Type Package

Package ‘ChIPsim’

October 16, 2024

Title Simulation of ChIP-seq experiments

Version 1.58.0
Date 2011-05-18
Author Peter Humburg

Maintainer Peter Humburg <Peter.Humburg@gmail.com>

Description A general framework for the simulation of ChIP-seq data.
Although currently focused on nucleosome positioning the
package is designed to support different types of experiments.

License GPL (>=2)
LazyLoad yes

Depends Biostrings (>=

2.29.2)

Imports IRanges, XVector, Biostrings, ShortRead, graphics, methods,

stats, utils

Suggests actuar, zoo

biocViews Infrastructure, ChIPSeq

git_url https://git.bioconductor.org/packages/ChIPsim
git_branch RELEASE_3_19

git_last_commit 90befd0

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-

Contents

10-16

ChIPsim-package o i i e e e e e
bindDens2readDens e e

decodeQuality
defaultControl

defaultErrorProb e

2 ChIPsim-package
defaultFunctions 7
defaultGenerator e e e e e 8
distDens e 9
extractQualityo 10
feat2dens e 12
featureDensity oL e e 13
FeatureGenerators e 14
internal L L e e e e e e e 15
joinRegion 16
makeFeatures L. e e e e 16
placeFeatures 18
Pos2fastq e 20
readError L 21
readQualitySample 22
readSequence 23
reconcileFeatures 24
sampleReads L 25
simChIP o e 26
simpleNames e 28
writetFASTQ e 29
writeReads 30

Index 31

ChIPsim-package Simulation of ChIP-seq experiments

Description

This package provides a framework for the simulation of ChIP-seq experiments. An implemen-
tation of a simulation for nucleosome positioning experiments is provided as part of the package.
Simulations for other experiments can be implemented using the provided framework.

Details

Package: ChIPsim

Type: Package
Version: 1.3.1
Date: 2010-07-30

License: GPL (>=2)
LazyLoad: yes

Depends: Biostrings

Imports: IRanges, ShortRead
Suggests: actuar, zoo

bindDens2readDens 3

Function simChIP is the main driver of the simulation. To simulate different types of experiments
the functions passed to the functions argument of simChIP have to be replaced. See the vignettes
for more detail.

Author(s)

Peter Humburg

Maintainer: Peter Humburg <Peter. Humburg @ well.ox.ac.uk>

References

~~ Literature or other references for background information ~~

See Also

ShortRead and its dependencies are used to handle short read and genomic sequences.

Examples

See the accompanying vignette 'Introduction to ChIPsim' for a detailed

example of how to use this package for nucleosome positioning simulations.
A guide for the writing of extensions that cover other types of

experiments is provided in 'Extending ChIPsim'.

bindDens2readDens Convert a feature density into a read density

Description

Given a feature density this function produces two read densities, one for each strand.

Usage
bindDens2readDens(bindDens, fragment, nfrag = 1e+05, bind = 147,
minLength = 150, maxLength = 180, ...)
Arguments
bindDens Numeric vector with the feature density for one chromosome.
fragment Function giving the fragment length distribution.
nfrag Number of fragments that should be simulated to generate the read distribution.
bind Length of binding site.
minLength Minimum fragment length.
maxLength Maximum fragment length.

Further arguments to fragment.

4 decodeQuality

Value

A two column matrix. The first column contains the read density for the forward strand, the second
column the read density for the reverse strand.
Author(s)

Peter Humburg

See Also

feat2dens, sampleReads

Examples

set.seed(1)
generate a (relatively short) sequence of nucleosome features
features <- placeFeatures(start=200, length=1e5)

calculate feature density
featureDens <- feat2dens(features, length=1e5)

convert to read density
readDens <- bindDens2readDens(featureDens, fragDens, meanlLength=160)

decodeQuality Conversion between numerical and ASCII representation of read qual-
ities

Description

These functions convert an ASCII encoded sequence of read qualities into a numeric vector of error
probabilities and vice versa.

