Package 'RCM'

October 17, 2024

Type Package

```
Title Fit row-column association models with the negative binomial
     distribution for the microbiome
Version 1.20.0
Description Combine ideas of log-linear analysis of contingency table, flexible response function esti-
     mation and empirical Bayes dispersion estimation for explorative visualization of micro-
     biome datasets. The package includes unconstrained as well as constrained analysis. In addi-
     tion, diagnostic plot to detect lack of fit are available.
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Imports RColorBrewer, alabama, edgeR, reshape2, tseries, stats, VGAM,
     ggplot2 (>= 2.2.1.9000), nleqsly, phyloseq, tensor, MASS,
     grDevices, graphics, methods
Depends R (>= 4.0), DBI
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
biocViews Metagenomics, DimensionReduction, Microbiome, Visualization
BugReports https://github.com/CenterForStatistics-UGent/RCM/issues
URL https://bioconductor.org/packages/release/bioc/vignettes/RCM/inst/doc/
     RCMvignette.html/
git_url https://git.bioconductor.org/packages/RCM
git branch RELEASE 3 19
git_last_commit 363e900
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-10-16
Author Stijn Hawinkel [cre, aut] (<a href="https://orcid.org/0000-0002-4501-5180">https://orcid.org/0000-0002-4501-5180</a>)
Maintainer Stijn Hawinkel <stijn.hawinkel@psb.ugent.be>
```

2 Contents

Contents

addOrthProjection	. 3
arrayprod	. 4
buildCentMat	. 5
buildConfMat	
buildConfMat.character	
buildConfMat.data.frame	. 6
buildCovMat	
buildDesign	
checkAlias	
constrCorresp	
correctXMissingness	
deviances	
dLR_nb	
dNBabundsOld	
dNBlibSizes	
dNBIIcolNP	
dNB1lcolOld	
dNBllcol_constr	
dNBllcol_constr_noLab	
dNBllrow	
dNBpsis	
ellipseCoord	
estDisp	
estNBparams	
estNBparamsNoLab	
estNPresp	
extractCoord	
extractE	. 26
filterConfounders	. 26
getDevianceRes	. 27
getDevMat	. 28
getInflCol	
getInflRow	
getInt	
getLogLik	
getModelMat	
getRowMat	
GramSchmidt	
heq nb	
heq nb jac	
indentPlot	
inertia	
JacCol_constr	
JacCol constr noLab	
liks	
I.R. nh	37

addOrthProjection 3

	NBcolInfl	
	NBjacobianAbundsOld	41
	NBjacobianColNP	41
	NBjacobianColOld	
	NBjacobianLibSizes	43
	NBjacobianPsi	
	NBjacobianRow	
	NBpsiInfl	
	NBrowInfl	46
	plot.RCM	
	plotRespFun	
	RCM	
	RCM_NB	
	residualPlot	
	respFunJacMat	
	respFunScoreMat	
	rowMultiply	
	seq_k	
	trimOnConfounders	
	Zeller	63
Index		64

addOrthProjection

This function adds orthogonal projections to a given plot

Description

This function adds orthogonal projections to a given plot

```
addOrthProjection(
  RCMplot,
  sample = NULL,
  species = NULL,
  variable = NULL,
  Dims = c(1, 2),
  addLabel = FALSE,
  labPos = NULL
)
```

4 arrayprod

Arguments

RCMplot the RCMplot object

sample, species, variable

names or approximate coordinates of sample, species or variable

Dims The dimensions of the solutions that have been plotted

addLabel a boolean, should the r-s-psi label be added?

labPos the position of the label. Will be calculated if not provided

Value

a modified ggplot object that contains the geom_segment object that draws the projection

See Also

```
plot.RCM
```

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[seq_len(100)],
prune_samples(sample_names(Zeller)[seq_len(50)], Zeller))
zellerRCM = RCM(tmpPhy, k = 2, round = TRUE)
zellerPlot = plot(zellerRCM, returnCoords = TRUE)
addOrthProjection(zellerPlot, species = c(-0.35,1.1), sample = c(1,1.2))
```

arrayprod

An auxiliary R function to 'array' multiply an array with a vector, kindly provided by Joris Meys

Description

An auxiliary R function to 'array' multiply an array with a vector, kindly provided by Joris Meys

Usage

```
arrayprod(x, y)
```

Arguments

```
x a axbxc array
y a vector of length c
```

Value

```
a axb matrix. The ij-th element equals sum(x[i,j,]*y)
```

buildCentMat 5

buildCentMat

A function to build a centering matrix based on a dataframe

Description

A function to build a centering matrix based on a dataframe

Usage

```
buildCentMat(object)
```

Arguments

object

an rcm object or dataframe

Value

a centering matrix consisting of ones and zeroes, or a list with components

centMat a centering matrix consisting of ones and zeroes

datFrame The dataframe with factors with one level removed

buildConfMat

A function to build the confounder matrices

Description

A function to build the confounder matrices

Usage

```
buildConfMat(x, ...)
```

Arguments

x a matrix, data frame or character string

... further arguments passed on to other methods

For the preliminary trimming, we do not include an intercept, but we do include all the levels of the factors using contrasts=FALSE: we want to do the trimming in every subgroup, so no hidden reference levels For the filtering we just use a model with an intercept and treatment coding, here the interest is only in adjusting the offset

6 buildConfMat.data.frame

Value

a list with components

confModelMatTrim

A confounder matrix without intercept, with all levels of factors present. This will be used to trim out taxa that have zero abundances in any subgroup defined

by confounders

confModelMat

A confounder matrix with intercept, and with reference levels for factors absent. This will be used to fit the model to modify the independence model, and may

include continuous variables

buildConfMat.character

buildConfMat.character

Description

buildConfMat.character

Usage

```
## S3 method for class 'character'
buildConfMat(confounders, physeq)
```

Arguments

confounders a numeric matrix of confounders

physeq a physeq object with a sample_data slot

Value

see buidConfMat.numeric

buildConfMat.data.frame

build Conf Mat. data. frame

Description

buildConfMat.data.frame

```
## S3 method for class 'data.frame'
buildConfMat(confounders, n)
```

buildCovMat 7

Arguments

confounders a data frame of confounders

n the number of rows of the count matrix

Value

see buidConfMat

buildCovMat

A function to build the covariate matrix of the constraints

Description

A function to build the covariate matrix of the constraints

Usage

buildCovMat(covariates, dat)

Arguments

covariates the covariates, either as dataframe or as character string

dat the phyloseq object

In this case we will 1) Include dummy's for every level of the categorical variable, and force them to sum to zero. This is needed for plotting and required for reference level independent normalization. 2) Exclude an intercept. The density

function f() will provide this already.

Value

a list with components

covModelMat The model matrix

datFrame The dataframe used to construct the model matrix

8 checkAlias

buildDesign

A function to build the design matrix

Description

A function to build the design matrix

Usage

buildDesign(sampleScore, responseFun)

Arguments

sampleScore a vector of environmental scores

responseFun A character string, indicating the shape of the response function

For dynamic response function estimation, the same desing matrix as for the quadratic one is returned. Will throw an error when an unknown repsonse func-

tion is provided

Value

A design matrix of dimension n-by-f

checkAlias

Check for alias structures in a dataframe, and throw an error when one is found

Description

Check for alias structures in a dataframe, and throw an error when one is found

Usage

checkAlias(datFrame, covariatesNames)

Arguments

datFrame the data frame to be checked for alias structure covariatesNames

The names of the variables to be considered

Value

Throws an error when an alias structure is detected, returns invisible otherwise

constrCorresp 9

Examples

```
#Make a dataframe with aliased variables
df = data.frame(foo = rnorm(10), baa = rep(c(TRUE, FALSE), each = 5),
foo2 = factor(rep(c("male", "female"), each = 5)))
checkAlias(df, c("foo", "baa"))
#Check test files for the error being thrown
```

constrCorresp

Constrained correspondence analysis with adapted powers

Description

Constrained correspondence analysis with adapted powers

Usage

```
constrCorresp(
   X,
   Y,
   rowExp,
   colExp,
   muMarg = outer(rowSums(X), colSums(X))/sum(X)
)
```

Arguments

```
X outcome matrix
Y constraining matrix
rowExp, colExp see ?RCM_NB
muMarg mean matrix under independence model
```

Details

the vegan version, adapted for flexible powers rowExp and colExp

Value

a list with eigenvalues, aliased variables and environmentam gradients

10 deviances

correctXMissingness Replace missing entries in X by their expectation to set their contribution to the estimating equations to zero

Description

Replace missing entries in X by their expectation to set their contribution to the estimating equations to zero

Usage

