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CDR3ab Mock data set of complementarity determining region 3 (CDR3) se-
quences from the α and β chains of 10,000 T cell receptors

Description

Mock data set containing amino acid sequences of paired CDR3s from the α and β chains of 10,000
T cell receptors. All CDR3 sequences were drawn from a larger set of CDR3β sequences from
human naive CD8+ T cells.

Usage

data(CDR3ab)

Format

data.frame with 10,000 rows and 2 columns CDR3a and CDR3b.

Value

data(CDR3ab) loads the object CDR3ab, which is a data.frame with two columns and 10,000 rows.

Source

GLIPH version 2

Examples

data("CDR3ab")

https://orcid.org/0000-0003-2909-5376
https://orcid.org/0009-0008-5941-9160
http://50.255.35.37:8080/
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cluster_irr Clustering of immune receptor repertoires

Description

This algorithm finds groups of TCRs or BCRs with similar specificity. Two clustering strategies are
employed:

1. Local clustering

2. Global clustering

Local clustering The aim of local clustering is to find motifs (contiguous k-mers of the CDR
sequence) that are overrepresented in repertoire s compared to repertoire r. This is an outline of the
local clustering procedure:

1. Trim CDR3 flanks based on control$trim_flank_aa

2. For each motif found in s compute the following:

• motif frequencies in data set s (fs) and r (fr)
• total number of motifs in data set s (ns) and r (nr)
• ratio of observed vs. expected motif counts using the following formula: OvE=(fs/ns)/(fr/nr)
• probability pi of finding the observed or a larger OvE for motif i given that the null

hypothesis is true is computed with the Fisher’s exact test
• if a motif passes the criteria defined in control list, set flag passi = T, else passi = F

Global clustering The aim of global clustering is to find similar CDR3 sequences in repertoire s.
This is an outline of the global clustering approaches implemented in ClustIRR:

The default ClustIRR algorithm for global clustering is simple. For each pair of equal-length CDR3
sequences i and j we compute the Hamming distance dij . If dij ≤ global_max_hdist (user-
defined input), then i and j are globally similar.

Alternatively, the user can provide a matrix of globally similar CDR3 sequence pairs, computed by
a complementary approachs such as TCRdist.

Usage

cluster_irr(
s,
r,
ks = 4,
cores = 1,
control = list(global_smart = FALSE,

global_max_hdist = 1,
local_max_fdr = 0.05,
local_min_ove = 2,
local_min_o = 1,
trim_flank_aa = 3,
global_pairs = NULL,
low_mem = FALSE))
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Arguments

s data.frame, complementarity determining region 3 (CDR3) amino acid sequences
observed in an immune receptor repertoire (IRR). The data.frame can have ei-
ther one column or two columns:

• One column: s contains CDR3s from a single chain: CDR3b, CDR3a,
CDR3g, CDR3d, CDR3h or CDR3l

• Two columns: s contains CDR3s from both chains (paired), for instance:
– CDR3b and CDR3a [for αβ TCRs]
– CDR3g and CDR3d [for γδ TCRs]
– CDR3h and CDR3l [for heavy/light chain BCRs]

r data.frame, reference (or control) repertoire of CDR3 sequences. Must have
the same structure (number of columns and column names) as s. If this is not
specified or set to NULL, then ClustIRR performs only global clustering using
sample s

ks integer or integer vector, motif lengths. ks = 4 (default)

cores integer, number of CPU cores, cores = 1 (default).

control list, a named list of auxiliary parameters to control algorithm’s behavior. See the
details below:

• global_smart - logical, should we use smart global clustering based of
BLOSUM62 scores (slower but more accurate; default) or less smart global
clustering based on Hamming distances (faster but less accurate)

• global_max_hdist - integer, if global_smart=FALSE, then global_max_hdist
defines a Hamming distance (HD) threshold, i.e. two CDR3s as globally
similar if their Hamming distance is smaller or equal to global_max_hdist
HD(a, b) ≤ global_max_hdist. global_max_hdist = 1 (default)

• local_max_fdr - numeric, maximum False Discovery Rate (FDR) for the
detection of enriched motifs. local_max_fdr = 0.05 (default)

• local_min_ove - numeric, minimum fold change between observed and
expected relative abundances for the detection of enriched motifs. local_min_ove
= 2 (default)

• local_min_o - numeric, minimum absolute frequency of a motif in the s in
order for the motif to be used in the enrichment analysis. local_min_o = 1
(default)

• trim_flank_aa - integer, how many amino acids should be trimmed from
the flanks of all CDR3 sequences (only used for local clustering. trim_flank_aa
= 3 (default))