Usage

decodeQuality(quality, type = c("Illumina”, "Sanger”, "Solexa"))
encodeQuality(quality, type = c("Illumina”, "Sanger”, "Solexa"))

Arguments
quality For decodeQuality a character string representing the read qualities for a single
sequence read. For encodeQuality a numeric vector of error probabilities.
type Type of encoding to use.
Details

See extractQuality for a description of the currently supported encodings.

defaultControl

Value

Either a numeric vector of error probabilities or a character string of encoded read quality scores.
Each entry in the vector corresponds to one character in the input.

Author(s)

Peter Humburg

See Also

extractQuality

Examples

decodeQuality and encodeQualty are the inverse operations
of each other as one might expect

quality <- "ITIIIIIIIIIIIICIIGIIIIGIIOSIII6II-IIQ"

errorProb <- decodeQuality(quality, type="Sanger")
qualitySanger <- encodeQuality(errorProb, type="Sanger")
all.equal(quality, qualitySanger)

They can also be used to convert between encodings
qualityIllumina <- encodeQuality(errorProb, type="I1lumina")

defaultControl

Default parameters for simChIP

Description

Produces a list of parameters for each of the functions used to carry out the various stages of the

simulation.

Usage

defaultControl (features = list(), bindDensity = list(),
readDensity = list(), readNames = list(), readSequence = list())

Arguments

features
bindDensity

readDensity

readNames

Parameters for feature generation.
Parameters for the conversion of feature sequence into binding site densities.

Parameters for the conversion of binding site densities into read densities. Al-
ways provides parameters

fragment Default: fragDens
meanLength Default: 160

Parameters for the generation of read names.

6 defaultErrorProb

readSequence Parameters for the conversion of read positions into read sequences. Always
provides parameters

qualityFun readQualitySample
errorFun readError
readLen 36

Details

Any parameters passed as part of list to one of the arguments of defaultControl will be passed on
to the corresponding function in simChIP. The build-in defaults can be overwritten by providing a
list entry with the same name.

Value

List of parameters for use as the control argument to simChIP.

Author(s)

Peter Humburg

See Also

defaultFunctions, simChIP

Examples

defaultControl()
defaultControl(features=list(maxTail=0), readSequence=list(readlLen=50))

defaultErrorProb Replacement probabilities for sequencing errors

Description
For each nucleotide this function provides probabilities indicating how likely it is to be replaced by
any of the other nucleotides should a sequencing error occur.

Usage

defaultErrorProb()

Details

The probabilities used here are the ones determined by Dohm et al. for Beta vulgaris. They should
be more appropriate than a uniform distribution but the use of species specific rates is recommended
where available.

defaultFunctions 7

Value

A list of four vectors with replacement probabilities for each nucleotide.

Author(s)

Peter Humburg

References

Juliane C. Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer. Substantial biases in
ultra-short read data sets from high-throughput DNA sequencing. Nucl. Acids Res., pages gkn425+,
July 2008.

Examples

defaultErrorProb()

defaultFunctions Default functions for simChIP

Description

Provides default functions to carry out the different stages of the ChIP-seq simulation.

Usage

defaultFunctions()

Value

A list with components

features placeFeatures
bindDensity feat2dens
readDensity bindDens2readDens
sampleReads sampleReads
readSequence writeReads

readNames simpleNames

Author(s)

Peter Humburg

See Also

simChIP

8 defaultGenerator

Examples

defaultFunctions()

defaultGenerator Defaults for Feature Generator

Description

Functions to generate defaults for makeFeatures.

Usage
defaultGenerator()
defaultTransition()
defaultInit(prob=c(0.2, .05, 0, 0.25, 0.5),
states=c("ReversePhasedFeature”, "StableFeature”,

"PhasedFeature”, "NFRFeature”, "FuzzyFeature”))
defaultlLastFeat(isEnd = c(FALSE, rep(TRUE, 4)),
states = c("ReversePhasedFeature”, "StableFeature”,
"PhasedFeature”, "NFRFeature”, "FuzzyFeature"))

Arguments
prob Numeric vector giving the initial state distribution. This will be normalised if
the probabilities do not add up to 1.
isEnd Logical vector indicating which states, i.e. features, are allowed to be last in the
sequence.
states Character vector of state names.
Details

These functions generate data structures that can be passed as arguments to makeFeatures. Using
this set of functions will create a nucleosome positioning simulation. Some of the defaults can be
modified by passing different values to defaultInit and defaultLastFeat.

