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Description

The ’proDAFit’ object overwrites the dollar function to make it easy to call functions to access
values inside the object. This has the advantage that it is very easy to discover the relevant methods
but nonetheless have an isolated implementation. Unlike the ~@" operator which directly accesses
the underlying implementation, the * $~ operator only exposes a limited set of functions

* abundances

* hyper_parameters

. feature_parameters

* coefficients

* convergence

* design

¢ reference_level

¢ result_names

e coefficient_variance_matrices

* colData

e rowData

Usage

## S3 method for class 'proDAFit'
.DollarNames(x, pattern = "")

## S4 method for signature 'proDAFit'
x$name

## S4 replacement method for signature 'proDAFit'
x$name <- value

Arguments

X an object of class "proDAFit’ produced by proDA()

pattern the regex pattern that is provided by the IDE

name one of the functions listed above

value Warning: modifying the content of a ’proDAFit’ object is not allowed
Value

whatever the function called name returns.

See Also

accessor_methods for more documentation on the accessor functions.



Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)

# The two styles are identical
design(fit)
fit$design

# More functions
fit$abundances

abundances

abundances Get the abundance matrix

Description

Get the abundance matrix

Usage
abundances(object, ...)
Arguments
object the object to get from
additional arguments used by the concrete implementation
Value

the original matrix that was fitted

See Also

accessor_methods for the implementation for a *proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
abundances(fit)
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accessor_methods Get different features and elements of the proDAFit’ object

Description
The functions listed below can all be accessed using the fluent dollar notation (ie. fit$abundances[1:3,1:3])
without any additional parentheses.

Usage

## S4 method for signature 'proDAFit'
abundances(object)

## S4 method for signature 'proDAFit'
design(object, formula = FALSE)

## S4 method for signature 'proDAFit'
hyper_parameters(object)

## S4 method for signature 'proDAFit'
feature_parameters(object)

## S4 method for signature 'proDAFit'
coefficients(object)

## S4 method for signature 'proDAFit'
coefficient_variance_matrices(object)

## S4 method for signature 'proDAFit'
reference_level (object)

## S4 method for signature 'proDAFit'

convergence(object)
Arguments
object the "proDAFit’ object
formula specific argument for the design function to get the formula that was used to

create the linear model. If no formula was used NULL is returned.

Value

See the documentation of the generics to find out what each method returns
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as_replicate Get numeric vector with the count of the replicate for each element

Description
For a vector with repeated values return a vector where each element is the count how often the
element was observed previously

Usage

as_replicate(x)

Arguments

X a vector with repeated elements

Value

numeric vector

See Also

order, rank

Examples

x <= c("a", "b", "a", "b", "b", "d")
all(proDA:::as_replicate(x) == ¢(1,1,2,2,3,1))

coefficients Get the coefficients

Description

Get the coefficients

Usage

coefficients(object, ...)
Arguments

object the object to get from

additional arguments used by the concrete implementation



coefficient_variance_matrices

Value

a numeric matrix of size ‘nrow(fit) * p*

See Also

accessor_methods for the implementation for a *proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
coefficients(fit)

coefficient_variance_matrices
Get the coefficients

Description

Get the coefficients

Usage
coefficient_variance_matrices(object, ...)
Arguments
object the object to get from
additional arguments used by the concrete implementation
Value

a list with as many entries as rows in the data. Each element is a p*p matrix

See Also

accessor_methods for the implementation for a *proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
coefficient_variance_matrices(fit)



distance_sq

convergence Get the convergence information

Description

Get the convergence information

Usage

convergence(object, ...)

Arguments

object the object to get from
additional arguments used by the concrete implementation

Value

a list with information on the convergence

See Also

accessor_methods for the implementation for a *proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
convergence(fit)

distance_sq Square distance between two Gaussian distributions

Description

The function takes the mean and the diagonal of the covariance matrix as vector and calculates the
mean and variance of their distance distribution. The formulas are based on [1] page 53.