```
correctXMissingness(X, mu, allowMissingness, naId)
```

Arguments

X the matrix of counts

mu the matrix of expectations

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

The matrix X with the NA entries replaced by the corresponding entries in mu

Note

This may seem like a hacky approach, but it avoids having to deal with NAs in functions like crossprod().

deviances A function to extract deviances for all dimension, including after filtering on confounders

Description

A function to extract deviances for all dimension, including after filtering on confounders

```
deviances(rcm, squaredSum = FALSE)
```

 dLR_nb

Arguments

rcm an object of the RCM class

squaredSum a boolean, should total deviance be returned?

Total deviances can be deceptive and not correspond to the differences in log-likelihood. As the dispersion is different for each model. To compare models it is better to compare models it

is better to compare likelihoods.

Value

If Sum is FALSE, a named array of deviance residuals of the independence model and all models with dimension 1 to k, including after filtering on confounders. Otherwise a table with total deviances (the sum of squared deviance residuals), deviance explained and cumulative deviance explained.

dLR_nb

A function that returns the value of the partial derivative of the loglikelihood ratio to alpha, keeping the response functions fixed

Description

A function that returns the value of the partial derivative of the log-likelihood ratio to alpha, keeping the response functions fixed

```
dLR_nb(
  Alpha,
 Χ,
  responseFun = c("linear", "quadratic", "nonparametric", "dynamic"),
  psi,
 NB_params,
 NB_params_noLab,
 d,
  alphaK,
  k,
  centMat,
  nLambda,
  nLambda1s,
  thetaMat,
 muMarg,
  ncols,
  envGradEst,
  allowMissingness,
 naId,
)
```

12 dNBabundsOld

Arguments

Alpha a vector of length d + k*(2+(k-1)/2), the environmental gradient plus the la-

grangian multipliers

X the n-by-p count matrix CC a n-by-d covariate vector

responseFun a character string indicating the type of response function

psi a scalar, an importance parameter
NB_params Starting values for the NB_params

NB_params_noLab

Starting values for the NB_params without label

d an integer, the number of covariate parameters

alphaK a matrix of environmental gradients of lower dimensions

k an integer, the current dimension centMat a nLambda1s-by-d centering matrix

nLambda an integer, number of lagrangian multipliers nLambda1s an integer, number of centering restrictions

thetaMat a matrix of size n-by-p with estimated dispersion parameters

muMarg an n-by-p offset matrix

ncols a scalar, the number of columns of X

envGradEst a character string, indicating how the environmental gradient should be fitted.

'LR' using the likelihood-ratio criterion, or 'ML' a full maximum likelihood

solution

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X
... further arguments passed on to other methods

Value

: The value of the lagrangian and the constraining equations

dNBabunds01d A score function for the column components of the independence

model (mean relative abundances)

Description

A score function for the column components of the independence model (mean relative abundances)

```
dNBabundsOld(beta, X, reg, thetas, allowMissingness, naId)
```

dNBlibSizes 13

Arguments

beta a vector of length p with current abundance estimates

X a n-by-p count matrix

reg a vector of length n with library sizes estimates

thetas a n-by-p matrix with overdispersion estimates in the rows

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

a vector of length p with evaluations of the score function

dNBlibSizes A score function for the row components of the independence model

(library sizes)

Description

A score function for the row components of the independence model (library sizes)

Usage

```
dNBlibSizes(beta, X, reg, thetas, allowMissingness, naId)
```

Arguments

beta a vector of length n with current library size estimates

X a n-by-p count matrix

reg a vector of length p with relative abundance estimates
thetas a n-by-p matrix with overdispersion estimates in the rows

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

a vector of length n with evaluations of the score function

14 dNBIlcolOld

dNBllcolNP	Estimation of the parameters of a third degree GLM	

Description

Estimation of the parameters of a third degree GLM

Usage

```
dNBllcolNP(beta, X, reg, theta, muMarg, allowMissingness, naId, ...)
```

Arguments

beta A vector of any length

X the data vector of length n

reg a nxlength(beta) regressor matrix

theta a scalar, the overdispersion

muMarg the offset of length n

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X
... further arguments passed on to the jacobian

Value

A vector of the same length as beta with evaluations of the score function

dNBllcolOld	A score function for the estimation of the column scores in an unconstrained $RC(M)$ model
dNBllcol0ld	

Description

A score function for the estimation of the column scores in an unconstrained RC(M) model

dNBIlcolOld 15

Usage

```
dNBllcolOld(
  beta,
  X,
  reg,
  thetas,
  muMarg,
  k,
  p,
  n,
  colWeights,
  nLambda,
  cMatK,
  allowMissingness,
  naId,
  ...
)
```

Arguments

beta vector of length $p+1+1+(k-1)$: p row scores, 1 centering, one normalization and	beta	vector of length $p+1+1+(k-1)$	-1): p row scores, 1	centering, one no	ormalization and
--	------	--------------------------------	----------------------	-------------------	------------------

(k-1) orhtogonality lagrangian multipliers

X the nxp data matrix

reg a nx1 regressor matrix: outer product of rowScores and psis

thetas nxp matrix with the dispersion parameters (converted to matrix for numeric rea-

sons)

muMarg the nxp offset

k an integer, the dimension of the RC solution

p an integer, the number of taxa
n an integer, the number of samples
colWeights the weights used for the restrictions
nLambda an integer, the number of restrictions

cMatK the lower dimensions of the colScores

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

. . . further arguments passed on to the jacobian

Value

A vector of length p+1+1+(k-1) with evaluations of the derivative of lagrangian

dNBllcol_constr

The score function of the response function for 1 taxon at the time

Description

The score function of the response function for 1 taxon at the time

Usage

```
dNBllcol_constr(betas, X, reg, theta, muMarg, psi, allowMissingness, naId)
```

Arguments

betas a vector of v parameters of the response function of a single taxon

X the count vector of length n
reg a n-by-v matrix of regressors

theta The dispersion parameter of this taxon

muMarg offset of length n

psi a scalar, the importance parameter

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Even though this approach does not imply normalization over the parameters of

all taxa, it is very fast and they can be normalized afterwards

Value

A vector of length v with the evaluation of the score functions

Description

The score function of the general response function

dNBllrow 17

Usage

```
dNBllcol_constr_noLab(
  betas,
  X,
  reg,
  thetasMat,
  muMarg,
  psi,
  allowMissingness,
  naId,
  ...
)
```

Arguments

betas a vector of regression parameters with length \boldsymbol{v}

X the nxp data matrix

reg a matrix of regressors of dimension nxv

thetasMat A matrix of dispersion parameters

muMarg offset matrix of dimension nxp

psi a scalar, the importance parameter

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X
... further arguments passed on to the jacobian

Value

The evaluation of the score functions (a vector length v)

dNB11row

A score function of the NB for the row scores

Description

A score function of the NB for the row scores

```
dNBllrow(
  beta,
  X,
  reg,
  thetas,
```

dNBpsis

```
muMarg,
k,
n,
p,
rowWeights,
nLambda,
rMatK,
allowMissingness,
naId,
...
)
```

Arguments

beta a vector of of length n + k + 1 regression parameters to optimize

X the data matrix of dimensions nxp

reg a 1xp regressor matrix: outer product of column scores and psis

thetas nxp matrix with the dispersion parameters (converted to matrix for numeric rea-

sons)

muMarg an nxp offset matrix

k a scalar, the dimension of the RC solution

n a scalar, the number of samples p a scalar, the number of taxa

rowWeights a vector of length n, the weights used for the restrictions

nLambda an integer, the number of lagrangian multipliers

rMatK the lower dimension row scores

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X
... Other arguments passed on to the jacobian

Value

A vector of length n + k + 1 with evaluations of the derivative of the lagrangian

dNBpsis

A score function for the psi of a given dimension

Description

A score function for the psi of a given dimension

```
dNBpsis(beta, X, reg, theta, muMarg, allowMissingness, naId, ...)
```

ellipseCoord 19

Arguments

beta a scalar, the initial estimate

X the n-by-p count matrix

reg the regressor matrix, the outer product of current row and column scores

theta a n-by-p matrix with the dispersion parameters

muMarg the nxp offset matrix

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

... other arguments passed on to the jacobian

Value

The evaluation of the score function at beta, a scalar

ellipseCoord A function that returns the coordinates of an ellipse

Description

A function that returns the coordinates of an ellipse

Usage