Value
Return values are suitable as arguments generator, transition, init and lastFeat of makeFeatures.
See the documentation of makeFeatures for more detail.

Author(s)

Peter Humburg

distDens 9

Examples

set.seed(1)

generate defaults

generator <- defaultGenerator()
transition <- defaultTransition()
lastFeat <- defaultLastFeat()

change the initial state distribution such that it
always starts with a fuzzy feature
init <- defaultInit(c(@, @, @, 0, 1))

now generate some features for a stretch of 1 million base pairs
features <- makeFeatures(generator=generator, transition=transition,
lastFeat=lastFeat, init=init, length=1e6)

distDens Computing densities for nucleosome positioning simulation

Description

These functions compute nucleosome densities for a given parameter set (usually provided through
one of the feature classes).

Usage

distDens(x, minDist = 175, varDist = 337.5, meanDist = 200)
fragDens(x, minLength, maxLength, meanLength, bind)

indNuc(meanDist = 200, length = 2000, weight = 1)

noNuc(length, weight = 1)

stableDens(x, shift = 10, ratio = 1, weight = 1, stability = 1)
phaseNuc(stable, dist, minDist = 175, length = 2000, meanDist = 200,
varDist = (meanDist - minDist) + (meanDist - minDist)*2/2,

shift = 10, ratio = 1, weight = 1, stability = 1)

bindLocDens(x, fraglLength)

Arguments
X Position at which the density should be evaluated.
minDist Minimum distance between nucleosomes.
varDist Variance of nucleosome distances.
meanDist Mean distance of nucleosomes.
minLength Minimum fragment length.
maxLength Maximum fragment length.
meanLength Mean fragment length.

bind Position of binding site within fragment.

10 extractQuality

length Length of region.

weight Weight of feature.

stable Density function for stable nucleosome.

dist Density function of distances between nucleosomes.

shift Distance between alternative position for stable nucleosome.

ratio Ratio of probability mass associated with central and alternative positions for

stable nucleosome.

stability Stability of stable nucleosome.
fraglLength Length of DNA fragment. If x is not in [0, 1] this is used to normalize x.
Value

Density evaluated at the given position.

Author(s)

Peter Humburg

See Also

feat2dens

extractQuality Obtain read qualities from a Fastq file or ShortReadQ object

Description

Converts the read qualities encoded in fastq formatted files into error probabilities.

Usage

extractQuality(reads, minLength = 25, dir,
type = c("Illumina”, "Sanger"”, "Solexa"))

Arguments
reads Either the name of a fastq file or a ShortReadQ object (see Details).
minLength Minimum read length required.
dir Directory of fastq file.

type Character string indicating the format the qualities are encoded in (see Details).

extractQuality 11

Details

If reads and dir are character strings it is assumed that ‘dir/reads’ is the name of a fastq file.
Otherwise reads should be a ShortReadQ object in which case dir is ignored.

Currently three different encodings of read qualities are supported. The encoding has to be selected
via the type argument. The supported formats are

INlumina The format currently used by Illumina (version 1.3). This is a phred score between 0 and
40 encoded as ASCII characters 64 to 104. [default]

Sanger The Sanger format uses a phred quality score between 0 and 93 encoded as ASCII charac-
ters 33 to 126.

Solexa The old Solexa format previously used by Solexa/Illumina uses a quality score between -5
and 40 encoded as ASCII characters 59 to 104.

Value

A list with a vector of error probabilities for each read in reads that is at least minLength nu-
cleotides long.