Usage

distance_sq(mul, sigmal, mu2, sigma2)

Value

a list with elements ‘mean‘ and ‘var®
1. Mathai, A. & Provost, S. Quadratic Forms in Random Variables. (1992).
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dist_approx Calculate an approximate distance for "object’

Description

Calculate an approximate distance for ’object’

Usage
dist_approx(object, ...)
Arguments
object the object for which the distance is approximated
additional arguments used by the concrete implementation
Value

a list with two elements: ‘mean‘ and ‘sd‘ both are formally of class "dist"

See Also

dist for the base R function and dist_approx() concrete implementation for ’proDAFit’ objects

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
dist_approx(fit)

dist_approx_impl Distance method for 'proDAFit’ object

Description

The method calculates either the euclidean distance between samples or proteins taking into account
the missing values and the associated uncertainty. Because with missing value no single determin-
istic distance can be calculated two objects are returned: the mean and the associated standard
deviation of the distance estimates.
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Usage

## S4 method for signature 'proDAFit'
dist_approx(object, by_sample = TRUE, blind = TRUE)

## S4 method for signature 'SummarizedExperiment'’
dist_approx(object, by_sample = TRUE, blind = TRUE, ...)

## S4 method for signature 'ANY'

dist_approx(object, by_sample = TRUE, blind = TRUE, ...)
Arguments
object the *proDAFit’ object for which we calculate the distance or a matrix like object
for which *proDAFit’ is created internally
by_sample aboolean that indicates if the distances is calculated between the samples (‘by_sample
= TRUE") or between the proteins (‘by_sample = FALSE®). Default: ‘TRUE*
blind fit an intercept model for the missing values to make sure that the results are not

biased for the expected result. Default: ‘“TRUE*

additional arguments to proDA() in case object is a SummarizedExperiment or
amatrix

Value

a list with two elements: ‘mean‘ and ‘sd‘ both are formally of class "dist"

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
dist_approx(fit)

feature_parameters Get the feature parameters

Description

Get the feature parameters

Usage

feature_parameters(object, ...)
Arguments

object the object to get from

additional arguments used by the concrete implementation
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Value

a data.frame with information on each fit

See Also

accessor_methods for the implementation for a *proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
feature_parameters(fit)

generate_synthetic_data
Generate a dataset according to the probabilistic dropout model

Description

Generate a dataset according to the probabilistic dropout model

Usage

generate_synthetic_data(
n_proteins,
n_conditions = 2,
n_replicates = 3,
frac_changed = 0.1,
dropout_curve_position = 18.5,
dropout_curve_scale = -1.2,
location_prior_mean = 20,
location_prior_scale = 4,
variance_prior_scale = 0.05,
variance_prior_df = 2,
effect_size = 2,
return_summarized_experiment = FALSE

Arguments

n_proteins the number of rows in the dataset
n_conditions the number of conditions. Default: 2

n_replicates  the number of replicates per condition. Can either be a single number or a vector
with length(n_replicates) == n_conditions. Default: 3

frac_changed  the fraction of proteins that actually differ between the conditions. Default: 0.1
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dropout_curve_position
the point where the chance to observe a value is 50%. Can be a single number or

a vector of length(dropout_curve_position) ==n_conditions * n_replicates.

Default: 18.5

dropout_curve_scale
The width of the dropout curve. Negative numbers mean that lower intensi-
ties are more likely to be missing. Can be a single number or a vector of
length(dropout_curve_position) ==n_conditions x n_replicates. De-
fault: -1.2

location_prior_mean, location_prior_scale
the position and the variance around which the individual condition means (t_mu)
scatter. Default: 20 and 4

variance_prior_scale, variance_prior_df
the scale and the degrees of freedom of the inverse Chi-squared distribution used
as a prior for the variances. Default: 0.05 and 2

effect_size the standard deviation that is used to draw different values for the frac_changed
part of the proteins. Default: 2
return_summarized_experiment

a boolean indicator if the method should return a SummarizedExperiment ob-
ject instead of a list. Default: FALSE

Value
a list with the following elements

Y the intensity matrix including the missing values
Z the intensity matrix before dropping out values

t_mu a matrix with n_proteins rows and n_conditions columns that contains the underlying
means for each protein

t_sigma2 a vector with the true variances for each protein
changed a vector with boolean values if the protein is actually changed
group the group structure mapping samples to conditions

if return_summarized_experiment is FALSE. Otherwise returns a SummarizedExperiment with
the same information.