```
ellipseCoord(a, b, c, quadDrop = 0.95, nPoints = 100)
```

Arguments

a, b, c parameters of the quadratic function $a^2x+bx+c$

quadDrop A scalar, fraction of peak height at which to draw the ellipse

nPoints an integer, number of points to use to draw the ellipse

Value

a matrix with x and y coordinates of the ellipse

20 estDisp

estDisp

Estimate the overdispersion

Description

Estimate the overdispersion

Usage

```
estDisp(
   X,
   cMat = NULL,
   rMat = NULL,
   muMarg,
   psis,
   trended.dispersion = NULL,
   prior.df = 10,
   dispWeights = NULL,
   rowMat = NULL,
   allowMissingness = FALSE,
   naId
)
```

Arguments

X the data matrix of dimensions nxp

cMat a 1xp colum scores matrix

rMat a nx1 rowscores matrix, if unconstrained

muMarg an nxp offset matrix

psis a scalar, the current psi estimate

 ${\tt trended.dispersion}$

a vector of length p with pre-calculated trended.dispersion estimates. They do

not vary in function of the offset anyway

prior.df an integer, number of degrees of freedom of the prior for the Bayesian shrinkage

dispWeights Weights for estimating the dispersion in a zero-inflated model

rowMat matrix of row scores in case of constrained ordination

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Details

Information between taxa is shared with empirical Bayes using the edgeR pacakage, where the time-limiting steps are programmed in C.

estNBparams 21

Value

A vector of length p with dispersion estimates

estNBparams

A function to estimate the taxon-wise NB-params

Description

A function to estimate the taxon-wise NB-params

Usage

```
estNBparams(
  design,
  thetas,
  muMarg,
  psi,
  X,
  nleqslv.control,
  ncols,
  initParam,
  v,
  dynamic = FALSE,
  envRange,
  allowMissingness,
  naId
)
```

Arguments

design an n-by-v design matrix

thetas a vector of dispersion parameters of length p

muMarg an offset matrix

psi a scalar, the importance parameter

X the data matrix

nleqslv.control

a list of control elements, passed on to nleqslv()

ncols an integer, the number of columns of X

initParam a v-by-p matrix of initial parameter estimates v an integer, the number of parameters per taxon

dynamic a boolean, should response function be determined dynamically? See details envRange a vector of length 2, giving the range of observed environmental scores

allowMissingness

A boolean, are missing values present

22 estNBparamsNoLab

naId The numeric index of the missing values in X

If dynamic is TRUE, quadratic response functions are fitted for every taxon. If the optimum falls outside of the observed range of environmental scores, a linear response function is fitted instead

Value

a v-by-p matrix of parameters of the response function

estNBparamsNoLab

A function to estimate the NB-params ignoring the taxon labels

Description

A function to estimate the NB-params ignoring the taxon labels

Usage

```
estNBparamsNoLab(
  design,
  thetasMat,
 muMarg,
 psi,
 Χ,
 nleqslv.control,
  initParam,
 n,
  ٧,
  dynamic,
  envRange,
 preFabMat,
 allowMissingness,
 naId
)
```

Arguments

design an n-by-v design matrix

thetasMat A matrix of dispersion parameters

muMarg an offset matrix

psi a scalar, the importance parameter

X the data matrix

nleqslv.control

a list of control elements, passed on to nleqslv()

initParam a vector of length v of initial parameter estimates

estNPresp 23

n an integer, the number of samples

v an integer, the number of parameters per taxon

dynamic a boolean, should response function be determined dynamically? See details

envRange a vector of length 2, giving the range of observed environmental scores

preFabMat a pre-fabricated auxiliary matrix

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

If dynamic is TRUE, quadratic response functions are fitted for every taxon. If the optimum falls outside of the observed range of environmental scores, a linear

response function is fitted instead

Value

a v-by-p matrix of parameters of the response function

estNPresp

Estimate the taxon-wise response functions non-parametrically

Description

Estimate the taxon-wise response functions non-parametrically

```
estNPresp(
sampleScore,
muMarg,
X,
ncols,
thetas,
n,
coefInit,
coefInitOverall,
dfSpline,
vgamMaxit,
degree,
verbose,
allowMissingness,
naId,
...
)
```

24 estNPresp

Arguments

sampleScore a vector of length n with environmental scores

muMarg the offset matrix

X the n-by-p data matrix

ncols an integer, the number of columns of X

thetas a vector of length p with dispersion parameters

n an integer, the number of samples

coefInit a 2-by-p matrix with current taxon-wise parameter estimates

coefInitOverall

a vector of length 2 with current overall parameters

dfSpline a scalar, the degrees of freedom for the smoothing spline.

vgamMaxit Maximal number of iterations in the fitting of the GAM model

degree The degree if the parametric fit if the VGAM fit fails

verbose a boolean, should number of failed fits be reported

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

further arguments, passed on to the VGAM:::vgam() function

The negative binomial likelihood is still maximized, but now the response function is a non-parametric one. To avoid a perfect fit and overly flexible functions, we enforce smoothness restrictions. In practice we use a generalized additive model (GAM), i.e. with splines. The same fitting procedure is carried out ignoring species labels. We do not normalize the parameters related to the splines:

the psis can be calculated afterwards.

Value

A list with components

taxonCoef The fitted coefficients of the sample-wise response curves

splinesList A list of all the B-spline objects

rowMar The row matrix

overall The overall fit ignoring taxon labels, as a list of coefficients and a spline

rowVecOverall The overall row vector, ignoring taxon labels

extractCoord 25

extractCoord A function to extract plotting coordinates, either for export to other plotting software	plot.RCM or to
---	----------------

Description

A function to extract plotting coordinates, either for plot.RCM or to export to other plotting software

Usage

```
extractCoord(RCM, Dim = c(1, 2))
```

Arguments

RCM an RCm object

Dim an integer vector of required dimensions

The parameters for the ellipses of the quadratic response function come from the parametrization $f(x) = a*x^2 + b*x + c$ For an unconstrained object the row and column coordinates are returned in separate matrices. The row names will correspond to the labels. For a constrained analysis also the variable points are returned. All variables still need to be scaled to optimally fill the available space

Value

A list with components

samples A dataframe of sample scores

species A dataframe of column scores, with origin, slope, end and ellipse coordinates as

needed

variables A dataframe of variable scores, loadings of the environmental gradient

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
prune_samples(sample_names(Zeller)[1:50], Zeller))
zellerRCM = RCM(tmpPhy, k = 2, round = TRUE)
coordsZeller = extractCoord(zellerRCM)
```

26 filterConfounders

extractE	A function to extract a matrix of expected values for any dimension of the fit

Description

A function to extract a matrix of expected values for any dimension of the fit

Usage

```
extractE(rcm, Dim = rcm$k)
```

Arguments

rcm an object of class RCM

Dim the desired dimension. Defaults to the maximum of the fit. Choose 0 for the

independence model, 0.5 for the confounders filter model.

Value

The matrix of expected values

filterConfounders

Filters out the effect of known confounders. This is done by fitting interactions of every taxon with the levels of the confounders. It returns a modified offset matrix for the remainder of the fitting procedure.

Description

Filters out the effect of known confounders. This is done by fitting interactions of every taxon with the levels of the confounders. It returns a modified offset matrix for the remainder of the fitting procedure.

```
filterConfounders(
  muMarg,
  confMat,
  X,
  thetas,
  p,
  n,
  nleqslv.control,
  trended.dispersion,
  tol = 0.001,
```

getDevianceRes 27

```
maxIt = 20,
allowMissingness,
naId
)
```

Arguments

muMarg a nxp matrix, the current offset

confMat a nxt confounder matrix X the nxp data matrix

thetas a vector of length p with the current dispersion estimates

p an integer, the number of columns of X
n an integer, the number of rows of X

nleqslv.control

see nleqslv()

trended.dispersion

a vector of length p with trended dispersion estimates

tol a scalar, the convergence tolerance
maxIt maximum number of iterations

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Fits the negative binomial mean parameters and overdispersion parameters iteratively. Convergence is determined based on the L2-norm of the absolute change

of mean parameters

Value

a list with components:

thetas new theta estimates

NB_params The estimated parameters of the interaction terms

getDevianceRes A function to calculate the matrix of deviance residuals.