• low_mem - logical, allows low memory mode for global clustering. This
will lead to increase in the CPU time but lead to a lower memory footprint.
low_mem = FALSE (default)

• global_pairs - data.frame, pre-computed global pairs. If global_pairs
is provided by the user, then global clustering is not performed. Instead
the CDR3 pairs from global_pairs are used as global clustering pairs.
global_pairs is a data.frame matrix with 4 columns. The first two columns,
named, from_cdr3 and to_cdr3 contain pairs of CDR3 sequences that are
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considered globally similar. The third column, called weight, contains a
similarity weight. If weights are not available they should be set to 1.
The fourth column, called chain, contains the chain immune receptor in
which the CDR3s are found: CDR3b or CDR3a [for αβ TCRs]; CDR3g or
CDR3d [for γδ TCRs]; or CDR3h or CDR3l [for heavy/ligh chain BCRs].

Value

The output is an S4 object of class clust_irr. This object contains two sublists:

clust list, contains clustering results for each TCR/BCR chain. The results are stored
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.).
In the following we who the typical structure of these lists:

• local - list, local clustering results
– m - data.frame, motif enrichment results with columns:

* motif - motif sequence

* f_s - observed motif counts in s

* f_r - observed motif counts in r

* n_s - number of all observed motifs in s

* n_r - number of all observed motifs in r

* k - motif length

* ove - mean observed/expected relative motif frequency

* ove_ci_l95 - 95% confidence intervals of ove (lower boundary)

* ove_ci_h95 - 95% confidence intervals of ove (upper boundary)

* p_value - p-value from Fisher’s exact test

* fdr - false discovery rate, i.e. adjusted p-value by Benjamini &
Hochberg correction

* pass - logical value indicating whether a motifs are enriched (pass=TRUE)
given the user-defined thresholds in control

– lp - data.frame, enriched motifs are linked to their original CDR3
sequences and shown as rows in the data.frame with the following
columns:

* cdr3 - CDR3 amino acid sequence

* cdr3_core - core portion of the CDR3 sequence, obtained by trim-
ming trim_flank_aa amino acids (user- defined parameter). If trim_flank_aa
= 0, then cdr3 = cdr3_core

* motif - enriched motif from cdr3_core

• global - data.frame, global clustering results. Pairs of globally similar
CDR3s are shown in each row (analogous to lp). If global_smart=FALSE
in the control, then global clustering is done based on Hamming distances
and the remaining columns of this data.frame are not important. Else, if
global_smart=FALSE, then the remainig columns are relevant, i.e. global
similarity scores are shown for the complete CDR3 sequence pairs (column
weight) or their core (trimmed) CDR3 sequence part (column cweight).
The column max_len stores the the maximum length in each pair of CDR3
sequences, and is used to normalize the scores weight and cweight: the
normalized scores are shown in the columns nweight and ncweight.
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inputs list, contains all user provided inputs (see Arguments)

Examples

# load package input data
data("CDR3ab")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], clone_size = 1)
r <- data.frame(CDR3b = CDR3ab[1:500, "CDR3b"], clone_size = 1)

# artificially enrich motif 'RQWW' inside sample dataset
substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RQWW"

# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, data.frame(CDR3b = c("CATSRAAKPDGLRALETQYF",

"CATSRAAKPDRQWWLSTQYF"),
clone_size = 10))

# run analysis
out <- cluster_irr(s = s,

r = r,
ks = 4,
cores = 1,
control = list(

global_smart = TRUE,
global_max_hdist = 1,
local_max_fdr = 0.05,
local_min_ove = 2,
local_min_o = 1,
trim_flank_aa = 3,
global_pairs = NULL,
low_mem = FALSE))

# output class
class(out)

# output structure
str(out)

# inspect motif enrichment results
knitr::kable(head(slot(out, "clust")$CDR3b$local$m))

# inspect which CDR3bs are globally similar
knitr::kable(head(slot(out, "clust")$CDR3b$global))

# plot graph
plot_graph(out)

# plot graph as visgraph
plot_graph(out, as_visnet = TRUE)
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clust_irr-class clust_irr class

Description

Objects of the class clust_irr are generated by the function cluster_irr. These objects are used
to store the clustering results in a structured way, such that they may be used as inputs of other
ClustIRR functions (e.g. get_graph, plot_graph, etc.). Below we provide a detailed description of
the slots of clust_irr. clust_irr objects contain two sublists:

• clust:list, contains clustering results for each TCR/BCR chain. The results are stored in sep-
arate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.). In the following we
who the typical structure of these lists:

– local - list, local clustering results

* m - data.frame, motif enrichment results with columns:
· motif - motif sequence
· f_s - observed motif counts in s

· f_r - observed motif counts in r

· n_s - number of all observed motifs in s

· n_r - number of all observed motifs in r

· k - motif length
· ove - mean observed/expected relative motif frequency
· ove_ci_l95 - 95% confidence intervals of ove (lower boundary)
· ove_ci_h95 - 95% confidence intervals of ove (upper boundary)
· p_value - p-value from Fisher’s exact test
· fdr - false discovery rate, i.e. adjusted p-value by Benjamini & Hochberg correc-

tion
· pass - logical value indicating whether a motifs are enriched (pass=TRUE) given

the user-defined thresholds in control

* lp - data.frame, enriched motifs are linked to their original CDR3 sequences and
shown as rows in the data.frame with the following columns:
· cdr3 - CDR3 amino acid sequence
· cdr3_core - core portion of the CDR3 sequence, obtained by trimming trim_flank_aa

amino acids (user- defined parameter). If trim_flank_aa = 0, then cdr3 = cdr3_core

· motif - enriched motif from cdr3_core

– global - data.frame, global clustering results. Pairs of globally similar CDR3s are shown
in each row (analogous to lp). If global_smart=FALSE in the control, then global clus-
tering is done based on Hamming distances and the remaining columns of this data.frame
are not important. Else, if global_smart=FALSE, then the remainig columns are rel-
evant, i.e. global similarity scores are shown for the complete CDR3 sequence pairs
(column weight) or their core parts (column cweight). The column max_len stores the
the maximum length in each pair of CDR3 sequences, and is used to normalize the scores
weight and cweight: the normalized scores are shown in the columns nweight and
ncweight.

• inputs:list, contains all user provided inputs



8 clust_irr-class

Arguments

clust list, contains clustering results for each TCR/BCR chain. The results are stored
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.)

inputs list, contains all user provided inputs

Value

The output is an S4 object of class clust_irr

Accessors

To access the slots of clust_irr object we have two accessor functions. In the description below,
x is a clust_irr object.

get_clustirr_clust get_clustirr_clust(x): Extract the clustering results (slot clust)

get_clustirr_inputs get_clustirr_inputs(x): Extract the processed inputs (slot inputs)

Examples

# inputs
data("CDR3ab")
s <- data.frame(CDR3b = CDR3ab[1:1000, "CDR3b"])
r <- data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"])

# controls: auxiliary inputs
control <- list(global_smart = TRUE,

global_max_hdist = 1,
local_max_fdr = 0.05,
local_min_ove = 2,
local_min_o = 1,
trim_flank_aa = 3,
global_pairs = NULL,
low_mem = FALSE)

# clust_irr S4 object generated by function cluster_irr
clust_irr_output <- cluster_irr(s = s, r = r,ks = 4,cores = 1,control = control)

# clust_irr S4 object generated 'manually' from the individual results
new_clust_irr <- new("clust_irr",

clust = slot(object = clust_irr_output, name = "clust"),
inputs = slot(object = clust_irr_output, name = "inputs"))

# we should get identical outputs
identical(x = new_clust_irr, y = clust_irr_output)
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get_graph Get graph structure from clust_irr object

Description

The main output of this function is an igraph object.

The vertices in the graph represent clones. Undirected edges are drawn between a pair of vertices
if the corresponding clones that are locally and/or globally similar.

Usage

get_graph(clust_irr, sample_id = "S")

Arguments

clust_irr S4 object generated by the function cluster_irr

sample_id character, name of the repertoire (default = S)

Value

The main output of this function is an igraph object. Additionally, we provide a data.frame in
which rows are clones (vertices) in the graph.

Examples

# load package input data
data("CDR3ab")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], clone_size = 1)
r <- data.frame(CDR3b = CDR3ab[1:5000, "CDR3b"], clone_size = 1)

# artificially enrich motif 'RWGW' inside sample dataset
substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RWGW"

# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, data.frame(CDR3b = c("CATSRADKPDGLDALETQYF",

"CATSRAAKPDGLAALSTQYF"),
clone_size = 5))

# run ClustIRR analysis
out <- cluster_irr(s = s,

r = r,
ks = 4,
cores = 1,
control = list(trim_flank_aa = 3))

# get graph
g <- get_graph(out)

names(g)
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get_joint_graph Joins two graphs obtained from two or more clust_irr objects

Description

As input we take at least two clust_irr objects generated by the function cluster_irr.