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
names(syn_data)
head(syn_datas$Y)

# Returning a SummarizedExperiment

se <- generate_synthetic_data(n_proteins = 10, return_summarized_experiment = TRUE)
se

head(SummarizedExperiment: :assay(se))



hyper_parameters
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hyper_parameters Get the hyper parameters

Description

Get the hyper parameters

Usage
hyper_parameters(object, ...)
Arguments
object the object to get from
additional arguments used by the concrete implementation
Value

a list with the values for each fitted hyper-parameter

See Also

accessor_methods for the implementation for a ’proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
hyper_parameters(fit)

invprobit Inverse probit function

Description

Calculate the values of the sigmoidal function that is defined by the cumulative normal distribution

function (pnorm). This method provides a convenient wrapper for the pnorm that automatically

handles negative zeta and is more consistent in its naming.

Usage

invprobit(x, rho, zeta, log = FALSE, oneminus = FALSE)
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Arguments

X

rho

zeta

log

oneminus

Value

invprobit_fast

numeric vector

numeric vector of length 1 or the same length as x. Specifies the inflection point
of the inverse probit curve.

numeric vector of length 1 or the same length as x. Specifies the scale of the
curve at the inflection point of the inverse probit curve.

boolean if the log of the result is returned

boolean if one minus the result is returned

a numeric vector of length(x).

Examples

xg <- seq(-5, 5, length.out=101)
plot(xg, invprobit(xg, rho=-2, zeta=-0.3))

invprobit_fast

Same thing as invprobit, but without the parameter validation

Description

Same thing as invprobit, but without the parameter validation

Usage

invprobit_fast(x, rho, zeta, log = FALSE, oneminus = FALSE)

Value

a numeric vector of length(x)
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median_normalization  Column wise median normalization of the data matrix

Description

The method calculates for each sample the median change (i.e. the difference between the observed
value and the row average) and subtracts it from each row. Missing values are ignored in the
procedure. The method is based on the assumption that a majority of the rows did not change.

Usage

median_normalization(X, spike_in_rows = NULL)

Arguments

X a matrix or SummarizedExperiment of proteins and samples

spike_in_rows a numeric or boolean vector that is used to to normalize the intensities across
samples. Default: NULL which means that all rows are used.

Value

the normalized matrix

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
normalized_data <- median_normalization(syn_data$Y)
normalized_data

# If we assume that the first 5 proteins are spike-ins
normalized_data2 <- median_normalization(syn_data$yY, spike_in_rows = 1:5)

mply_dbl apply function that always returns a numeric matrix

Description

The function is modeled after ‘vapply‘, but always returns a matrix with one row for each iteration.
You need to provide the number of elements each function call produces beforehand (i.e. the number
of resulting columns). For a more flexible version where you don’t need to provide the number of
columns see msply_dbl
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Usage
mply_dbl(x, FUN, ncol =1, ...)
msply_dbl(x, FUN, ...)
Arguments
X a vector that will be passed to ‘vapply*‘ or a matrix that will be passed to apply
with MARGIN=1.
FUN the function that returns a vector of length ncol
ncol the length of the vector returned by ‘FUN".
additional arguments to FUN
Value

a matrix of size length(x) x ncol

Functions

e mply_dbl: apply function that always returns a numeric matrix

* msply_dbl: flexible version that automatically infers the number of columns

Examples

# Behaves similar to sapply(), but it always returns a matrix
t(sapply(1:5, function(i) c(i - i/3, i, i + i/3)))
proDA:::mply_dbl(1:5, function(i) c(i - i/3, i, i + i/3), ncol=3)

