Package 'MSstatsQC'

October 17, 2024

Version 2.22.0

Type Package

- **Title** Longitudinal system suitability monitoring and quality control for proteomic experiments
- **Description** MSstatsQC is an R package which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments.

License Artistic License 2.0

LazyData TRUE

URL http://msstats.org/msstatsqc

BugReports https://groups.google.com/forum/#!forum/msstatsqc

RoxygenNote 7.1.0

Imports dplyr,plotly,ggplot2,ggExtra, stats,grid, MSnbase, qcmetrics

Suggests knitr, rmarkdown, testthat, RforProteomics

VignetteBuilder knitr

biocViews Software, QualityControl, Proteomics, MassSpectrometry

git_url https://git.bioconductor.org/packages/MSstatsQC

git_branch RELEASE_3_19

git_last_commit 708ecb1

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-10-16

Author Eralp Dogu [aut, cre], Sara Taheri [aut], Olga Vitek [aut]

Maintainer Eralp Dogu <eralp.dogu@gmail.com>

Contents

ChangePointEstimator	2
CUSUMChart	3
DataProcess	5
DecisionMap	6
MissingDataMap	7
MSnbaseToMSstatsQC	8
QCloudDDA	
QCloudSRM	9
QuiCDIA	10
RadarPlot	10
RemoveMissing	11
RiverPlot	12
S9Site54	13
XmRChart	14
	16

Index

ChangePointEstimator *A function to identify the time of a change in the mean or variability of a metric*

Description

A function to identify the time of a change in the mean or variability of a metric

Usage

```
ChangePointEstimator(
  data = NULL,
  peptide,
  L = 1,
  U = 5,
  metric,
  normalization = TRUE,
  ytitle = "Change Point Plot - mean",
  type = "mean",
  selectMean = NULL,
  selectSD = NULL
)
```

Arguments

data	comma-separated (.csv), metric file. It should contain a "Precursor" column and
	the metrics columns. It should also include "Annotations" for each observation.
peptide	the name of precursor of interest.
L	Lower bound of the guide set.

CUSUMChart

U	Upper bound of the guide set.
metric	the name of metric of interest.
normalization	TRUE metric is standardized and FALSE if not standardized.
ytitle	the y-axis title of the plot. Defaults to "Change Point Plot - mean". The x-axis title is by default "QCno-name of peptide"
type	the type of the control chart. Two values can be assigned, "mean" or "variabil- ity". Default is "mean".
selectMean	the mean of a metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
selectSD	the standard deviation of a metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.

Value

A plot of likelihood statistics versus time per peptide and metric generated from CP.data.prepare data frame.

Examples

CUSUMChart

A function to create cumulative sum charts for mean (CUSUMm) and cumulative sum charts for variability (CUSUMv) control charts

Description

A function to create cumulative sum charts for mean (CUSUMm) and cumulative sum charts for variability (CUSUMv) control charts

Usage

```
CUSUMChart(
data = NULL,
peptide,
L = 1,
U = 5,
metric,
normalization = TRUE,
ytitle = "CUSUMm",
type = "mean",
selectMean = NULL,
selectSD = NULL,
referenceValue = 0.5,
decisionInterval = 5
)
```

Arguments

data	comma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.	
peptide	the name of precursor of interest.	
L	Lower bound of the guide set.	
U	Upper bound of the guide set.	
metric	the name of metric of interest.	
normalization	TRUE if metric is standardized and FALSE if not standardized.	
ytitle	the y-axis title of the plot. Defaults to "CUSUMm". The x-axis title is by default "Time : name of peptide"	
type	the type of the control chart. Two values can be assigned, "mean" or "variabil- ity". Default is "mean"	
selectMean	the mean of a metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.	
selectSD	the standard deviation of a metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.	
referenceValue	the value that is used to tune the control chart for a proper shift size	
decisionInterval		

the threshold to detect an out-of-control observation

Value

A plot of pozitive and negative CUSUM statistics versus time per peptide and metric generated from CUSUM.data.prepare data frame.

4

DataProcess

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)
head(sampleData)
# Find the name of the peptides
levels(sampleData$Precursor)
# Calculate CUSUM statistics
CUSUMChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime")
CUSUMChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
    ytitle = "CUSUMv", type = "variability")
CUSUMChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
    selectMean = 27.78, selectSD = 8.19)
CUSUMChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea")
CUSUMChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea",
    selectMean = 35097129, selectSD = 34132861)
CUSUMChart(data = sampleData, peptide = "TAAYVNAIEK", metric = "MaxFWHM")
```

DataProcess

A data processing function

Description

A data processing function

Usage

```
DataProcess(data = NULL)
```

Arguments

data

Comma-separated (*.csv), QC file format. It should contain a Precursor column and the metrics columns.

Value

A data frame that processes using input.sanity.check function.

Examples

```
# The data is "S9Site54" which is defined in the package.
data <- DataProcess(S9Site54)</pre>
```

DecisionMap

Description

A function to create heatmaps to compare performance with user defined performance criteria

Usage