Author(s)

Peter Humburg

See Also

decodeQuality, readQualitySample

Examples

Not run:

load reads from a fastq file with Sanger encoding
qualities <- extractQuality("test.fastq”, dir=".", type="Sanger")
extract error probabilities for first 25bp of each read
qualities25 <- sapply(qualities, "[", 1:25)

plot average quality for each position
plot(rowMeans(qualities25), type='b', xlab="Read position”,
ylab="Error probability")

End(Not run)

12 feat2dens

feat2dens Convert a list of features into a feature density

Description

Given a list of features (as produced by makeFeatures) computes the feature density for each and
combines them into a chromosome wide density.

Usage
feat2dens(features, length, featureBgr = TRUE, ...)
Arguments
features A list of features.
length Total length of feature density vector (i.e. chromosome length). If this is missing
the length is inferred from the feature parameters.
featureBgr Logical indicating whether feature specific background should be added to the
density. If this is TRUE the resulting density for each feature is a mixture of the
feature density and a fuzzy, i.e. uniform, feature density. The weights of the
components are determined by the feature weight.
Further arguments to featureDensity.
Value

A vector with the feature density for each position along the chromosome.

Author(s)

Peter Humburg

See Also

The majority of the work is done by calls to featureDensity and joinRegion.

Examples

set.seed(1)
generate a (relatively short) sequence of nucleosome features
features <- placeFeatures(start=200, length=1e5)

calculate density
featureDens <- feat2dens(features, length=1e5)

featureDensity 13

featureDensity Computing density for a given feature

Description

This set of functions is used to generate the density of individual features of different types. featureDensity
is an S3 generic, functions may be defined for different feature classes.

Usage
featureDensity(x, ...)
S3 method for class 'StableFeature'
featureDensity(x, stable=stableDens, background=FALSE, ...)
S3 method for class 'StablePhasedFeature'’
featureDensity(x, stable=stableDens, dist=distDens, background=FALSE, ...)
S3 method for class 'ReversePhasedFeature'’
featureDensity(x, stable=stableDens, dist=distDens, background=FALSE, ...)
S3 method for class 'NFRFeature’
featureDensity(x, background=FALSE, ...)
S3 method for class 'FuzzyFeature'
featureDensity(x, ...)
Arguments
X The feature for which the density should be computed.
stable Function that should be used to compute the density of a stable feature.
dist Function that should be used to compute the distribution of distances between
adjacent features.
background Logical indicating whether uniform background should be added to the feature.
Arguments to future functions.
Details

These functions are used internally by feat2dens. There should be no need to call them directly
but it is important to supply suitable featureDensity functions for new feature types.

Value

A two column matrix. The first column contains the density, the second the weight at each position.

Author(s)

Peter Humburg

See Also

feat2dens, makeFeatures

14 FeatureGenerators

Examples

Create a single StableFeature
feature <- stableFeature(start = 200, weight = 0.8, shift = 10,
stability = 1, ratio = 1)

Convert the feature into a density (without background)
featDens <- featureDensity(feature)

If we want featureDensity to automatically add uniform background
we have to ensure that the feature has a 'meanDist' parameter

(this is usually added by 'reconcileFeatures').

feature$meanDist <- 200

featDens2 <- featureDensity(feature, background = TRUE)

FeatureGenerators Generating Features

Description

These functions are used to generate the parameters for different nucleosome positioning related
features.

Usage

stableFeature(start, minDist = 175, weight = seq(@0.1, 1, by = 0.1),
shift = c(@, 5, 10), ratio = seq(@, 4, by = 0.25),
stability = seq(@.1, 5, by = 0.1), weightProb, shiftProb,

ratioProb, stabilityProb, ...)
phasedFeature(minDist = 175, length = seq(1000, 10000, by = minDist),
meanDist = minDist:300@, lengthProb, meanDistProb, start, ...)
fuzzyFeature(start, length = seq(1000, 10000, by = 1000),
meanDist = 175:400, lengthProb, meanDistProb, ...)
nfrFeature(start, length = seq(50, 500, by = 10),
weight = seq(@0.1, 1, by = 0.1), lengthProb, weightProb, ...)
Arguments
start Start location of feature on chromosome.
minDist Minimum distance between nucleosomes.
length A numeric vector giving possible values for the length of the feature.
meanDist A numeric vector giving possible values for the mean distance between nucleo-
somes.
weight A numeric vector giving possible values for the weight of the feature.
shift A numeric vector giving possible values for the distance between favoured po-

sitions of stable nucleosomes.

internal

ratio

stability
lengthProb

meanDistProb
weightProb
shiftProb
ratioProb

stabilityProb

Value

15

A numeric vector giving possible values for the ratio between probabilities for
alternative and central position of stable nucleosomes.