# Which can avoid some bad surprises
t(sapply(1:5, identity))
proDA: ::mply_dbl(1:5, identity)

# Works also with matrix input

mat <- matrix(1:20, ncol=4)

mat

proDA: ::msply_dbl(mat, function(i) rep(i, each=2))

pd_1m Fit a single linear probabilistic dropout model
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Description

The function works similar to the classical 1m but with special handling of NA’s. Whereas 1m usually
just ignores response value that are missing, pd_1m applies a probabilistic dropout model, that
assumes that missing values occur because of the dropout curve. The dropout curve describes for
each position the chance that that a value is missed. A negative dropout_curve_scale means that
the lower the intensity was, the more likely it is to miss the value.

Usage

pd_Im(
formula,
data = NULL,
subset = NULL,
dropout_curve_position,
dropout_curve_scale,
location_prior_mean = NULL,
location_prior_scale = NULL,
variance_prior_scale = NULL,
variance_prior_df = NULL,
location_prior_df = 3,

method = c("analytic_hessian”, "analytic_grad”, "numeric”),
verbose = FALSE
)
Arguments
formula a formula that specifies a linear model
data an optional data.frame whose columns can be used to specify the formula
subset an optional selection vector for data to subset it

dropout_curve_position
the value where the chance to observe a value is 50%. Can either be a single
value that is repeated for each row or a vector with one element for each row.
Not optional.

dropout_curve_scale
the width of the dropout curve. Smaller values mean that the sigmoidal curve
is steeper. Can either be a single value that is repeated for each row or a vector
with one element for each row. Not optional.

location_prior_mean, location_prior_scale
the optional mean and variance of the prior around which the predictions are
supposed to scatter. If no value is provided no location regularization is applied.

variance_prior_scale, variance_prior_df
the optional scale and degrees of freedom of the variance prior. If no value is
provided no variance regularization is applied.

location_prior_df
The degrees of freedom for the t-distribution of the location prior. If it is large
(> 30) the prior is approximately Normal. Default: 3
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method one of "analytic_hessian’, *analytic_gradient’, or 'numeric’. If "analytic_hessian’
the nIminb optimization routine is used, with the hand derived first and second
derivative. Otherwise, optim either with or without the first derivative is used.

verbose boolean that signals if the method prints informative messages. Default: FALSE.

Value

a list with the following entries

coefficients a named vector with the fitted values

coef_variance_matrix a p*p matrix with the variance associated with each coefficient estimate
n_approx the estimated "size" of the data set (n_hat - variance_prior_df)

df the estimated degrees of freedom (n_hat - p)

s2 the estimated unbiased variance

n_obs the number of response values that were not ‘NA*

Examples

# Without missing values

y <= rnorm(5, mean=20)

ImCy ~ 1)

pd_Im(y ~ 1,
dropout_curve_position = NA,
dropout_curve_scale = NA)

# With some missing values
y <= c(23, 21.4, NA)

ImCy ~ 1)

pd_lm(y ~ 1,
dropout_curve_position = 19,
dropout_curve_scale = -1)

# With only missing values

y <= c(NA, NA, NA)

# Im(y ~ 1) # Fails

pd_Im(y ~ 1,
dropout_curve_position = 19,
dropout_curve_scale = -1,
location_prior_mean = 21,
location_prior_scale = 3,
variance_prior_scale = 0.1,
variance_prior_df = 2)
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pd_1m.fit The work horse for fitting the probabilistic dropout model

Description

If there is no location and variance moderation and no missing values, the model is fitted with ‘Im°.

