxplot

# Format

An object of class tbl\_df (inherits from tbl, data.frame) with 899 rows and 12 columns.

vignette\_manuscript\_signature\_tsne

Needed for vignette vignette\_manuscript\_signature\_tsne

# Description

Needed for vignette vignette\_manuscript\_signature\_tsne

# Usage

```
vignette_manuscript_signature_tsne
```

#### Format

An object of class spec\_tbl\_df (inherits from tbl\_df, tbl, data.frame) with 283 rows and 10 columns.

vignette\_manuscript\_signature\_tsne2

Needed for vignette vignette\_manuscript\_signature\_tsne2

# Description

Needed for vignette vignette\_manuscript\_signature\_tsne2

# Usage

vignette\_manuscript\_signature\_tsne2

#### Format

An object of class tbl\_df (inherits from tbl, data.frame) with 283 rows and 9 columns.

X\_cibersort Cibersort reference

#### Description

Cibersort reference

#### Usage

X\_cibersort

#### Format

An object of class data. frame with 547 rows and 22 columns.

%>%

# Description

See magrittr::%>% for details.

# Usage

lhs %>% rhs

# Arguments

| lhs | A value or the magrittr placeholder.          |
|-----|-----------------------------------------------|
| rhs | A function call using the magrittr semantics. |

# Value

The result of calling 'rhs(lhs)'.

# Index

\* datasets breast\_tcga\_mini\_SE, 15 counts\_ensembl, 20 ensembl\_symbol\_mapping, 25 flybaseIDs, 29 se. 69 se\_mini, 69 tximeta\_summarizeToGene\_object, 96 vignette\_manuscript\_signature\_boxplot, 97 vignette\_manuscript\_signature\_tsne, 98 vignette\_manuscript\_signature\_tsne2, 98 X\_cibersort, 98 **\*** grouping functions group\_by, 33 \* internal %>%, 99 check\_if\_counts\_is\_na, 15 check\_if\_duplicated\_genes, 16 check\_if\_wrong\_input, 16 get\_reduced\_dimensions\_UMAP\_bulk, 31 get\_reduced\_dimensions\_UMAP\_bulk\_SE, 32 reexports, 57 \* single table verbs arrange, 10 filter, 28 mutate, 46 rename, 61 summarise, 69 .describe\_transcript\_SE (describe\_transcript), 23 %>%, 99, 99 adjust\_abundance, 3

adjust\_abundance,spec\_tbl\_df-method (adjust\_abundance), 3 adjust\_abundance,SummarizedExperiment-method (adjust\_abundance), 3 adjust\_abundance,tbl\_df-method (adjust\_abundance), 3 adjust\_abundance,tidybulk-method (adjust\_abundance), 3 aggregate\_duplicates, 7 aggregate\_duplicates,RangedSummarizedExperiment-method (aggregate\_duplicates), 7 aggregate\_duplicates, spec\_tbl\_df-method (aggregate\_duplicates), 7 aggregate\_duplicates,SummarizedExperiment-method (aggregate\_duplicates), 7 aggregate\_duplicates,tbl\_df-method (aggregate\_duplicates), 7 aggregate\_duplicates,tidybulk-method (aggregate\_duplicates), 7 arrange, 10, 29, 48, 62, 70 as\_matrix, 11 as\_SummarizedExperiment, 12 as\_SummarizedExperiment,spec\_tbl\_df-method (as\_SummarizedExperiment), 12 as\_SummarizedExperiment,tbl\_df-method (as\_SummarizedExperiment), 12 as\_SummarizedExperiment, tidybulk-method (as\_SummarizedExperiment), 12 as\_tibble, 57 as\_tibble (reexports), 57 bind\_cols, 13 bind\_rows, 14 breast\_tcga\_mini\_SE, 15 check\_if\_counts\_is\_na, 15

check\_if\_duplicated\_genes, 16 adjust\_abundance,RangedSummarizedExperiment-metheokd\_if\_wrong\_input, 16 (adjust\_abundance), 3 cluster\_elements, 17