A numeric vector giving possible values for the stability of stable nucleosomes.

Length distribution of feature. This corresponds to the state duration distribution
of the underlying generating model.

Distribution of mean distances between nucleosomes.

Distribution of feature weights.

Distribution of distances between favoured positions of stable nucleosome.
Ratio distribution.

Stability distribution.

Further arguments (currently ignored).

A list of parameters for the corresponding feature type. These parameters are later used to compute
nucleosome densities.

Author(s)

Peter Humburg

See Also

simChIP

Examples

feature <- stableFeature(200)

internal

Internal and undocumented functions

Description

These functions are only used internally or are lacking documentation.

Author(s)

Peter Humburg

16 makeFeatures

joinRegion Combining two feature densities

Description

Function to take two vectors of feature densities and combine them into a single vector, using
overlap between the two densities and smoothing the transition.

Usage

joinRegion(left, right, overlap, overlapWeights)

Arguments
left First density vector.
right Second density vector.
overlap Overlap between the two features.

overlapWeights Weights for overlapping region.

Value

Returns the combined density vector.

Note

This function is used as part of feat2dens and there should be no need to call it directly although
it may be useful for possible extensions.

Author(s)

Peter Humburg

makeFeatures Generating a list of genomic features

Description

This function generates a list of genomic features for a single chromosome based on a Markov
model.

makeFeatures 17

Usage

makeFeatures(generator = defaultGenerator(),

transition = defaultTransition(), init = defaultInit(),
start = 1000, length, control = list(),

globals = list(minDist = 175), lastFeat = defaultlLastFeat(),
experimentType = "NucleosomePosition”,

truncate = FALSE, maxTries = 10, force=FALSE)

Arguments

generator A named list providing functions to generate the parameters associated with
each type of feature. The name of each element in the list is the name of the
state the function should be associated with.

transition Named list of transition probabilities. Each element is a (named) numeric vector
giving the transition probabilities for the state indicated by the element’s name,
i.e., each element of the list is a row of the transition probability matrix but zero
probabilities can be omitted.

init Named numeric vector of initial state probabilities. The names have to corre-
spond to state names of the model. Zero probabilities may be omitted.

start Numeric value indicating the position at which the first feature should be placed.

length Maximum length of DNA that should be covered with features.

control Named list with additional arguments to generator functions (one list per gener-
ator). Again the names should be the same as the state names.

globals List of global arguments to be passed to all generator functions.

lastFeat Named logical vector indicating for each feature type whether it can be the last

feature.

experimentType Type of experiment the simulated features belong to. This is used as the class of
the return value.

truncate Logical value indicating whether the final feature should be truncated to ensure
that total length does not exceed length (if FALSE, a feature that would be trun-
cated is removed instead).

maxTries Maximum number of attempts made to generate a valid sequence of features. If
no valid sequence is generated during the first maxTries attempts the function
will fail either silently (returning an empty sequence) or raise an error, depend-
ing on the value of force.

force Logical indicating whether the function should be forced to return a feature se-
quence, even if no valid sequence was found. If this is TRUE an empty sequence
will be returned in that case otherwise an error is raised.

Details

This function will generate features from any first order Markov model specified by init, transition
and generator. If force is FALSE the returned feature sequence is guaranteed to contain at least
one feature and end in a state that is indicated as possible end state in 1astFeat. Note that the states
for which lastFeat is TRUE are not end states in the sense that the chain is terminated once the state

18 placeFeatures

is entered or that the chain remains in the state once it is first entered. Instead this is a mechanism
to ensure that some states cannot be the last in the sequence.