Usage

pd_lm.fit(
Y,
X,
dropout_curve_position,
dropout_curve_scale,
location_prior_mean = NULL,
location_prior_scale = NULL,
variance_prior_scale = NULL,
variance_prior_df = NULL,
location_prior_df = 3,
method = c("analytic_hessian”, "analytic_grad”, "numeric”),
verbose = FALSE

Value

a list with the following entries

coefficients a named vector with the fitted values

n_approx the estimated "size" of the data set (n_hat - variance_prior_df)
df the estimated degrees of freedom (n_hat - p)

s2 the estimated unbiased variance

n_obs the number of response values that were not ‘NA*

pd_row_t_test Row-wise tests of difference using the probabilistic dropout model

Description

This is a helper function that combines the call of proDA() and test_diff(). If you need more
flexibility use those functions.
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Usage

pd_row_t_test(
X,
Y,
moderate_location = TRUE,
moderate_variance = TRUE,
alternative = c("two.sided”, "greater"”, "less"),
pval_adjust_method = "BH",
location_prior_df = 3,
max_iter = 20,
epsilon = 0.001,
return_fit = FALSE,
verbose = FALSE

pd_row_f_test(
X,
groups = NULL,
moderate_location = TRUE,
moderate_variance = TRUE,
pval_adjust_method = "BH",
location_prior_df = 3,
max_iter = 20,
epsilon = 0.001,
return_fit = FALSE,
verbose = FALSE

Arguments

XY, ... the matrices for condition 1, 2 and so on. They must have the same number of
TOWS.

moderate_location
boolean values to indicate if the location and the variances are moderated. De-
fault: TRUE

moderate_variance
boolean values to indicate if the location and the variances are moderated. De-

fault: TRUE

alternative a string that decides how the hypothesis test is done. This parameter is only
relevant for the Wald-test specified using the ‘contrast’ argument. Default:
"two.sided”

pval_adjust_method
a string the indicates the method that is used to adjust the p-value for the multiple
testing. It must match the options in p.adjust. Default: "BH"
location_prior_df
the number of degrees of freedom used for the location prior. A large number
(> 30) means that the prior is approximately Normal. Default: 3
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epsilon

return_fit
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the maximum of iterations proDA() tries to converge to the hyper-parameter
estimates. Default: 20

if the remaining error is smaller than epsilon the model has converged. Default:
1le-3

boolean that signals that in addition to the data.frame with the hypothesis test
results, the fit from proDA() is returned. Default: FALSE

boolean that signals if the method prints messages during the fitting. Default:

a factor or character vector with that assignes the columns of X to different con-
ditions. This parameter is only applicable for the F-test and must be specified if

verbose
FALSE
groups
only a single matrix is provided.
Details

The pd_row_t_test is not actually doing a t-test, but rather a Wald test. But, as the two are closely
related and term t-test is more widely understood, we choose to use that name.

Value

If return_fit == FALSE a data.frame is returned with the content that is described in test_diff.

If return_fit == TRUE a list is returned with two elements: fit with a reference to the object
returned from proDA() and a test_result() with the data.frame returned from test_diff ().

See Also

proDA and test_diff for more flexible versions. The function was inspired by the rowFtests
function in the genefilter package.

Examples

datal <- matrix(rnorm(1@ * 3), nrow=10)
data2 <- matrix(rnorm(1@ * 4), nrow=10)
data3 <- matrix(rnorm(1@ * 2), nrow=10)

# Comparing two datasets
pd_row_t_test(datal, data2)

# Comparing multiple datasets
pd_row_f_test(datal, data2, data3)

# Alternative
data_comb <- cbind(datal, data2, data3)
pd_row_f_test(data_comb,

groups = c(rep("A",3), rep("B", 4), rep("C", 2)))

# t.test, Im, pd_row_t_test, and pd_row_f_test are
# approximately equivalent on fully observed data
set.seed(1)

x <= rnorm(5)
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y <- rnorm(5, mean=0.3)

t.test(x, y)
summary (Im(c(x, y) ~ cond,
data = data.frame(cond = c(rep("x", 5),
rep("y", 5)))))$coefficients[2,]

pd_row_t_test(matrix(x, nrow=1), matrix(y, nrow=1),

moderate_location = FALSE,

moderate_variance = FALSE)
pd_row_f_test(matrix(x, nrow=1), matrix(y, nrow=1),

moderate_location = FALSE,

moderate_variance = FALSE)

predict,proDAFit-method
Predict the parameters or values of additional proteins

Description

This function can either predict the abundance matrix for proteins (type = "response”) without
missing values according to the linear probabilistic dropout model, fitted with proDA(). Or, it
can predict the feature parameters for additional proteins given their abundances including missing
values after estimating the hyper-parameters on a dataset with the same sample structure (type =
"feature_parameters").