Description

A function to calculate the matrix of deviance residuals.

```
getDevianceRes(RCM, Dim = RCM$k)
```

28 getDevMat

Arguments

RCM an RCM object

Dim The dimensions to use

For the deviance residuals we use the overdispersions from the reduced model. Standard dimensions used are only first and second, since these are also plotted

Value

A matrix with deviance residuals of the same size as the original data matrix

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:120],
prune_samples(sample_names(Zeller)[1:75], Zeller))
#Subset for a quick fit
zellerRCM = RCM(tmpPhy, k = 2, round = TRUE, prevCutOff = 0.03)
devRes = getDevianceRes(zellerRCM)
```

getDevMat

ACalculate the matrix of deviance residuals

Description

ACalculate the matrix of deviance residuals

Usage

```
getDevMat(X, thetaMat, mu)
```

Arguments

X the data matrix

the taMat the matrix of dispersions
mu the matrix of means

Value

The matrix of deviance residuals

getInflCol 29

	_			_
get	Τr	۱ '+ ۱	Γ	٦I

A function to extract the influence for a given parameter index

Description

A function to extract the influence for a given parameter index

Usage

```
getInflCol(score, InvJac, taxon)
```

Arguments

score a score matrix

InvJac The inverted jacobian taxon The taxon name or index

Value

A matrix with all observations' influence on the given taxon

getInflRow

Extract the influence of all observations on a given row score

Description

Extract the influence of all observations on a given row score

Usage

```
getInflRow(score, InvJac, sample)
```

Arguments

score the score function evaluated for every observation

InvJac The inverse jacobian

sample the row score or sample index

Value

A matrix with all observations' influence on the row score

30 getLogLik

getInt

Integrate the spline of an vgam object

Description

Integrate the spline of an vgam object

Usage

```
getInt(coef, spline, sampleScore, stop.on.error = FALSE, ...)
```

Arguments

coef A vector of coefficients spline The cubic smoothing spline

sampleScore the observed environmental scores

stop.on.error see ?integrate

... additional arguments passed on to integrate()

Value

a scalar, the value of the integral

getLogLik

Extract the logged likelihood of every count

Description

Extract the logged likelihood of every count

Usage

```
getLogLik(rcm, Dim)
```

Arguments

rcm an RCM object

Dim A vector of integers indicating which dimensions to take along, or Inf for the

saturated model, or 0 for the independence model

Value

A matrix with logged likelihood of the size of the data matrix

getModelMat 31

getModelMat	A function to construct a model matrix of a certain degree	

Description

A function to construct a model matrix of a certain degree

Usage

```
getModelMat(y, degree)
```

Arguments

y the variable degree the degree

Value

A model matrix with degree+1 columns and as many rows as lenght(y)

getRowMat	Return a matrix of row scores	

Description

Return a matrix of row scores

Usage

```
getRowMat(sampleScore, responseFun, NB_params, taxonCoef, spline)
```

Arguments

sampleScore a vector of length n with sample scores

responseFun a character string, the type of response function, either 'linear' or 'quadratic'

NB_params a v-by-p matrix of parameters of theresponse function

taxonCoef A vector of coefficients spline The cubic smoothing spline

Multiplying the old offset with the exponent matrix times the importance pa-

rameter obtains the new one based on lower dimension

Value

a n-by-p matrix of scores

heq_nb

GramSchmidt	Gram-Schmidt orthogonalization of vectors
-------------	---

Description

Gram-Schmidt orthogonalization of vectors

Usage

```
GramSchmidt(x, otherVecs, weights = rep(1, length(x)))
```

Arguments

x The vector that is to be orthogonalized

otherVecs a matrix; x is orthogonalized with respect to its rows

weights The weights used in the orthogonalization

Value

The orthogonalized vector

heq_nb Define linear equality constraints for env. gradient	
---	--

Description

Define linear equality constraints for env. gradient

Usage

```
heq_nb(Alpha, alphaK, d, k, centMat, ...)
```

Arguments

Alpha the current estimate of the environmental gradient
alphaK a matrix with the environmental gradients of the lower dimensions
d an integer, the number of environmental variables, including dummies

k an integer, the current dimension

centMat a centering matrix

... further arguments for other methods, not needed in this one

The centering matrix centMat ensures that the parameters of the dummies of the

same categorical variable sum to zero

Value

a vector of with current values of the constraints, should evolve to zeroes only

heq_nb_jac 33

heq_nb_jac	The jacobian of the linear equality constraints	
------------	---	--

Description

The jacobian of the linear equality constraints

Usage

```
heq_nb_jac(Alpha, alphaK, d, k, centMat, ...)
```

Arguments

Alpha the current estimate of the environmental gradient

alphaK a matrix with the environmental gradients of the lower dimensions d an integer, the number of environmental variables, including dummies

k an integer, the current dimension

centMat a centering matrix

... further arguments for other methods, not needed in this one

Value

The jacobian matrix

indentPlot Functions to indent the plot to include the entire labels	
--	--

Description

Functions to indent the plot to include the entire labels

Usage

```
indentPlot(plt, xInd = 0, yInd = 0)
```

Arguments

plt a ggplot object

xInd a scalar or a vector of length 2, specifying the indentation left and right of the

plot to allow for the labels to be printed entirely

yInd a a scalar or a vector of length 2, specifying the indentation top and bottom of

the plot to allow for the labels to be printed entirely

Value

a ggplot object, squared

JacCol_constr

inertia

Calculate the log-likelihoods of all possible models

Description

Calculate the log-likelihoods of all possible models

Usage

```
inertia(rcm)
```

Arguments

rcm

an object of the RCM class

Value

A table with inertias, proportion inertia explained and cumulative proportion of inertia explained.

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
prune_samples(sample_names(Zeller)[1:50], Zeller))
zellerRCM = RCM(tmpPhy, round = TRUE)
inertia(zellerRCM)
```

JacCol_constr

Jacobian of the constrained analysis with linear response function.

Description

Jacobian of the constrained analysis with linear response function.

```
JacCol_constr(betas, X, reg, theta, muMarg, psi, allowMissingness, naId)
```

JacCol_constr_noLab 35

Arguments

betas a vector of v parameters of the response function of a single taxon

X the count vector of length n
reg a n-by-v matrix of regressors

theta The dispersion parameter of this taxon

muMarg offset of length n

psi a scalar, the importance parameter

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Even though this approach does not imply normalization over the parameters of

all taxa, it is very fast and they can be normalized afterwards

Value

The jacobian, a square symmetric matrix of dimension v

JacCol_constr_noLab

The jacobian of the response function without taxon labels

Description

The jacobian of the response function without taxon labels

```
JacCol_constr_noLab(
  betas,
  X,
  reg,
  thetasMat,
  muMarg,
  psi,
  n,
  v,
  preFabMat,
  allowMissingness,
  naId
)
```

36 liks

Arguments

betas a vector of regression parameters with length v

X the nxp data matrix

reg a matrix of regressors of dimension nxv

thetasMat A matrix of dispersion parameters

muMarg offset matrix of dimension nxp

psi a scalar, the importance parameter

n an integer, number of rows of X

v an integer, the number of parameters of the response function

preFabMat a prefabricated matrix

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

The jacobian (a v-by-v matrix)

liks

Calculate the log-likelihoods of all possible models

Description

Calculate the log-likelihoods of all possible models

Usage

```
liks(rcm, Sum = TRUE)
```

Arguments

rcm an object of the RCM class

Sum a boolean, should log-likelihoods be summed?

Value

If Sum is FALSE, a named array log-likelihoods of the independence model and all models with dimension 1 to k, including after filtering on confounders. Otherwise a table with log-likelihoods, deviance explained and cumulative deviance explained.