Due to the constrains on the total length of DNA covered by features as well as the possible con-
straint on the final feature of the sequence it is possible to specify models that cannot produce a
legal sequence. In other cases it may be possible but unlikely to produce a feature sequence that
satisfies both constraints. A serious attempt is made to satisfy both requirement, generating a new
feature sequence or truncating an existing one if necessary. To ensure that this terminates eventually
the number of attempts to generate a valid sequence are limited to maxTries.

In some cases it may be desirable to carry out some post-processing of the feature sequence to
ensure that parameters of neighbouring features are compatible in some sense. For the default
nucleosome positioning simulation the function reconcileFeatures provides this functionality
and placeFeatures is an interface to makeFeatures that utilises reconcileFeatures.

Value

A list of features (with class determined by experimentType). Each feature is represented by a list
of parameters and has a class with the same name as the state that generated the feature. In addition
all features are of class SimulatedFeature.

Author(s)

Peter Humburg

See Also

Functions to generate default values for some of the arguments: defaultGenerator, defaultInit,
defaultTransition, defaultlLastFeat.

Use feat2dens to convert a feature sequence into feature densities.

placeFeatures is an interface to makeFeature for nucleosome positioning.

Examples

set.seed(1)
generate a (relatively short) sequence of nucleosome features
features <- makeFeatures(length=1e6)

check the total length of the features
sum(sapply(features, "[[", "length")) ## 995020

placeFeatures Generating and reconciling a feature sequence

Description

This function provides an interface to makeFeatures and reconcileFeatures that combines both
steps of the feature generation process.

placeFeatures 19

Usage

placeFeatures(..., maxTail = 0.01,
compoundFeatures=list("”StablePhasedFeature”))

Arguments
Arguments to makeFeatures.
maxTail Maximum portion of total length of chromosome that may be left free of features
(see Details).
compoundFeatures
List of feature classes that are produced by combining two features. This may
happen during the call to reconcileFeatures and requires special handling
when extending the feature list.
Details

This function (as well as makeFeatures which it calls) tries to fill as much of the genomic region
with features as possible, i.e. an attempt is made to produce a feature sequence that covers length
base pairs. In most cases the sequence will be slightly shorter. The maxTail argument determines
how long a region without any features at the end of the genomic region is acceptable (as fraction
of the total length). Note however that even maxTail = @ does not guarantee a feature sequence of
exactly the requested length.

Value
A list of simulated features. The class of the return value as well as the features generated depend
on the arguments passed to makeFeatures.

Note

Using the reconcileFeatures mechanism it is possible to introduce dependence between neigh-
bouring features that is not easily expressed in terms of a simple Markov model. In some cases
the same effect can be achieved by introducing additional states into the model but it may be more
convenient to simply post-process the feature sequence.

Author(s)

Peter Humburg

See Also

makeFeatures, reconcileFeatures

Examples

set.seed(1)
generate a (relatively short) sequence of nucleosome features
features <- placeFeatures(length=1e6, maxTail = 0)

20 pos2fastq

check the total length of the features
sum(sapply(features, "[[", "length"”)) ## 990509

pos2fastq Convert read positions to fastq records

Description
Convert read positions for a single chromosome (both strands) into read sequences + qualities and
write them to file

Usage

pos2fastq(readPos, names, quality, sequence, qualityFun, errorFun,
readLen = 36, file,

qualityType = c("Illumina”, "Sanger", "Solexa"), ...)
Arguments

readPos A list of two numeric vectors (one per strand)

names List of names to use for reads in fastq file. Has to be of same shape as name.

quality Passed on as argument to qualityFun.

sequence Reference sequence (a DNAString object).

qualityFun Function to generate quality scores.

errorFun Function to introduce sequencing errors.

readLen Read length to generate.

file Output file (either file name or connection).

qualityType Encoding to use for read quality scores.

Further arguments (see Details).