Usage
## S4 method for signature 'proDAFit'
predict(
object,
newdata,
newdesign,
type = c("response”, "feature_parameters”),
)
Arguments
object an 'proDAFit’ object that is produced by proDA().
newdata a matrix or a SummarizedExperiment which contains the new abundances for
which values are predicted.
newdesign a formula or design matrix that specifies the new structure that will be fitted
type either "response" or "feature_parameters". Default: "response”

additional parameters for the construction of the proDAFit’ object.
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Details

Note: this method behaves a little different from what one might expect from the classical predict.1m()
function, because object is not just a single set of coefficients for one fit, but many fits (ie. one

for each protein) with some more hyper-parameters. The classical predict function predicts the
response for new samples. This function does not support this, instead it is useful for getting a
matrix without missing values for additional proteins.

Value

I

If type = "response” a matrix with the same dimensions as object. Or, if type = "feature_parameters’
a ’proDAFit’ object with the same hyper-parameters and column data as object, but new fitted
rowData().

proDA Main function to fit the probabilistic dropout model

Description

The function fits a linear probabilistic dropout model and infers the hyper-parameters for the lo-
cation prior, the variance prior, and the dropout curves. In addition it infers for each protein the
coefficients that best explain the observed data and the associated uncertainty.

Usage

proDA(
data,
design = ~1,
col_data = NULL,
reference_level = NULL,
data_is_log_transformed = TRUE,
moderate_location = TRUE,
moderate_variance = TRUE,
location_prior_df = 3,
n_subsample = nrow(data),
max_iter = 20,
epsilon = 0.001,
verbose = FALSE,

Arguments

data a matrix like object (matrix(), SummarizedExperiment(), or anything that
can be cast to SummarizedExperiment() (eg. ‘MSnSet‘, ‘eSet’, ...)) with one
column per sample and one row per protein. Missing values should be coded as
NA.
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design a specification of the experimental design that is used to fit the linear model. It
can be a model.matrix() with one row for each sample and one column for
each coefficient. It can also be a formula with the entries referring to global
objects, columns in the col_data argument or columns in the colData(data)
if data is a SummarizedExperiment. Thirdly, it can be a vector that for each
sample specifies the condition of that sample. Default: ~ 1, which means that all
samples are treated as if they are in the same condition.

col_data a data.frame with one row for each sample in data. Default: NULL

reference_level
a string that specifies which level in a factor coefficient is used for the intercept.
Default: NULL

data_is_log_transformed
the raw intensities from mass spectrometry experiments have a linear mean-
variance relation. This is undesirable and can be removed by working on the
log scale. The easiest way to find out if the data is already log- transformed is
to see if the intensities are in the range of ‘0‘ to ‘100° in which case they are
transformed or if they rather are between ‘1e5° to ‘1e12°, in which case they are
not. Default: TRUE

moderate_location, moderate_variance
boolean values to indicate if the location and the variances are moderated. De-
fault: TRUE

location_prior_df
the number of degrees of freedom used for the location prior. A large number
(> 30) means that the prior is approximately Normal. Default: 3

n_subsample the number of proteins that are used to estimate the hyper-parameter. Reducing
this number can speed up the fitting, but also mean that the final estimate is less
precise. By default all proteins are used. Default: nrow(data)

max_iter the maximum of iterations proDA() tries to converge to the hyper-parameter
estimates. Default: 20

epsilon if the remaining error is smaller than epsilon the model has converged. Default:
1e-3

verbose boolean that signals if the method prints messages during the fitting. Default:
FALSE

additional parameters for the construction of the *proDAFit’ object

Details

By default, the method is moderating the locations and the variance of each protein estimate. The
variance moderation is fairly standard in high-throughput experiments and can boost the power to
detect differentially abundant proteins. The location moderation is important to handle the edge
case where in one condition a protein is not observed in any sample. In addition it can help to get
more precise estimates of the difference between conditions. Unlike 'DESeq2’, which moderates
the coefficient estimates (ie. the "betas") to be centered around zero, ’proDA’ penalizes predicted
intensities that strain far from the other observed intensities.
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Value

An object of class 'proDAFit’. The object contains information on the hyper-parameters and
feature parameters, the convergence, the experimental design etc. Internally, it is a sub-class of
SummarizedExperiment which means the object is subsettable. The ‘$‘-operator is overloaded for
this object to make it easy to discover applicable functions.