LR_nb 37

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
prune_samples(sample_names(Zeller)[1:50], Zeller))
zellerRCM = RCM(tmpPhy, round = TRUE)
liks(zellerRCM)
```

LR_nb

Get the value of the log-likelihood ratio of alpha

Description

Get the value of the log-likelihood ratio of alpha

Usage

```
LR_nb(
   Alpha,
   X,
   CC,
   responseFun = c("linear", "quadratic", "nonparametric", "dynamic"),
   muMarg,
   psi,
   nleqslv.control = list(trace = FALSE),
   n,
   NB_params,
   NB_params_noLab,
   thetaMat,
   ncols,
   nonParamRespFun,
   envGradEst,
   ...
)
```

Arguments

Alpha a vector of length d, the environmental gradient

X the n-by-p count matrix

CC the n-by-d covariate matrix

responseFun a character string indicating the type of response function

muMarg an n-by-p offset matrix

psi a scalar, an importance parameter

nleqslv.control

the control list for the nleqslv() function

38 LR_nb_Jac

n number of samples

NB_params Starting values for the NB_params

NB_params_noLab

Starting values for the NB_params without label

thetaMat a matrix of size n-by-p with estimated dispersion parameters

ncols a scalar, the number of columns of X

nonParamRespFun

A list, the result of the estNPresp() function

envGradEst a character string, indicating how the environmental gradient should be fitted.

'LR' using the likelihood-ratio criterion, or 'ML' a full maximum likelihood

solution

... Further arguments passed on to other functions

DON'T USE 'p' as variable name, partial matching in the grad-function in the

numDeriv package

Value

: a scalar, the evaluation of the log-likelihood ratio at the given alpha

LR_nb_Jac

A function that returns the Jacobian of the likelihood ratio

Description

A function that returns the Jacobian of the likelihood ratio

Usage

```
LR_nb_Jac(
 Alpha,
  Χ,
  CC,
  responseFun = c("linear", "quadratic", "nonparametric", "dynamic"),
  psi,
  NB_params,
  NB_params_noLab,
  d,
  alphaK,
  k,
  centMat,
  nLambda,
  nLambda1s,
  thetaMat,
  muMarg,
  n,
```

LR_nb_Jac 39

```
ncols,
preFabMat,
envGradEst,
allowMissingness,
naId,
...
)
```

Arguments

Alpha a vector of length d + k*(2+(k-1)/2), the environmental gradient plus the la-

grangian multipliers

X the n-by-p count matrix
CC a n-by-d covariate vector

responseFun a character string indicating the type of response function

psi a scalar, an importance parameter
NB_params Starting values for the NB_params

NB_params_noLab

Starting values for the NB_params without label

d an integer, the number of covariate parameters

alphaK a matrix of environmental gradients of lower dimensions

k an integer, the current dimension centMat a nLambda1s-by-d centering matrix

nLambda an integer, number of lagrangian multipliers nLambda1s an integer, number of centering restrictions

thetaMat a matrix of size n-by-p with estimated dispersion parameters

muMarg an n-by-p offset matrix

n an integer, the number of rows of X ncols a scalar, the number of columns of X

preFabMat a prefabricated matrix

envGradEst a character string, indicating how the environmental gradient should be fitted.

'LR' using the likelihood-ratio criterion, or 'ML' a full maximum likelihood

solution

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X
... Further arguments passed on to other functions

Value

A symmetric matrix, the evaluated Jacobian

40 NBcolInfl

NBalphaInfl

Calculate the components of the influence functions

Description

Calculate the components of the influence functions

Usage

```
NBalphaInfl(rcm, Dim)
```

Arguments

rcm an rcm object

Dim the required dimension

Value

An n-by-p-by-d array with the influence of every observation on every alpha parameter

NBcolInfl

The influence function for the column scores

Description

The influence function for the column scores

Usage

```
NBcolInfl(rcm, Dim = 1)
```

Arguments

rcm an rcm object

Dim the required dimension

Value

A list with components

score a matrix with components of the score function

InvJac A square matrix of dimension p with the components of the Jacobian related to

the column scores

NBjacobianAbundsOld

NBjacobianAbundsOld

Jacobian for the column components of the independence model

Description

Jacobian for the column components of the independence model

Usage

```
NBjacobianAbundsOld(beta, X, reg, thetas, allowMissingness, naId)
```

Arguments

beta a vector of length p with current abundance estimates

X a n-by-p count matrix

reg a vector of length n with library sizes estimates

thetas a n-by-p matrix with overdispersion estimates in the rows

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

a diagonal matrix of dimension p with evaluations of the jacobian function

NBjacobianColNP

Jacobian function for the estimation of a third degree GLM

Description

Jacobian function for the estimation of a third degree GLM

Usage

```
NBjacobianColNP(beta, X, reg, theta, muMarg)
```

Arguments

beta vector of any length

X the data vector of length n

reg a nxlength(beta) regressor matrix

theta a scalar, the overdispersion

muMarg the offset of length n

42 NBjacobianColOld

Value

A matrix of dimension 8-by-8

NBjacobianCol0ld

Jacobian for the estimation of the column scores

Description

Jacobian for the estimation of the column scores

Usage

```
NBjacobianColOld(
  beta,
  Χ,
  reg,
  thetas,
  muMarg,
  k,
  n,
  colWeights,
  nLambda,
  cMatK,
  preFabMat,
  Jac,
  allowMissingness,
  naId
)
```

Arguments

beta	vector of length $p+1+1+(k-1)$: p row scores, 1 centering, one normalization and	
	(k. 1) orbtogonality lagrangian multipliers	

(k-1) orhtogonality lagrangian multipliers

Χ the nxp data matrix

reg a nx1 regressor matrix: outer product of rowScores and psis

thetas nxp matrix with the dispersion parameters (converted to matrix for numeric rea-

sons)

muMarg the nxp offset

an integer, the dimension of the RC solution k

an integer, the number of samples n an integer, the number of taxa colWeights the weights used for the restrictions

nLambda an integer, the number of restrictions NBjacobianLibSizes 43

cMatK the lower dimensions of the colScores

preFabMat a prefab matrix, (1+X/thetas)

Jac an empty Jacobian matrix

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

A matrix of dimension p+1+1+(k-1) with evaluations of the Jacobian

NBjacobianLibSizes

Jacobian for the raw components of the independence model

Description

Jacobian for the raw components of the independence model

Usage

NBjacobianLibSizes(beta, X, reg, thetas, allowMissingness, naId)

Arguments

beta a vector of length n with current library size estimates

X a n-by-p count matrix

reg a vector of length p with relative abundance estimates

thetas a n-by-p matrix with overdispersion estimates in the rows

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

a diagonal matrix of dimension n: the Fisher information matrix

NBjacobianRow

ND - a a a	h : ~ "	· D ~ :
NBiaco	Diai	IPST

Jacobian for the psi of a given dimension

Description

Jacobian for the psi of a given dimension

Usage

```
NBjacobianPsi(beta, X, reg, muMarg, theta, preFabMat, allowMissingness, naId)
```

Arguments

beta a scalar, the current estimate X the n-by-p count matrix

reg the regressor matrix, the outer product of current row and column scores

muMarg the nxp offset matrix

theta a n-by-p matrix with the dispersion parameters

preFabMat a prefab matrix, (1+X/thetas)

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

The evaluation of the jacobian function at beta, a 1-by-1 matrix

NBjacobianRow

A jacobian function of the NB for the row scores

Description

A jacobian function of the NB for the row scores

Usage

```
NBjacobianRow(
  beta,
  X,
  reg,
  thetas,
  muMarg,
  k,
```

NBpsiInfl 45

```
n,
p,
rowWeights,
nLambda,
rMatK,
preFabMat,
Jac,
allowMissingness,
naId
)
```

Arguments

beta a vector of of length n + k + 1 regression parameters to optimize

X the data matrix of dimensions nxp

reg a 1xp regressor matrix: outer product of column scores and psis

thetas nxp matrix with the dispersion parameters (converted to matrix for numeric rea-

sons)

muMarg an nxp offset matrix

k a scalar, the dimension of the RC solution

n a scalar, the number of samples
p a scalar, the number of taxa

rowWeights a vector of length n, the weights used for the restrictions

nLambda an integer, the number of lagrangian multipliers

rMatK the lower dimension row scores
preFabMat a prefab matrix, (1+X/thetas)
Jac an empty Jacobian matrix

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

a symmetric jacobian matrix of size n+k + 1

NBpsiInfl The influence function for the psis

Description

The influence function for the psis

NBrowInfl

Usage

```
NBpsiInfl(rcm, Dim = 1)
```

Arguments

rcm an rcm object

Dim the required dimensions

Value

The influence of every single observation on the psi value of this dimension

NBrowInfl

The influence function for the row scores

Description

The influence function for the row scores

Usage

```
NBrowInfl(rcm, Dim = 1)
```

Arguments

rcm an rcm object

Dim the required dimension

Value

A list with components

score a matrix with components of the score function

InvJac A square matrix of dimension n with the components of the Jacobian related to

the row scores

plot.RCM

Plot RC(M) ordination result with the help of ggplot2

Description

Plot RC(M) ordination result with the help of ggplot2

Usage