Details

Arguments passed as part of ... will be passed on to qualityFun, except an argument called prob
which is passed on to errorFun instead if present.

Value

Invisibly returns the number of records that were written.

Author(s)

Peter Humburg

See Also

See readError for a possible choice of errorFun and readQualitySample for a simple qualityFun.

readError 21

Examples

set.seed(1)

a function to generate random read qualities (in Sanger format)
randomQuality <- function(read, ...){
paste(sample(unlist(strsplit(rawToChar(as.raw(33:126)),"")),
length(read), replace = TRUE), collapse="")

3

generate a reference sequence
chromosome <- DNAString(paste(sample(c("A", "C", "G", "T"),
1e5, replace = TRUE), collapse = ""))

and a few read positions
reads <- list(sample(100:9900, 5), sample(100:9900, 5))
names <- list(paste("read”, 1:5, sep="_"), paste("read”, 6:10, sep="_"))

convert to fastq format
pos2fastq(reads, names, sequence=chromosome, qualityFun=randomQuality,
errorFun=readError, file="")

readError Introduce errors into read sequence based on quality scores

Description

Given a read sequence and quality this function introduces errors by first choosing positions that
should be modified based on the quality score and then exchanges nucleotides based on the proba-
bilities given in prob.

Usage
readError(read, qual, alphabet = c("A", "C", "G", "T"),
prob = defaultErrorProb(), ...)

Arguments
read A character string representing a read sequence.
qual Numeric vector of read error probabilities.
alphabet Alphabet used for read sequence.
prob Nucleotide exchange probabilities.

Further arguments (currently ignored).

Details

If the read sequence contains letters that are not part of alphabet they are replaced by the first entry
of alphabet before positions of sequencing errors are determined. The alphabet used has to match
the names used in prob.

22

readQualitySample

Value

The modified read sequence.

Author(s)

Peter Humburg

See Also

defaultErrorProb, readSequence

Examples

set.seed(42)

generate sequence read and quality

quality <- paste(sample(unlist(strsplit(rawToChar(as.raw(33:126)),"")),
36, replace = TRUE), collapse="")

errorProb <- decodeQuality(quality, type = "Sanger")

read <- paste(sample(c("A", "C", "G", "T"), 36, replace = TRUE),
collapse = "")

use readError to introduce sequencing errors
read2 <- readError(read, errorProb)

all.equal(read, read2) ## "1 string mismatch”

readQualitySample Sample read qualities from a list

Description

Given a read sequence and a list of read quality scores this function returns a (possibly truncated)
quality score of the same length as the read.

Usage

readQualitySample(read, qualities, checkLength = TRUE, ...)
Arguments

read A sequence read.

qualities List of sequence read quality scores.

checkLength Flag indicating whether the length of quality scores should be checked to ensure
that they are at least as long as the read. If qualities contains entries shorter
than read this has to be TRUE, but see below.

Further arguments, currently not used.

readSequence 23

Details

Using checkLength = TRUE leads to a substantial decrease in performance and is impractical for
a large simulation. To avoid this slow down it is recommended to remove short sequences from
qualities beforehand so that checkLength = FALSE can be used.

Value

An read quality score string of the same length as read.

Author(s)

Peter Humburg

readSequence Convert read position into read sequence

Description

Given a read position, a reference sequence, a strand and a read length this function returns the read
sequence.

Usage

readSequence(readPos, sequence, strand, readLen = 36)

Arguments
readPos Numeric value indicating the start position on the chromosome.
sequence Chromosome sequence (a DNAString)
strand Strand indicator (+1 /-1)
readLen Length of read.
Value

Read sequence.

Author(s)

Peter Humburg

See Also

readError, writeReads

24 reconcileFeatures

reconcileFeatures Post-processing of simulated features

Description

The reconcileFeatures functions provide a facility to post-process a list of features representing

a simulated experiment. reconcileFeaturesisan S3 generic, new functions can be added for addi-
tional types of experiment. The current default is to call reconcileFeatures.SimulatedExperiment
which, if called without further arguments, will simply return the feature list unchanged.

