
Package ‘runibic’
October 17, 2024

Type Package

Title runibic: row-based biclustering algorithm for analysis of gene
expression data in R

Version 1.26.0

Author Patryk Orzechowski, Artur Pańszczyk

Maintainer Patryk Orzechowski <patryk.orzechowski@gmail.com>

Description This package implements UbiBic algorithm in R. This biclustering algorithm for analy-
sis of gene expression data was introduced by Zhenjia Wang et al. in 2016. It is currently consid-
ered the most promising biclustering method for identification of meaningful structures in com-
plex and noisy data.

Depends R (>= 3.4.0), biclust, SummarizedExperiment

Imports Rcpp (>= 0.12.12), testthat, methods

Suggests knitr, rmarkdown, GEOquery, affy, airway, QUBIC

VignetteBuilder knitr

LinkingTo Rcpp

SystemRequirements C++11, GNU make

biocViews Microarray, Clustering, GeneExpression, Sequencing, Coverage

Encoding UTF-8

License MIT + file LICENSE

LazyData true

NeedsCompilation yes

URL http://github.com/athril/runibic

BugReports http://github.com/athril/runibic/issues

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/runibic

git_branch RELEASE_3_19

git_last_commit a9db385

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-10-16

1

http://github.com/athril/runibic
http://github.com/athril/runibic/issues

2 backtrackLCS

Contents
backtrackLCS . 2
BCUnibic-class . 3
BCUnibicD-class . 3
calculateLCS . 3
cluster . 4
pairwiseLCS . 5
runibic . 6
runiDiscretize . 8
set_runibic_params . 8
unisort . 9

Index 10

backtrackLCS Retrieving a Longest Common Subsequence between two integer vec-
tors.

Description

This function retrieves the Longest Common Subsequence (LCS) between two integer vectors by
backtracking the matrix obtained with dynamic programming.

Usage

backtrackLCS(x, y)

Arguments

x an integer vector

y an integer vector

Value

an integer vector containing the the Longest Common Subsequence (LCS) between vectors x and y
(i.e. the values that appear in both x and y in the same order)

See Also

runibic pairwiseLCS calculateLCS

Examples

A <- c(1, 2, 3, 4, 5)
B <- c(1, 2, 4)
backtrackLCS(A, B)

BCUnibic-class 3

BCUnibic-class Class BCUnibic

Description

An S4 class to represent BCUnibic-class UniBic biclustering algorithm for numeric input. The
class is intended to use with

See Also

runibic

BCUnibicD-class Class BCUnibicD

Description

An S4 class BCUnibicD-class defines UniBic biclustering algorithm for discrete input.

calculateLCS Calculate all Longest Common Subsequences between a matrix.

Description

This function computes unique pairwise Longest Common Subsequences between each row of
input matrix. The function outputs a list sorted by Longest Common Subsequences (LCS) length.
The output list contains the length of calculated LCS, indices, of the first and second rows between
which LCS was calculated. The function uses two different sorting methods. The default one uses
Fibonacci Heap used in original implementation of Unibic, the second one uses standard sorting
algorithm from C++ STL.

Usage

calculateLCS(discreteInput, useFibHeap = TRUE)

Arguments

discreteInput is a input discrete matrix

useFibHeap boolean value for choosing which sorting method should be used in sorting of
output

Value

a list with sorted values based on calculation of the length of LCS between all pairs of rows

4 cluster

See Also

runibic backtrackLCS pairwiseLCS

Examples

A <- matrix(c(4, 3, 1, 2, 5, 8, 6, 7), nrow=2, byrow=TRUE)
calculateLCS(A, TRUE)

cluster Calculate biclusters from sorted list of LCS scores and row indices

Description

This function search for biclusters in the input matrix. The calculations are based on the integer
matrix with indexes indicating positions of j-th smallest element in each row and the results from
calculations of Longest Common Subsequence between all rows in the input matrix. The paramteres
of this function can be obtained from other functions provided by this package.