```
## S3 method for class 'RCM'
plot(
 х,
  . . . ,
 Dim = c(1, 2),
  plotType = c("samples", "species", "variables"),
  samColour = if (is.null(inflVar)) NULL else "Influence",
 taxNum = if (all(plotType == "species") || !is.null(taxRegExp)) {
                                                                      ncol(x$X) }
    else {
               10 },
  taxRegExp = NULL,
  varNum = 15,
  arrowSize = 0.25,
  inflDim = 1,
  inflVar = NULL,
  returnCoords = FALSE,
  alpha = TRUE,
  varPlot = NULL,
  colLegend = if (!is.null(inflVar)) paste0("Influence on\n", inflVar,
    "\nparameter \nin dimension", inflDim) else samColour,
  samShape = NULL,
  shapeLegend = samShape,
  samSize = 2,
  scalingFactor = NULL,
  quadDrop = 0.995,
  plotEllipse = TRUE,
  taxaScale = 0.5,
  Palette = if (!all(plotType == "species")) "Set1" else "Paired",
  taxLabels = !all(plotType == "species"),
  taxDots = FALSE,
  taxCol = "blue",
  taxColSingle = "blue",
  nudge_y = 0.08,
  axesFixed = TRUE,
  aspRatio = 1,
  xInd = if (all(plotType == "samples")) c(0, 0) else c(-0.75, 0.75),
  yInd = c(0, 0),
  taxLabSize = 4,
  varLabSize = 3.5,
```

```
alphaRange = c(0.2, 1),
  varExpFactor = 10,
 manExpFactorTaxa = 0.975,
  nPhyl = 10,
 phylOther = c(""),
  legendSize = samSize,
  noLegend = is.null(samColour),
  crossSize = 4,
  contCol = c("orange", "darkgreen"),
  legendLabSize = 15,
  legendTitleSize = 16,
  axisLabSize = 14,
  axisTitleSize = 16,
 plotPsi = "psi",
 breakChar = "\n"
)
```

Arguments

an RCM object

... further arguments, passed on to aes in the the ggplot() function

Dim An integer vector of length two, which dimensions to plot

plotType a character string: which components to plot. Can be any combination of 'sam-

ples','species' and 'variables'

samColour a character string, the variable to use for the colour of the sample dots. Can

also be a richness measure, or "influence". Alternatively, a vector equal to the

number of samples in the RCM object can be supplied. See details.

taxNum an integer, the number of taxa to be plotted

taxRegExp a character vector indicating which taxa to plot. Any taxa matcing this regular

expression will be plotted

varNum an integehr, number of variable arrows to draw

arrowSize a scalar, the size of the arrows

inflDim an integer, the dimension for which the influence should be calculated

inflVar the variable on which the influence should be plotted. See details.

returnCoords a boolean, should final coordinates be returned?

alpha a boolean, should small arrows be made transparent?

varPlot the names of the variable arrows to plot. Overrides the varNum argument

colLegend a character string, the legend text for the sample colour. Defaults to the name of

the colour variable

samShape a character string, the variable to use for the shape of the sample dots

shapeLegend a character string, the text to use for the shapeLegend. Defaults to the name of

the shape variable

samSize a scalar, the size of the sample dots

scalingFactor a scalar, a user supplied scaling factor for the taxon arrows. If not supplied it

will be calculated to make sample and taxon plots on the same scale

quadDrop a number between 0 and 1. At this fraction of the peak height are the ellipses of

the quadratic response functions drawn

plotEllipse a boolean, whether to add the ellipses

taxaScale a scalar, by which to scale the rectangles of the quadratic taxon plot

Palette the colour palette

taxLabels a boolean, should taxon labels be plotted? taxDots a boolean, should taxa be plotted as dots?

taxCol the taxon colour

taxColSingle the taxon colour if there is only one nudge_y a scalar, the offet for the taxon labels

axesFixed A boolean, should the aspect ratio of the plot (the scale between the x and y-

axis) be fixed. It is highly recommended to keep this argument at TRUE for honest representation of the ordination. If set to FALSE, the plotting space will

be optimally used but the plot may be deformed in the process.

aspRatio The aspect ratio of the plot when 'axesfixed' is TRUE (otherwise this argument

is ignored), passde on to ggplot2::coord_fixed(). It is highly recommended to

keep this argument at 1 for honest representation of the ordination.

xInd a scalar or a vector of length 2, specifying the indentation left and right of the

plot to allow for the labels to be printed entirely. Defaults to 0.75 at every side

yInd a scalar or a vector of length 2, specifying the indentation top and bottom of the

plot to allow for the labels to be printed entirely. Defaults to 0 at every side

taxLabSize the size of taxon labels

varLabSize the size of the variable label alphaRange The range of transparency

varExpFactor a scalar, the factor by which to expand the variable coordinates

manExpFactorTaxa

a manual expansion factor for the taxa. Setting it to a high value allows you to

plot the taxa around the samples

nPhyl an integer, number of phylogenetic levels to show

phylOther a character vector of phylogenetic levels to be included in the 'other' group

legendSize a size for the coloured dots in the legend noLegend a boolean indicating you do not want a legend

crossSize the size of the central cross

contCol a character vector of length two, giving the low and high values of the continuous

colour scale

legendLabSize size of the legend labels

legendTitleSize

size of the legend title

axisLabSize size of the axis labels axisTitleSize size of the axis title

plotPsi a character vector, describing what to plot on the axis. Can be either 'psi', 'none'

or 'loglik'. The latter plots the log-likelihood explained

breakChar a character string indicating how the taxon names should be broken

Details

This function relies on the ggplot2 machinery to produce the plots, and the result can be modified accordingly. Monoplots, biplots and for constrained analysis even triplots can be produced, depending on the 'plotType' argument.

When one of either 'Observed', 'Chao1', 'ACE', 'Shannon', 'Simpson', 'InvSimpson' or 'Fisher' are supplied to the 'samColour' argument, the according richness measure (as calculated by phyloseq::estimate_richness) is mapped to the sample colour. When "influence" is supplied, the influence on the variable supplied is plotted. This 'inflVar' variable should be either "psi", or a variable name.

Value

plots a ggplot2-object to output

Note

Supplying only few categorical variables as constraining variables may cause the samples to be plotted on top of each other, since the number of unique sample scores is limited. The plot is still valid, but consider adding more sample variables to spread out the samples

See Also

RCM,addOrthProjection,extractCoord,plotRespFun

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
prune_samples(sample_names(Zeller)[1:50], Zeller))
# Subset for a quick fit
zellerRCM = RCM(tmpPhy)
plot(zellerRCM)
```

plotRespFun 51

plotRespFun

Plot the non-parametric response functions

Description

Plots a number of response functions over the observed range of the environmental score. If no taxa are provided those who react most strongly to the environmental score are chosen.

Usage

```
plotRespFun(
  RCM,
  taxa = NULL,
  type = "link",
  logTransformYAxis = FALSE,
  addSamples = TRUE,
  samSize = NULL,
 Dim = 1L,
  nPoints = 100L,
  labSize = 2.5,
 yLocVar = NULL,
 yLocSam = NULL,
 Palette = "Set3",
  addJitter = FALSE,
  nTaxa = 9L,
  angle = 90,
  legendLabSize = 15,
  legendTitleSize = 16,
  axisLabSize = 14,
  axisTitleSize = 16,
  lineSize = 0.75,
)
```

Arguments

RCM	an RCM object
taxa	a character vector of taxa to be plotted
type	a character string, plot the response function on the log-scale ('link') or the abundance scale 'response', similar to predict.glm().
logTransformYAxis	
	a boolean, should y-axis be log transformed?
addSamples	a boolean, should sample points be shown?
samSize	a sample variable name or a vector of length equal to the number of samples, for the sample sizes

52 plotRespFun

Dim An integer, the dimension to be plotted

nPoints the number of points to be used to plot the lines

labSize the label size for the variables

yLocVar the y-location of the variables, recycled if necessary

yLocSam the y-location of the samples, recycled if necessary

Palette which color palette to use

addJitter A boolean, should variable names be jittered to make them more readable

nTaxa an integer, number of taxa to plot

angle at which variable labels should be turned

legendLabSize size of the legend labels

legendTitleSize

size of the legend title

axisLabSize size of the axis labels
axisTitleSize size of the axis title

lineSize size of the response function lines

... Other argumens passed on to the ggplot() function

Value

Plots a ggplot2-object to output

See Also

```
RCM, plot.RCM, residualPlot
```

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
prune_samples(sample_names(Zeller)[1:50], Zeller))
#Subset for a quick fit
zellerRCMnp = RCM(tmpPhy, k = 2,
covariates = c('BMI','Age','Country','Diagnosis','Gender'),
round = TRUE, responseFun = 'nonparametric')
plotRespFun(zellerRCMnp)
```

RCM 53

RCM

Wrapper function for the RCM() function

Description

This is a wrapper function, which currently only fits the negative binomial distribution, but which could easily be extended to other ones.

Usage