# INDEX

| <pre>cluster_elements,RangedSummarizedExperiment</pre>                        | -methbomissing_abundance,spec_tbl_df-method                           |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| (cluster_elements), 17                                                        | (fill_missing_abundance), 26                                          |
| cluster_elements,spec_tbl_df-method                                           | fill_missing_abundance,tbl_df-method                                  |
| (cluster_elements), 17                                                        | (fill_missing_abundance), 26                                          |
| <pre>cluster_elements,SummarizedExperiment-metho</pre>                        | d fill_missing_abundance,tidybulk-method                              |
| (cluster_elements), 17                                                        | (fill_missing_abundance), 26                                          |
| cluster_elements,tbl_df-method                                                | filter, 11, 28, 48, 62, 70                                            |
| (cluster_elements), 17                                                        | flybaseIDs, 29                                                        |
| cluster_elements,tidybulk-method                                              | full_join(inner_join), 39                                             |
| (cluster_elements), 17                                                        |                                                                       |
| counts_ensembl, 20                                                            | get_bibliography,30                                                   |
|                                                                               | <pre>get_bibliography,RangedSummarizedExperiment-method</pre>         |
| deconvolve_cellularity, 20                                                    | (get_bibliography), 30                                                |
| deconvolve_cellularity,RangedSummarizedExpe                                   |                                                                       |
| (deconvolve_cellularity), 20                                                  | (get_bibliography), 30                                                |
| <pre>deconvolve_cellularity,spec_tbl_df-method</pre>                          | <pre>get_bibliography,SummarizedExperiment-method</pre>               |
| (deconvolve_cellularity), 20                                                  | (get_bibliography), 30                                                |
| deconvolve_cellularity,SummarizedExperiment                                   |                                                                       |
| (deconvolve_cellularity), 20                                                  | (get_bibliography), 30                                                |
| <pre>deconvolve_cellularity,tbl_df-method</pre>                               | <pre>get_bibliography,tbl_df-method</pre>                             |
| (deconvolve_cellularity), 20                                                  | (get_bibliography), 30                                                |
| deconvolve_cellularity,tidybulk-method                                        | get_bibliography,tidybulk-method                                      |
| (deconvolve_cellularity), 20                                                  | (get_bibliography), 30                                                |
| describe_transcript, 23                                                       | get_reduced_dimensions_UMAP_bulk, 31                                  |
| describe_transcript,RangedSummarizedExperim                                   |                                                                       |
| (describe_transcript), 23                                                     | 32                                                                    |
| <pre>describe_transcript, spec_tbl_df-method</pre>                            | group_by, 33                                                          |
| (describe_transcript), 23                                                     | 5. oup_0,                                                             |
| <pre>describe_transcript,SummarizedExperiment-me</pre>                        | the dentify abundant 34                                               |
| (describe_transcript), 23                                                     |                                                                       |
| <pre>describe_transcript,tbl_df-method</pre>                                  | <pre>identify_abundant,RangedSummarizedExperiment-method</pre>        |
| (describe_transcript), 23                                                     | (identify_abundant), 34                                               |
| describe_transcript, tidybulk-method                                          | <pre>identify_abundant, spec_tbl_df-method</pre>                      |
| (describe_transcript), 23                                                     | (identify_abundant), 34                                               |
| distinct, 24                                                                  | <pre>identify_abundant,SummarizedExperiment-method</pre>              |
| do, <i>57</i>                                                                 | (identify_abundant), 34                                               |
| do (reexports), 57                                                            | <pre>identify_abundant,tbl_df-method</pre>                            |
|                                                                               | (identify_abundant), 34                                               |
| ensembl_symbol_mapping, 25                                                    | <pre>identify_abundant,tidybulk-method</pre>                          |
| ensembl_to_symbol_mapping, 25                                                 | (identify_abundant), 34                                               |
|                                                                               | <pre>impute_missing_abundance, 36</pre>                               |
| <pre>ensembl_to_symbol,spec_tbl_df-method       (ensembl_to_symbol), 25</pre> | <pre>impute_missing_abundance,RangedSummarizedExperiment-method</pre> |
| ÷ ,,                                                                          | (impute_missing_abundance), 36                                        |
| ensembl_to_symbol,tbl_df-method                                               | <pre>impute_missing_abundance,spec_tbl_df-method</pre>                |
| (ensembl_to_symbol), 25                                                       | (impute_missing_abundance), 36                                        |
| ensembl_to_symbol,tidybulk-method                                             | <pre>impute_missing_abundance,SummarizedExperiment-method</pre>       |
| <pre>(ensembl_to_symbol), 25</pre>                                            | (impute_missing_abundance), 36                                        |
|                                                                               | <pre>impute_missing_abundance,tbl_df-method</pre>                     |
| fill_missing_abundance, 26                                                    | (impute_missing_abundance), 36                                        |