Usage

cluster(discreteInput, discreteInputValues, scores, geneOne, geneTwo, rowNumber,
colNumber)

Arguments

discreteInput an integer matrix with indices of sorted columns

discreteInputValues

an integer matrix with discrete values

scores a numeric vector with LCS length

geneOne a numeric vector with first row indexes from pairwise LCS calculation

geneTwo a numeric vector with second row indexes from pairwise LCS calculation

rowNumber a int with number of rows in the input matrix

colNumber a int with number of columns in the input matrix

Value

a list with information of found biclusters

See Also

runibic calculateLCS unisort

pairwiseLCS 5

Examples

A <- matrix(c(4,3,1,2,5,8,6,7,9,10,11,12),nrow=4,byrow=TRUE)
iA <- unisort(A)
lcsResults <- calculateLCS(A)
cluster(iA, A, lcsResults$lcslen, lcsResults$a, lcsResults$b, nrow(A), ncol(A))

pairwiseLCS Calculate a matrix of Longest Common Subsequence (LCS) between a
pair of numeric vectors

Description

This function calculates the matrix with Longest Common Subsequence (LCS) between two nu-
meric vectors. From given matrix we can locate the size of the Longest Common Subsequence in
the last column in the last row.

Usage

pairwiseLCS(x, y)

Arguments

x an integer vector

y an integer vector

Value

a matrix computed using dynamic programming that stores the Longest Common Subsequence
(LCS) between two vectors A and B.

See Also

runibic calculateLCS backtrackLCS

Examples

A <- c(1, 2, 3, 4, 5)
B <- c(1, 2, 4)
pairwiseLCS(A, B)

6 runibic

runibic runibic: parallel row-based biclustering algorithm for analysis of
gene expression data in R

Description

runibic is a package that contains much faster parallel version of one of the most accurate biclus-
tering algorithms, UniBic. The original method was reimplemented from C to C++11, OpenMP
was added for parallelization.

If you use this package, please cite it as: Patryk Orzechowski, Artur Pańszczyk, Xiuzhen Huang,
Jason H Moore; "runibic: a Bioconductor package for parallel row-based biclustering of gene ex-
pression data"; Bioinformatics, 2018, bty512, doi: https://doi.org/10.1093/bioinformatics/bty512

Each of the following functions BCUnibic, BCUnibicD, runibic perform biclustering using UniBic
biclustering algorithm. The major difference between the functions is that BCUnibicD require a
discretized matrix, whilst BCUnibic (or runibic) could be applied to numeric one.

Usage

BCUnibic(x = NULL, t = 0.95, q = 0, f = 1, nbic = 100, div = 0,
useLegacy = FALSE)

BCUnibicD(x = NULL, t = 0.95, q = 0, f = 1, nbic = 100, div = 0,
useLegacy = FALSE)

runibic(x = NULL, t = 0.95, q = 0, f = 1, nbic = 100, div = 0, useLegacy=FALSE)

Arguments

x numeric or integer matrix (depends on the function)

t consistency level of the block (0.5-1.0].

q a double value for quantile discretization

f filtering overlapping blocks (default 1 do not remove any blocks)

nbic maximum number of biclusters in output

div number of ranks for up(down)-regulated genes: default: 0==ncol(x)

useLegacy boolean value for using legacy parameter settings

Details

For a given input matrix we first perform discretization and create index matrix using runiDiscretize
function. The discretization is performed taking into account quantiles of the data. The resulting
index matrix allows to detect order-preserving trends between each pair of the rows irrespective to
the order of columns. After the ranking, the matrix is split by rows into subgroups based on the
significance of the future biclusters. In each of the chunks, we calculate pairwise calculations of
Longest Common Subsequence LCS between all pairs of the rows. LCS calculations are performed
using dynamic programming and determine the longest order-preserving trend between each pair

runibic 7

of the rows. After partitioning the matrix strict order-preserving biclusters are determined and later
expanded to approximate-trend biclusters within cluster function.

This package provides 3 main functions: runibic and BCUnibic perform UniBic biclustering algo-
rithm on numeric data, whilst BCUnibicD could be applied to integer ones. The latter two methods
are compatible with Biclust class.

Value

Biclust object with detected biclusters

Functions

• BCUnibic: BCUnibic performs biclustering using UniBic on numeric matrix. It is intended to
use as a method called from biclust.

• BCUnibicD: perform biclustering using UniBic on integer matrix. It is intended to use as a
method called from biclust.

• runibic: perform biclustering using UniBic on numeric matrix.