Examples

# Quick start

# Import the proDA package if you haven't already done so
# library(proDA)

set.seed(1)

syn_data <- generate_synthetic_data(n_proteins = 10)

fit <- proDA(syn_data$Y, design = syn_data$groups)

fit

result_names(fit)

test_diff(fit, Condition_1 - Condition_2)

# SummarizedExperiment

se <- generate_synthetic_data(n_proteins = 10,
return_summarized_experiment = TRUE)

se

proDA(se, design = ~ group)

# Design using model.matrix()

data_mat <- matrix(rnorm(5 * 10), nrow=10)

colnames(data_mat) <- paste@(”sample”, 1:5)

annotation_df <- data.frame(names = paste@("sample”, 1:5),
condition = c("A", "A", "A", "B", "B"),
age = rnorm(5, mean=40, sd=10))

design_mat <- model.matrix(~ condition + age,
data=annotation_df)

design_mat

proDA(data_mat, design_mat, col_data = annotation_df)

proDAFit-class proDA Class Definition

Description

proDA Class Definition
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proDA_package proDA: Identify differentially abundant proteins in label-free mass
spectrometry

Description

Account for missing values in label-free mass spectrometry data without imputation. The pack-
age implements a probabilistic dropout model that ensures that the information from observed and
missing values are properly combined. It adds empirical Bayesian priors to increase power to detect
differentially abundant proteins.

reference_level Get the reference level

Description

Get the reference level

Usage

reference_level (object, ...)

Arguments

object the object to get from

additional arguments used by the concrete implementation

Value

a string

See Also

accessor_methods for the implementation for a ’proDAFit’ object

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups, reference_level = "Condition_1")
reference_level (fit)
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result_names Get the result_names

Description

Get the result_names

Usage
result_names(fit, ...)
Arguments
fit the fit to get the result_names from
additional arguments used by the concrete implementation
Value

a character vector

Examples

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
result_names(fit)

test_diff Identify differentially abundant proteins

Description

The ‘test_diff()* function is used to test coefficients of a ’proDAFit’ object. It provides a Wald
test to test individual coefficients and a likelihood ratio F-test to compare the original model with
a reduced model. The result_names method provides a quick overview which coefficients are
available for testing.

Usage
test_diff(
fit,
contrast,
reduced_model = ~1,
alternative = c("two.sided”, "greater”, "less"),

pval_adjust_method = "BH",
sort_by = NULL,
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decreasing = FALSE,
n_max = Inf,
verbose = FALSE

)

## S4 method for signature 'proDAFit'
result_names(fit)

Arguments
fit an object of class ’proDAFit’. Usually, this is produced by calling proDA()
contrast an expression or a string specifying which contrast is tested. It can be a single

coefficient (to see the available options use result_names(fit)) or any linear
combination of them. The contrast is always compared against zero. Thus, to
find out if two coefficients differ use coef1 - coef2. Remember if the coeffi-
cient is not a valid identifier in R, to escape it using back ticks. For example if
you test the interaction of A and B use "A:B~.

reduced_model If you don’t want to test an individual coefficient, you can can specify a reduced
model and compare it with the original model using an F-test. This is useful
to find out how a set of parameters affect the goodness of the fit. If neither a
contrast, nor a reduced_model is specified, by default a comparison with an
intercept model (ie. just the average across conditions) is done. Default: ~ 1.