impute\_missing\_abundance,tidybulk-method (impute\_missing\_abundance), 36 inner\_join, 39 keep\_abundant, 40 keep\_abundant,RangedSummarizedExperiment-method (keep\_abundant), 40 keep\_abundant,spec\_tbl\_df-method (keep\_abundant), 40 keep\_abundant,SummarizedExperiment-method (keep\_abundant), 40 keep\_abundant,tbl\_df-method 50 (keep\_abundant), 40 keep\_abundant,tidybulk-method (keep\_abundant), 40 50 keep\_variable, 43 keep\_variable,RangedSummarizedExperiment-meth@wdantile\_normalise\_abundance,SummarizedExperiment-method (keep\_variable), 43 50 keep\_variable,spec\_tbl\_df-method (keep\_variable), 43 keep\_variable,SummarizedExperiment-method (keep\_variable), 43 50 keep\_variable,tbl\_df-method (keep\_variable), 43 50 keep\_variable,tidybulk-method (keep\_variable), 43 left\_join (bind\_cols), 13 log10\_reverse\_trans, 45 logit\_trans, 46 mutate, 11, 29, 46, 62, 70 nest (unnest), 96 pivot\_sample, 48 pivot\_sample,RangedSummarizedExperiment-method (pivot\_sample), 48 reexports, 57 pivot\_sample,spec\_tbl\_df-method (pivot\_sample), 48 pivot\_sample,SummarizedExperiment-method (pivot\_sample), 48 pivot\_sample,tbl\_df-method (pivot\_sample), 48 pivot\_sample,tidybulk-method (pivot\_sample), 48 pivot\_transcript, 49 pivot\_transcript,RangedSummarizedExperiment-methode\_redundancy,tidybulk-method (pivot\_transcript), 49

pivot\_transcript,spec\_tbl\_df-method (pivot\_transcript), 49 pivot\_transcript,SummarizedExperiment-method (pivot\_transcript), 49 pivot\_transcript,tbl\_df-method (pivot\_transcript), 49 pivot\_transcript,tidybulk-method (pivot\_transcript), 49 quantile\_normalise\_abundance, 50 quantile\_normalise\_abundance,RangedSummarizedExperiment-me (quantile\_normalise\_abundance), quantile\_normalise\_abundance,spec\_tbl\_df-method (quantile\_normalise\_abundance), (quantile\_normalise\_abundance), quantile\_normalise\_abundance,tbl\_df-method (quantile\_normalise\_abundance), quantile\_normalise\_abundance,tidybulk-method (quantile\_normalise\_abundance), reduce\_dimensions, 53 reduce\_dimensions,RangedSummarizedExperiment-method (reduce\_dimensions), 53 reduce\_dimensions,spec\_tbl\_df-method (reduce\_dimensions), 53 reduce\_dimensions,SummarizedExperiment-method (reduce\_dimensions), 53 reduce\_dimensions,tbl\_df-method (reduce\_dimensions), 53 reduce\_dimensions,tidybulk-method (reduce\_dimensions), 53 remove\_redundancy, 57 remove\_redundancy,RangedSummarizedExperiment-method (remove\_redundancy), 57 remove\_redundancy,spec\_tbl\_df-method (remove\_redundancy), 57 remove\_redundancy,SummarizedExperiment-method (remove\_redundancy), 57 remove\_redundancy,tbl\_df-method (remove\_redundancy), 57