```
DecisionMap(
  data = NULL,
  method = "XmR",
  peptideThresholdRed = 0.7,
  peptideThresholdYellow = 0.5,
  L = 1,
  U = 5,
  type = "mean",
  title = "heatmap plot",
  listMean = NULL,
  listSD = NULL
)
```

Arguments

data	Comma-separated (*.csv), QC file format. It should contain a Precursor column and the metrics columns.
method	It is either "CUSUM" or "XmR"
peptideThresho	ldRed
	Is a threshold that marks percentage of peptides above it red on the heatmap.
	Defaults to 0.7
peptideThresho	ldYellow
	Is a threshold that marks percentage of peptides above it and below the peptide- ThresholdRed, yellow on the heatmap. Defaults to 0.5
L	Lower bound of the giude set. Defaults to 1
U	Upper bound of the guide set. Defaults to 5
type	can take two values, "mean" or "dispersion". Defaults to "mean"
title	the title of the plot. Defaults to "heatmap plot"
listMean	List of the means for the metrics. If you don't know the means leave it as NULL and they will be calculated automatically by using L and U. The default is NULL.
listSD	List of the standard deviations for the metrics. If you don't know the standard deviations leave it as NULL and they will be calculated automatically by using L and U. The default is NULL.

MissingDataMap

Value

A heatmap to aggregate results per metric generated from heatmap.DataFrame data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)
head(sampleData)
# Draw Decision maker plot
DecisionMap(data = sampleData, method = "CUSUM")
DecisionMap(data = sampleData, method = "CUSUM", type = "variability")
DecisionMap(data = sampleData, method = "XmR")
DecisionMap(data = sampleData, method = "XmR", type = "variability")
```

MissingDataMap A function to summarize missing values

Description

A function to summarize missing values

Usage

MissingDataMap(data)

Arguments

data Processed data

Value

A plot of missing values.

Examples

```
# The data is "S9Site54" which is defined in the package.
data <- DataProcess(S9Site54)
MissingDataMap(data)
```

MSnbaseToMSstatsQC A function to convert MSnbase files to MSstatsQC format

Description

A function to convert MSnbase files to MSstatsQC format

Usage

```
MSnbaseToMSstatsQC(msfile)
```

Arguments

msfile data file to be converted

Value

A data frame that can be used with MSstatsQC

A csv file that is converted from raw files

Examples

Not run: library(RforProteomics)
Not run: msfile <- getPXD000001mzXML()
Not run: MSnbaseToMSstatsQC(msfile)</pre>

QCloudDDA

DDA QC data from QCloud System

Description

QC results generated from QCloud system

Usage

data(QCloudDDA)

Format

csv

Details

DDA QC data from QCloud System

QCloudSRM

Value

An example dataset generated from QCloud system

Examples

head(QCloudDDA)

QCloudSRM

SRM QC data from QCloud System

Description

QC results generated from QCloud system

Usage

data(QCloudSRM)

Format

csv

Details

SRM QC data from QCloud System

Value

An example dataset generated from QCloud system

Examples

head(QCloudSRM)

QuiCDIA

Description

QC results generated from QuiC system

Usage

data(QuiCDIA)

Format

csv

Details

DIA iRT data from QuiC System

Value

An example dataset generated from QuiC system

Examples

head(QuiCDIA)

RadarPlot	A function to create radar plot to aggregate results from X and mR
	charts or CUSUMm and CUSUMv charts.

Description

A function to create radar plot to aggregate results from X and mR charts or CUSUMm and CUSUMv charts.

Usage

```
RadarPlot(
   data = NULL,
   L = 1,
   U = 5,
   method = "XmR",
   listMean = NULL,
   listSD = NULL
)
```

RemoveMissing

Arguments

data	omma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
L	lower bound of the guide set.
U	upper bound of the guide set.
method	defines the method selected to construct control charts.
listMean	list of the means for each metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
listSD	list of the standard deviations for each metric. It is used when standard devi- ation is known. It is NULL when mean is not known. The default is NULL. automatically by using L and U. The default is NULL.

Value

A radar plot to aggregate results per metric generated from XmR.Radar.Plot.DataFrame data frame or CUSUM.Radar.Plot.DataFrame data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)</pre>
head(sampleData)
# Draw XmR radar plot
RadarPlot(data = sampleData)
RadarPlot(data = sampleData, method = "CUSUM")
RadarPlot(data = sampleData,
                listMean = list("BestRetentionTime" = 27.78,
                                 "TotalArea" = 35097129,
                                 "MaxFWHM" = 0.28,
                                "MinStartTime" = 24),
                listSD = list("BestRetentionTime" = 8.19,
                              "TotalArea" = 34132861,
                              "MaxFWHM" = 0.054,
                              "MinStartTime" = 24)
                )
```

RemoveMissing	A data processing function for	removing missing values
---------------	--------------------------------	-------------------------

Description

A data processing function for removing missing values

Usage