```
RCM(dat, ...)
## S4 method for signature 'phyloseq'
RCM(dat, covariates = NULL, confounders = NULL, ...)
## S4 method for signature 'matrix'
RCM(
  dat,
  k = 2,
  round = FALSE,
  prevCutOff = 0.05,
 minFraction = 0.1,
  rowWeights = "uniform";
  colWeights = "marginal",
  confModelMat = NULL,
  confTrimMat = NULL,
  covModelMat = NULL,
  centMat = NULL,
  allowMissingness = FALSE,
)
```

Arguments

dat	an nxp count matrix or a phyloseq object with an otu_table slot
• • •	Further arguments passed on to the RCM.NB() function
covariates	In case 'dat' is a phyloseq object, the names of the sample variables to be used as covariates in the constrained analysis, or 'all' to indicate all variables to be used. In case 'dat' is a matrix, a nxf matrix or dataframe of covariates. Character variables will be converted to factors, with a warning. Defaults to NULL, in which case an unconstrained analysis is carried out.
confounders	In case 'dat' is a phyloseq object, the names of the sample variables to be used as confounders to be filtered out. In case 'dat' is a matrix, a nxf dataframe of confounders. Character variables will be converted to factors, with a warning. Defaults to NULL, in which case no filtering occurs.
k	an integer, the number of dimensions of the RCM solution

round a boolean, whether to round to nearest integer. Defaults to FALSE.

prevCutOff a scalar, the prevalence cutoff for the trimming. Defaults to 2.5e-2

minFraction a scalar, each taxon's total abundance should equal at least the number of sam-

ples n times minFraction, otherwise it is trimmed. Defaults to 10%

rowWeights, colWeights

character strings, the weighting procedures for the normalization of row and

column scores. Defaults to 'uniform' and 'marginal' respectively

confTrimMat, confModelMat, covModelMat, centMat

Dedicated model matrices constructed based on phyloseq object.

allowMissingness

A boolean, should NA values be tolerated?

Details

This function should be called on a raw count matrix, without rarefying or normalization to proportions. This functions trims on prevalence and total abundance to avoid instability of the algorithm. Covariate and confounder matrices are constructed, so that everything is passed on to the workhorse function RCM.NB() as matrices.

Value

see RCM_NB

See Also

RCM_NB,plot.RCM, residualPlot,plotRespFun

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:100],
prune_samples(sample_names(Zeller)[1:50], Zeller))
zellerRCM = RCM(tmpPhy, round = TRUE)
```

RCM_NB

Fit the RC(M) model with the negative binomial distribution.

Description

Fit the RC(M) model with the negative binomial distribution.

Usage

```
RCM_NB(
 Χ,
  k,
  rowWeights = "uniform",
  colWeights = "marginal",
  tol = 0.001,
 maxItOut = 1000L,
 Psitol = 0.001,
  verbose = FALSE,
  global = "dbldog",
  nleqslv.control = list(maxit = 500L, cndtol = 1e-16),
  jacMethod = "Broyden",
  dispFreq = 10L,
  convNorm = 2,
  prior.df = 10,
 marginEst = "MLE",
  confModelMat = NULL,
  confTrimMat = NULL,
  prevCutOff,
 minFraction = 0.1,
  covModelMat = NULL,
  centMat = NULL,
  responseFun = c("linear", "quadratic", "dynamic", "nonparametric"),
  record = FALSE,
  control.outer = list(trace = FALSE),
  control.optim = list(),
  envGradEst = "LR",
  dfSpline = 3,
  vgamMaxit = 100L,
  degree = switch(responseFun[1], nonparametric = 3, NULL),
  rowExp = if (is.null(covModelMat)) 1 else 0.5,
  colExp = rowExp,
  allowMissingness = FALSE
)
```

Arguments

Χ	a nxp data matrix
k	an scalar, number of dimensions in the RC(M) model
rowWeights	a character string, either 'uniform' or 'marginal' row weights.
colWeights	a character string, either 'uniform' or 'marginal' column weights.
tol	a scalar, the relative convergende tolerance for the row scores and column scores parameters.
maxItOut	an integer, the maximum number of iterations in the outer loop.
Psitol	a scalar, the relative convergence tolerance for the psi parameters.

verbose a boolean, should information on iterations be printed?
global global strategy for solving non-linear systems, see ?nleqslv

nleqslv.control

a list with control options, see nleqsly

jacMethod Method for solving non-linear equations, ?see nleqslv. Defaults to Broyden.

The difference with the newton method is that the Jacobian is not recalculated

at every iteration, thereby speeding up the algorithm

dispFreq an integer, how many iterations the algorithm should wait before reestimationg

the dispersions.

convNorm a scalar, the norm to use to determine convergence

prior.df an integer, see estDisp()

marginEst a character string, either 'MLE' or 'marginSums', indicating how the indepen-

dence model should be estimated

confModelMat an nxg matrix with confounders, with no reference levels and with intercept

confTrimMat an nxh matrix with confounders for filtering, with all levels and without intercept

prevCutOff a scalar the minimum prevalence needed to retain a taxon before the the con-

founder filtering

minFraction a scalar, total taxon abundance should equal minFraction*n if it wants to be

retained before the confounder filtering

covModelMat an nxd matrix with covariates. If set to null an unconstrained analysis is carried

out, otherwise a constrained one. Factors must have been converted to dummy

variables already

centMat a fxd matrix containing the contrasts to center the categorical variables. f equals

the number of continuous variables + the total number of levels of the categorical

variables.

responseFun a characters string indicating the shape of the response function

record A boolean, should intermediate parameter estimates be stored?

control.outer a list of control options for the outer loop constrOptim.nl function

control.optim a list of control options for the optim() function

envGradEst a character string, indicating how the environmental gradient should be fitted.

'LR' using the likelihood-ratio criterion, or 'ML' a full maximum likelihood

solution

dfSpline a scalar, the number of degrees of freedom for the splines of the non-parametric

response function, see VGAM::s()

vgamMaxit an integer, the maximum number of iteration in the vgam() function

degree an integer, the degree of the polynomial fit if the spline fit fails

rowExp, colExp exponents for the row and column weights of the singular value decomposition

used to calculate starting values. Can be played around with in case of numerical

troubles.

allowMissingness

See RCM()

Details

Includes fitting of the independence model, filtering out the effect of confounders and fitting the RC(M) components in a constrained or an unconstrained way for any dimension k. Not intended to be called directly but only through the RCM() function

Value

A list with elements

converged a vector of booleans of length k indicating if the algorithm converged for every

dimension

rMat if not constrained a nxk matrix with estimated row scores

cMat a kxp matrix with estimated column scores

psis a vector of length k with estimates for the importance parameters psi

thetas a vector of length p with estimates for the overdispersion

rowRec (if not constrained) a n x k x maxItOut array with a record of all rMat estimates

through the iterations

colRec a k x p x maxItOut array with a record of all cMat estimates through the itera-

tions

psiRec a k x maxItOut array with a record of all psi estimates through the iterations

thetaRec a matrix of dimension pxmaxItOut with estimates for the overdispersion along

the way

iter number of iterations

Xorig (if confounders provided) the original fitting matrix

X the trimmed matrix if confounders provided, otherwise the original one

fit type of fit, either 'RCM_NB' or 'RCM_NB_constr'

lambdaRow (if not constrained) vector of Lagrange multipliers for the rows

lambdaCol vector of Lagrange multipliers for the columns rowWeights (if not constrained) the row weights used

colWeights the column weights used

alpha (if constrained) the kxd matrix of environmental gradients

alphaRec (if constrained) the kxdxmaxItOut array of alpha estimates along the iterations

covariates (if constrained) the matrix of covariates

libSizes a vector of length n with estimated library sizes

abunds a vector of length p with estimated mean relative abundances

confounders (if provided) the confounder matrix

confParams the parameters used to filter out the confounders

nonParamRespFun

A list of the non parametric response functions

degree The degree of the alternative parametric fit

NApresent A boolean, were NA values present?