Author(s)

Patryk Orzechowski patryk.orzechowski@gmail.com, Artur Pańszczyk panszczyk.artur@gmail.
com

References

Wang, Zhenjia, et al. "UniBic: Sequential row-based biclustering algorithm for analysis of gene
expression data." Scientific reports 6 (2016): 23466.

Patryk Orzechowski, Artur Pańszczyk, Xiuzhen Huang, Jason H. Moore: "runibic: a Bioconductor
package for parallel row-based biclustering of gene expression data", bioRxiv (2017): 210682, doi:
https://doi.org/10.1101/210682

See Also

runiDiscretize set_runibic_params BCUnibic-class BCUnibicD-class unisort

Examples

A <- matrix(replicate(100, rnorm(100)), nrow=100, byrow=TRUE)
runibic(A)
BCUnibic(A)
BCUnibic(A, t = 0.95, q = 0, f = 1, nbic = 100, div = 0)
B <- runiDiscretize(A)
runibic(B)
BCUnibicD(B, t = 0.95, q = 0, f = 1, nbic = 100, div = 0)
biclust::biclust(A, method=BCUnibic(), t = 0.95, q = 0, f = 1, nbic = 100, div = 0)
biclust::biclust(B, method=BCUnibicD(), t = 0.95, q = 0, f = 1, nbic = 100, div = 0)

patryk.orzechowski@gmail.com
panszczyk.artur@gmail.com
panszczyk.artur@gmail.com

8 set_runibic_params

runiDiscretize Discretize an input matrix

Description

This function discretizes the input matrix. runiDiscretize uses paramaters: ’div’ and ’q’, which
are set by set_runibic_params function. The funtion returns a discrete matrix with given number of
ranks based on the parameter div. In contrast to biclust::discretize the function takes into consider-
ation the quantile parameter ’q’. When ’q’ parameter is higher or equal 0.5 a simple discretization
is used with equal sizes of the levels using the quantiles. If ’q’ parameter is lower than 0.5 we use
up(down)-regulated discretization divided into three parts.

Usage

runiDiscretize(x)

Arguments

x a numeric matrix

Value

a discretized matrix containing integers only

See Also

set_runibic_params calculateLCS discretize

Examples

A <- replicate(10, rnorm(20))
runiDiscretize(A)

set_runibic_params Set the parameters for runibic algorithm

Description

runibic function for setting parameters

Usage

set_runibic_params(t = 0.85, q = 0, f = 1, nbic = 100L, div = 0L,
useLegacy = FALSE)

unisort 9

Arguments

t consistency level of the block (0.5-1.0]
q a double value for quantile discretization
f filtering overlapping blocks, default 1(do not remove any blocks)
nbic maximum number of biclusters in output
div number of ranks as which we treat the up(down)-regulated value: default: 0==ncol(x)
useLegacy boolean value for legacy parameters management

Value

NULL (an empty value)

See Also

runibic

Examples

set_runibic_params(0.85, 0, 1, 100, 0, FALSE)

unisort Computing the indexes of j-th smallest values of each row

Description

This function sorts separately each row of a integer matrix and returns a matrix in which the value
in i-th row and j-th column represent the index of the j-th smallest value of the i-th row.

Usage

unisort(x)

Arguments

x a integer matrix

Value

a integer matrix with indexes indicating positions of j-th smallest element in each row

See Also

runibic calculateLCS runiDiscretize

Examples

A <- matrix(c(4, 3, 1, 2, 5, 8, 6, 7), nrow=2, byrow=TRUE)
unisort(A)

Index

backtrackLCS, 2, 4, 5
BCUnibic, 6, 7
BCUnibic (runibic), 6
BCUnibic-class, 3
BCUnibicD, 6, 7
BCUnibicD (runibic), 6
BCUnibicD-class, 3
Biclust, 7
biclust, 7

calculateLCS, 2, 3, 4, 5, 8, 9
cluster, 4, 7

discretize, 8

pairwiseLCS, 2, 4, 5

runibic, 2–6, 6, 7, 9
runibic-package (runibic), 6
runiDiscretize, 6–8, 8, 9

set_runibic_params, 7, 8, 8

unisort, 4, 7, 9

10

	backtrackLCS
	BCUnibic-class
	BCUnibicD-class
	calculateLCS
	cluster
	pairwiseLCS
	runibic
	runiDiscretize
	set_runibic_params
	unisort
	Index