```
RemoveMissing(data = NULL)
```

Arguments

data

Comma-separated (*.csv), QC file format. It should contain a Precursor column and the metrics columns.

Value

A data frame that processes using input.sanity.check function.

Examples

```
# The data is "S9Site54" which is defined in the package.
data <- RemoveMissing(S9Site54)</pre>
```

RiverPlot	A function to create river plot to aggregate results from X and mR
	charts or CUSUMm and CUSUMv charts.

Description

A function to create river plot to aggregate results from X and mR charts or CUSUMm and CUSUMv charts.

Usage

```
RiverPlot(
  data = NULL,
  L = 1,
  U = 5,
  method = "XmR",
  listMean = NULL,
  listSD = NULL
)
```

Arguments

data	omma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
L	lower bound of the guide set.
U	upper bound of the guide set.
method	defines the method selected to construct control charts.
listMean	list of the means for each metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
listSD	list of the standard deviations for each metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.

S9Site54

Value

A river plot to aggregate results per metric generated from XmR.Summary.DataFrame data frame or CUSUM.Summary.DataFrame data frame.

Examples

S9Site54

CPTAC study 9.1 site 54 dataset

Description

system suitabilty testing results generated during CPTAC Study 9.1 for Site 54

Usage

data(S9Site54)

Format

csv

Details

CPTAC system suitability testing data for Site 54 from Study 9.1

Value

An example dataset generated from CPTAC study 9.1

References

http://www.mcponline.org/content/early/2015/02/18/mcp.M114.047050

Examples

head(S9Site54)

XmRChart	A function to construct individual (X) and moving range (mR) control
	charts

Description

A function to construct individual (X) and moving range (mR) control charts

Usage

```
XmRChart(
  data = NULL,
  peptide,
  L = 1,
  U = 5,
  metric,
  normalization = FALSE,
  ytitle = "Individual observations",
  type = "mean",
  selectMean = NULL,
  selectSD = NULL
)
```

Arguments

data	comma-separated (.csv), metric file. It should contain a "Precursor" column and the metrics columns. It should also include "Annotations" for each observation.
peptide	the name of precursor of interest.
L	Lower bound of the guide set.
U	Upper bound of the guide set.
metric	the name of metric of interest.
normalization	TRUE if metric is standardized and FALSE if not standardized.
ytitle	the y-axis title of the plot. Defaults to "Individual observations". The x-axis title is by default "Time : name of peptide"
type	the type of the control chart. Two values can be assigned, "mean" or "variabil- ity". Default is "mean".
selectMean	the mean of a metric. It is used when mean is known. It is NULL when mean is not known. The default is NULL.
selectSD	the standard deviation of a metric. It is used when standard deviation is known. It is NULL when mean is not known. The default is NULL.

14

XmRChart

Value

A plot of individual values or moving ranges versus time per peptide and metric generated from XmR.data.prepare data frame.

Examples

```
# First process the data to make sure it's ready to use
sampleData <- DataProcess(S9Site54)</pre>
head(sampleData)
# Find the name of the peptides
levels(sampleData$Precursor)
# Calculate X and mR statistics
XmRChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime")
XmRChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
         ytitle = "moving ranges", type = "variability")
XmRChart(data = sampleData, peptide = "VLVLDTDYK", metric = "BestRetentionTime",
         selectMean = 27.78, selectSD = 8.19)
XmRChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea")
XmRChart(data = sampleData, peptide = "DDGSWEVIEGYR", metric = "TotalArea",
         selectMean = 35097129, selectSD = 34132861)
XmRChart(data = sampleData, peptide = "TAAYVNAIEK", metric = "MaxFWHM")
XmRChart(data = sampleData, peptide = "LVNELTEFAK", metric = "MinStartTime")
```

Index

* MSnbase, MSnbaseToMSstatsQC, 8 * Sum, CUSUMChart, 3 * XmR, XmRChart, 14 * XmR RadarPlot, 10 RiverPlot, 12 * change ChangePointEstimator, 2 * chart ${\tt ChangePointEstimator, 2}$ CUSUMChart, 3 XmRChart, 14 * control ChangePointEstimator, 2 CUSUMChart, 3 XmRChart, 14 * cumulative CUSUMChart, 3 * datasets QCloudDDA, 8 QCloudSRM, 9 QuiCDIA, 10 S9Site54, 13 * heatmap DecisionMap, 6 * input MSnbaseToMSstatsQC, 8 * point, ChangePointEstimator, 2 * gcmetrics, MSnbaseToMSstatsQC, 8 ChangePointEstimator, 2 CUSUMChart, 3

DataProcess, 5 DecisionMap, 6 MissingDataMap, 7 MSnbaseToMSstatsQC, 8 QCloudDA, 8 QCloudSRM, 9 QuiCDIA, 10 RadarPlot, 10 RemoveMissing, 11 RiverPlot, 12 S9Site54, 13 XmRChart, 14