(remove\_redundancy), 57

# INDEX

rename, 11, 29, 48, 61, 70 test\_differential\_cellularity, 78 right\_join (inner\_join), 39 test\_differential\_cellularity,RangedSummarizedExperiment-m rotate\_dimensions, 62 (test\_differential\_cellularity), rotate\_dimensions, RangedSummarizedExperiment-method 78 (rotate\_dimensions), 62 test\_differential\_cellularity,spec\_tbl\_df-method rotate\_dimensions,spec\_tbl\_df-method (test\_differential\_cellularity), (rotate\_dimensions), 62 78 rotate\_dimensions,SummarizedExperiment-methodtest\_differential\_cellularity,SummarizedExperiment-method (rotate\_dimensions), 62 (test\_differential\_cellularity), rotate\_dimensions,tbl\_df-method 78 (rotate\_dimensions), 62 test\_differential\_cellularity,tbl\_df-method rotate\_dimensions,tidybulk-method (test\_differential\_cellularity), (rotate\_dimensions), 62 78 rowwise, 65 test\_differential\_cellularity,tidybulk-method (test\_differential\_cellularity), scale\_abundance, 66 78 scale\_abundance,RangedSummarizedExperiment-method test\_gene\_enrichment,81 (scale\_abundance), 66 test\_gene\_enrichment,RangedSummarizedExperiment-method scale\_abundance,spec\_tbl\_df-method (test\_gene\_enrichment), 81 (scale\_abundance), 66 test\_gene\_enrichment,spec\_tbl\_df-method scale\_abundance,SummarizedExperiment-method (test\_gene\_enrichment), 81 (scale\_abundance), 66 test\_gene\_enrichment,SummarizedExperiment-method scale\_abundance,tbl\_df-method (test\_gene\_enrichment), 81 (scale\_abundance), 66 test\_gene\_enrichment,tbl\_df-method scale\_abundance,tidybulk-method (test\_gene\_enrichment), 81 (scale\_abundance), 66 test\_gene\_enrichment,tidybulk-method se, 69 (test\_gene\_enrichment), 81 se\_mini, 69 test\_gene\_overrepresentation, 85 select, 57 test\_gene\_overrepresentation,RangedSummarizedExperiment-me select (reexports), 57 (test\_gene\_overrepresentation), summarise, 11, 29, 48, 62, 69 85 symbol\_to\_entrez, 71 test\_gene\_overrepresentation,spec\_tbl\_df-method (test\_gene\_overrepresentation), test\_differential\_abundance, 72 test\_differential\_abundance,RangedSummarizedExperimen<sup>&\_</sup>method test\_gene\_overrepresentation,SummarizedExperiment-method (test\_differential\_abundance), (test\_gene\_overrepresentation), 72 test\_differential\_abundance,spec\_tbl\_df-method test\_gene\_overrepresentation,tbl\_df-method (test\_differential\_abundance), (test\_gene\_overrepresentation), 72 test\_differential\_abundance,SummarizedExperiment-method test\_gene\_overrepresentation,tidybulk-method (test\_differential\_abundance), (test\_gene\_overrepresentation), 72 85 test\_differential\_abundance,tbl\_df-method (test\_differential\_abundance), test\_gene\_rank, 88 test\_gene\_rank,RangedSummarizedExperiment-method 72 test\_differential\_abundance,tidybulk-method (test\_gene\_rank), 88 (test\_differential\_abundance), test\_gene\_rank,spec\_tbl\_df-method 72 (test\_gene\_rank), 88

```
104
```

```
test_gene_rank,SummarizedExperiment-method
        (test_gene_rank), 88
test_gene_rank,tbl_df-method
        (test_gene_rank), 88
test_gene_rank,tidybulk-method
        (test_gene_rank), 88
test_stratification_cellularity, 91
test_stratification_cellularity,RangedSummarizedExperiment-method
        (test_stratification_cellularity),
        91
test_stratification_cellularity,spec_tbl_df-method
        (test_stratification_cellularity),
        91
test_stratification_cellularity,SummarizedExperiment-method
        (test_stratification_cellularity),
        91
test_stratification_cellularity,tbl_df-method
        (test_stratification_cellularity),
        91
test_stratification_cellularity,tidybulk-method
        (test_stratification_cellularity),
        91
tibble, 57
tibble (reexports), 57
tidybulk, 94
tidybulk,RangedSummarizedExperiment-method
        (tidybulk), 94
tidybulk,spec_tbl_df-method(tidybulk),
        94
tidybulk,SummarizedExperiment-method
        (tidybulk), 94
tidybulk,tbl_df-method(tidybulk),94
tidybulk_SAM_BAM, 95
tidybulk_SAM_BAM,character,character-method
        (tidybulk_SAM_BAM), 95
tximeta_summarizeToGene_object, 96
unnest, 96
vignette_manuscript_signature_boxplot,
        97
vignette_manuscript_signature_tsne, 98
vignette_manuscript_signature_tsne2,
        98
X_cibersort, 98
```