58 residualPlot

Note

Plotting is not supported for quadratic response functions

See Also

RCM

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[seq_len(100)],
prune_samples(sample_names(Zeller)[seq_len(50)], Zeller))
mat = as(otu_table(tmpPhy), "matrix")
mat = mat[rowSums(mat)>0, colSums(mat)>0]
zellerRCM = RCM_NB(mat, k = 2)
#Needs to be called directly onto a matrix
```

residualPlot

Make residual plots

Description

Make residual plots

Usage

```
residualPlot(
  RCM,
 Dim = 1,
 whichTaxa = "response",
  resid = "Deviance",
  numTaxa = 9,
 mfrow = NULL,
  samColour = NULL,
  samShape = NULL,
  legendLabSize = 15,
  legendTitleSize = 16,
  axisLabSize = 14,
  axisTitleSize = 16,
  taxTitle = TRUE,
  h = 0
)
```

residualPlot 59

Arguments

RCM an RCM object

Dim an integer, which dimension?

whichTaxa a character string or a character vector, for which taxa to plot the diagnostic plots

resid the type of residuals to use, either 'Deviance' or 'Pearson'

numTaxa an integer, the number of taxa to plot

mfrow passed on to par(). If not supplied will be calculated based on numTaxa

samColour, samShape

Vectors or character strings denoting the sample colour and shape respectively. If character string is provided, the variables with this name is extracted from the

phyloseq object in RCM

legendLabSize size of the legend labels

 ${\tt legendTitleSize}$

size of the legend title

axisLabSize size of the axis labels axisTitleSize size of the axis title

taxTitle A boolean, should taxon title be printed

h Position of reference line. Set to NA for no line

Details

If whichTaxa is 'run' or 'response' the taxa with the highest run statistics or steepest slopes of the response function are plotted, numTax indicates the number. If whichTaxa is a character vector, these are interpreted as taxon names to plot. This function is mainly meant for linear response functions, but can be used for others too. The runs test statistic from the tseries package is used.

Value

Plots a ggplot2-object to output

See Also

RCM

Examples

```
data(Zeller)
require(phyloseq)
tmpPhy = prune_taxa(taxa_names(Zeller)[1:120],
prune_samples(sample_names(Zeller)[1:75], Zeller))
#Subset for a quick fit
zellerRCMlin = RCM(tmpPhy, k = 2,
covariates = c('BMI', 'Age', 'Country', 'Diagnosis', 'Gender'),
responseFun = 'linear', round = TRUE, prevCutOff = 0.03)
residualPlot(zellerRCMlin)
```

60 respFunJacMat

respFunJacMat

Calculates the Jacobian of the parametric response functions

Description

Calculates the Jacobian of the parametric response functions

Usage

```
respFunJacMat(
   betas,
   X,
   reg,
   thetaMat,
   muMarg,
   psi,
   v,
   p,
   IDmat,
   IndVec,
   allowMissingness,
   naId
)
```

Arguments

betas a vector of length (deg+1)*(p+1) with regression parameters with deg the degree

of the response function and the lagrangian multipliers

X the nxp data matrix

reg a vector of regressors with the dimension n-by-v thetaMat The n-by-p matrix with dispersion parameters

muMarg offset matrix of size nxp

psi a scalar, the importance parameter

v an integer, one plus the degree of the response function

p an integer, the number of taxa

IDmat an logical matrix with indices of non-zero elements

IndVec a vector with indices with non-zero elements

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X

Value

The jacobian, a square matrix of dimension (deg+1)*(p+1)

respFunScoreMat 61

respFunScoreMat

Derivative of the Lagrangian of the parametric response function

Description

Derivative of the Lagrangian of the parametric response function

Usage

```
respFunScoreMat(
  betas,
  X,
  reg,
  thetaMat,
  muMarg,
  psi,
  p,
  v,
  allowMissingness,
  naId,
  ...
)
```

Arguments

petas	of the response function and the lagrangian multipliers

X the nxp data matrix

reg a matrix of regressors with the dimension nx(deg+1)

thetaMat The n-by-p matrix with dispersion parameters

muMarg offset matrix of size nxp

psi a scalar, the importance parameter p an integer, the number of taxa

v an integer, one plus the degree of the response function

allowMissingness

A boolean, are missing values present

naId The numeric index of the missing values in X
... further arguments passed on to the jacobian

The parameters are restricted to be normalized, i.e. all squared intercepts, first

order and second order parameters sum to 1

Value

The evaluation of the score functions, a vector of length (p+1)* (deg+1)

 seq_k

rowMultiply

A function to efficiently row multiply a matrix and a vector

Description

A function to efficiently row multiply a matrix and a vector

Usage

```
rowMultiply(matrix, vector)
```

Arguments

matrix a numeric matrix of dimension a-by-b

vector a numeric vector of length b

t(t(matrix)*vector) but then faster

Details

Memory intensive but that does not matter with given matrix sizes

Value

a matrix, row multplied by the vector

seq_k

A small auxiliary function for the length of the lambdas

Description

A small auxiliary function for the length of the lambdas

Usage

```
seq_k(y, nLambda1s = 1)
```

Arguments

y an integer, the current dimension nLambda1s the number of centering restrictions

Value

a vector containing the ranks of the current lagrangian multipliers

trimOnConfounders 63

trimOnConfounders	Trim based on confounders to avoid taxa with only zero counts

Description

Trim based on confounders to avoid taxa with only zero counts

Usage

```
trimOnConfounders(confounders, X, prevCutOff, minFraction, n)
```

Arguments

confounders a nxt confounder matrix X the nxp data matrix

prevCutOff a scalar between 0 and 1, the prevalence cut off

minFraction a scalar between 0 and 1, each taxon's total abundance should equal at least the

number of samples n times minFraction, otherwise it is trimmed

n the number of samples

Should be called prior to fitting the independence model

Value

A trimmed data matrix nxp'

Zeller

Microbiomes of colorectal cancer patients and healthy controls

Description

Microbiome sequencing data of colorectal cancer patients, patients with small adenoma and healthy controls, together with other baseline covariates

Usage

Zeller

Format

```
A phyloseq object with an OTU-table and sample data otu_table Count data matrix of 709 taxa in 194 samples
```

sample_data Data frame of patient covariates

Source

```
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299606/
```

Index

* datasets Zeller, 63 addOrthProjection, 3, 50 arrayprod, 4 buildCentMat, 5 buildConfMat, 5 buildConfMat.character, 6 buildConfMat.data.frame, 6 buildCovMat, 7	getInflRow, 29 getInt, 30 getLogLik, 30 getModelMat, 31 getRowMat, 31 GramSchmidt, 32 heq_nb_jac, 33 indentPlot, 33
buildDesign, 8	inertia, 34
<pre>checkAlias, 8 constrCorresp, 9 correctXMissingness, 10</pre>	JacCol_constr, 34 JacCol_constr_noLab, 35
deviances, 10 dLR_nb, 11 dNBabundsOld, 12	liks, 36 LR_nb, 37 LR_nb_Jac, 38
dNBlibSizes, 13 dNBllcol_constr, 16 dNBllcol_constr_noLab, 16 dNBllcolNP, 14 dNBllcolOld, 14 dNBllrow, 17 dNBpsis, 18	NBalphaInfl, 40 NBcolInfl, 40 NBjacobianAbundsOld, 41 NBjacobianColNP, 41 NBjacobianColOld, 42 NBjacobianLibSizes, 43 NBjacobianPsi, 44
ellipseCoord, 19 estDisp, 20 estNBparams, 21	NBjacobianRow, 44 NBpsiInfl, 45 NBrowInfl, 46
estNBparamsNoLab, 22 estNPresp, 23	plot.RCM, 4, 47, 52, 54 plotRespFun, 50, 51, 54
extractCoord, 25, 50 extractE, 26	RCM, 50, 52, 53, 58, 59 RCM, matrix-method (RCM), 53
filterConfounders, 26	RCM, phyloseq-method (RCM), 53 RCM_NB, 54, 54
getDevianceRes, 27 getDevMat, 28	residualPlot, 52, 54, 58 respFunJacMat, 60
getInflCol, 29	respFunScoreMat, 61

INDEX 65

```
rowMultiply, 62
seq_k, 62
trimOnConfounders, 63
Zeller, 63
```