alternative a string that decides how the hypothesis test is done. This parameter is only
relevant for the Wald-test specified using the ‘contrast® argument. Default:
"two.sided”

pval_adjust_method
a string the indicates the method that is used to adjust the p-value for the multiple
testing. It must match the options in p.adjust. Default: "BH"

sort_by a string that specifies the column that is used to sort the resulting data.frame.
Default: NULL which means the result is sorted by the order of the input matrix.
decreasing a boolean to indicate if the order is reversed. Default: FALSE
n_max the maximum number of rows returned by the method. Default: Inf
verbose boolean that signals if the method prints informative messages. Default: FALSE.
Details

To test if coefficient is different from zero with a Wald test use the contrast function argument.
To test if two models differ with an F-test use the reduced_model argument. Depending on the test
that is conducted, the functions returns slightly different data.frames.

The function is designed to follow the principles of the base R test functions (ie. t.test and
wilcox.test) and the functions designed for collecting the results of high-throughput testing (ie.
limma: : topTable and DESeq2: :results).

Value

The ‘result_names()‘ function returns a character vector.
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The ‘test_diff()‘ function returns a data.frame with one row per protein with the key parameters
of the statistical test. Depending what kind of test (Wald or F test) the content of the ‘data.frame*
differs.

The Wald test, which can considered equivalent to a t-test, returns a ‘data.frame* with the following
columns:

name the name of the protein, extracted from the rowname of the input matrix

pval the p-value of the statistical test

adj_pval the multiple testing adjusted p-value

diff the difference that particular coefficient makes. In differential expression analysis this value is
also called log fold change, which is equivalent to the difference on the log scale.

t_statistic the diff divided by the standard error se
se the standard error associated with the diff

df the degrees of freedom, which describe the amount of available information for estimating the
se. They are the sum of the number of samples the protein was observed in, the amount of
information contained in the missing values, and the degrees of freedom of the variance prior.

avg_abundance the estimate of the average abundance of the protein across all samples.

n_approx the approximated information available for estimating the protein features, expressed as
multiple of the information contained in one observed value.

n_obs the number of samples a protein was observed in
The F-test returns a ‘data.frame‘ with the following columns

name the name of the protein, extracted from the rowname of the input matrix
pval the p-value of the statistical test
adj_pval the multiple testing adjusted p-value

f_statistic the ratio of difference of normalized deviances from original model and the reduced
model, divided by the standard deviation.

df1 the difference of the number of coefficients in the original model and the number of coefficients
in the reduced model

df2 the degrees of freedom, which describe the amount of available information for estimating the
se. They are the sum of the number of samples the protein was observed in, the amount of
information contained in the missing values, and the degrees of freedom of the variance prior.

avg_abundance the estimate of the average abundance of the protein across all samples.

n_approx the information available for estimating the protein features, expressed as multiple of
the information contained in one observed value.

n_obs the number of samples a protein was observed in

See Also

The contrast argument is inspired by 1imma: :makeContrasts.
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Examples

# "t-test”

syn_data <- generate_synthetic_data(n_proteins = 10)
fit <- proDA(syn_data$yY, design = syn_data$groups)
result_names(fit)

test_diff(fit, Condition_1 - Condition_2)

suppressPackageStartupMessages(library(SummarizedExperiment))
se <- generate_synthetic_data(n_proteins = 10,
n_conditions = 3,

%zero_dom_mat_mult%

return_summarized_experiment = TRUE)

colData(se)$age <- rnorm(9, mean=45, sd=5)
colData(se)
fit <- proDA(se, design = ~ group + age)
result_names(fit)
test_diff(fit, "groupCondition_2",

n_max = 3, sort_by = "pval")

# F-test
test_diff(fit, reduced_model = ~ group)

%zero_dom_mat_mult% Helper function that makes sure that NA * 0 = 0 in matrix multiply

Description

Helper function that makes sure that NA * 0 = 0 in matrix multiply

Usage

X %zero_dom_mat_mult% Y

Arguments
X a matrix of size ‘n*m*
Y a matrix of size ‘m*p*
Value

a matrix of size ‘n*p‘
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