Using each clust_irr object we generate a graph (with the function get_graph) in which the
different vertices represent clones, and undirected edges are drawn between a pair of vertices if the
corresponding clones are locally and/or globally similar (see definitions of local/global clustering
in the documentation of cluster_irr.

The function get_joint_graph performs the following operation for a pair of graphs:

First, it adds together (union) the vertices. Second, it performs global clustering between the two
graphs, i.e. it compares the CDR3 sequences of the clones between the two graphs. If two clones
have similar CDR3 sequences, then the corresponding vertices are connected by an edge.

The results is another igraph object.

Usage

get_joint_graph(clust_irrs, cores=1)

Arguments

clust_irrs A list of at least two S4 objects generated with the function cluster_irr

cores integer, number of computer cores to use (default = 1)

Value

The main output of this function is an igraph object. This object represents a joint graph of the
individual graphs contained as elements in the input clust_irrs. One additional output is a data.frame
in which rows are clones (vertices) in the joint graph.

Examples

# load package input data
data("CDR3ab")
s_1 <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"])
s_2 <- data.frame(CDR3b = CDR3ab[101:200, "CDR3b"])
r <- data.frame(CDR3b = CDR3ab[1:500, "CDR3b"])

# run 1st analysis -> clust_irr object
o_1 <- cluster_irr(s = s_1, r = r, ks = 4)

# run 2nd analysis -> clust_irr object
o_2 <- cluster_irr(s = s_2, r = r, ks = 4)

# join clust_irr objects in a list



plot_graph 11

clust_irrs <- c(o_1, o_2)
names(clust_irrs) <- c("C1", "C2")

# get graph
g <- get_joint_graph(clust_irrs = clust_irrs)

names(g)

plot_graph Plot ClustIRR graph

Description

This this function visualizes a graph. The input is clust_irr object created by the function
cluster_irr.

Usage

plot_graph(clust_irr, as_visnet=FALSE, show_singletons=TRUE)

Arguments

clust_irr S4 object of type clust_irr, result of clust_irr function

as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If
as_visnet=FALSE, we plot a static graph with igraph.

show_singletons

logical, if show_singletons=TRUE we plot all vertices. If show_singletons=FALSE,
we plot only vertices connected by edges.

Value

The output is an igraph plot.

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion
(number of cells per clone) in the corresponding clones.

Examples

# load package input data
data("CDR3ab")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], clone_size = 1)
r <- data.frame(CDR3b = CDR3ab[1:500, "CDR3b"], clone_size = 1)

# artificially enrich motif 'RWGW' inside sample dataset
substr(x = s$CDR3b[1:20], start = 6, stop = 9) <- "RWGW"

# add an artificial clonal expansion of two sequences to the sample dataset
s <- rbind(s, data.frame(CDR3b = c("CATSRADKPDGLDALETQYF",

"CATSRAAKPDGLAALSTQYF"),
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clone_size = 5))

# run analysis
out <- cluster_irr(s = s,

r = r,
ks = 4,
cores = 1,
control = list(trim_flank_aa = 3))

# plot graph with vertices as clones
p1 <- plot_graph(out, as_visnet=FALSE, show_singletons=TRUE)
p1

plot_joint_graph Plot joint ClustIRR graph

Description

This this function creates a joint graph from two or more clust_irr objects, and visualizes the
graph.

Usage

plot_joint_graph(clust_irrs, cores = 1, as_visnet=FALSE,
show_singletons=TRUE)

Arguments

clust_irrs list of two or mroe S4 object of type clust_irr generated with the function
cluster_irr

cores integer, number of computer cores to use (default = 1)

as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If
as_visnet=FALSE, we plot a static graph with igraph.

show_singletons

logical, if show_singletons=TRUE we plot all vertices. If show_singletons=FALSE,
we plot only vertices connected by edges.

Value

The output is an igraph plot.

Vertices are clones and edges represent local or global similarities.

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion
(number of cells per clone) in the corresponding clones.
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Examples

# load package input data
data("CDR3ab")
s_1 <- base::data.frame(CDR3b = CDR3ab[1:100, "CDR3b"])
s_2 <- base::data.frame(CDR3b = CDR3ab[101:200, "CDR3b"])
r <- base::data.frame(CDR3b = CDR3ab[1:500, "CDR3b"])

# run 1st analysis -> clust_irr object
o_1 <- cluster_irr(s = s_1, r = r, ks = 4)

# run 2nd analysis -> clust_irr object
o_2 <- cluster_irr(s = s_2, r = r, ks = 4)

# plot graph with vertices as clones
plot_joint_graph(c(o_1, o_2))
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