Usage
reconcileFeatures(features, ...)
Default S3 method:
reconcileFeatures(features, ...)
S3 method for class 'SimulatedExperiment'’
reconcileFeatures(features, defaultValues=list(), ...)
S3 method for class 'NucleosomePosition'
reconcileFeatures(features, defaultMeanDist = 200, ...)
Arguments
features List of simulated features.

defaultValues Named list of default parameter values. The method for class SimulatedExperiment
ensures that all features have at least the parameters listed in defaultValues,
adding them where necessary.

defaultMeanDist
Default value for the average distance between nucleosomes for nucleosome
positioning experiments.

Further arguments to future functions.

Value

A list of features of the same class as features.

Author(s)

Peter Humburg

See Also

makeFeatures, placeFeatures

sampleReads 25

Examples

set.seed(1)
generate a (relatively short) sequence of nucleosome features
features <- makeFeatures(length=1e6,)

check the total length of the features
sum(sapply(features, "[[", "length")) ## 995020

reconcile features to ensure smooth transitions
For experiments of class NucleosomePosition this
also combines some features and introduces

some overlap between them.

features <- reconcileFeatures(features)

check the total length of the features again
sum(sapply(features, "[[", "length")) ## 984170

sampleReads Sampling sequence read positions from a read density.

Description

Given a read density this function returns the starting positions of sequence reads.

Usage
sampleReads(readDens, nreads = 6e+06, strandProb = c(0.5, 0.5))

Arguments
readDens A two column matrix of read densities (as produced by bindDens2readDens).
nreads Number of read positions to generate.
strandProb A numeric vector with two elements giving weights for forward and reverse
strand.
Details

The expected number of reads for each strand is strandProb * nreads.

Value

A list with components fwd and rev giving the read positions on the forward and reverse strand
respectively.

Author(s)

Peter Humburg

26 simChIP
See Also
bindDens2readDens
Examples
set.seed(1)
generate a (relatively short) sequence of nucleosome features
features <- placeFeatures(start=200, length=1e5)
calculate feature density
featureDens <- feat2dens(features, length=1e5)
convert to read density
readDens <- bindDens2readDens(featureDens, fragDens, meanLength=160)
sample reads
of course you would usually want a much larger number
readPos <- sampleReads(readDens, nreads=1000)
simChIP Simulate ChIP-seq experiments
Description
This function acts as driver for the simulation. It takes all required arguments and passes them
on to the functions for the different stages of the simulation. The current defaults will simulate a
nucleosome positioning experiment.
Usage
simChIP(nreads, genome, file, functions = defaultFunctions(),
control = defaultControl(), verbose = TRUE, load = FALSE)
Arguments
nreads Number of reads to generate.
genome An object of class 'DNAStringSet’ or the name of a fasta file containing the
genome sequence.
file Base of output file names (see Details).
functions Named list of functions to use for various stages of the simulation, expected
names are: ‘features’, ‘bindDens’, ‘readDens’, ‘sampleReads’, ‘readNames’,
‘readSequence’
control Named list of arguments to be passed to simulation functions (one list per func-
tion).
verbose Logical indicating whether progress messages should be printed.
load Logical indicating whether an attempt should be made to load intermediate re-

sults from a previous run.

simChIP 27

Details
The simulation consists of six of stages:

1. generate feature sequence (for each chromosome): chromosome length -> feature sequence
(list)

2. compute binding site density: feature sequence -> binding site density (vector)

3. compute read density: binding site density -> read density (two column matrix, one column
for each strand)

4. sample read start sites: read density -> read positions (list)
5. create read names: number of reads -> unique names

6. obtain read sequence and quality: read positions, genome sequence, [qualities] -> output file

After each of the first three stages the results of the stage are written to a file and can be reused later.

File names are created by appending ‘_features.rdata’, ‘_bindDensity.rdata’ and ‘_readDensity.rdata’
to file respectively. Previous results will be loaded for reuse if 1oad is TRUE and files with match-

ing names are found. This is useful to sample repeatedly from the same read density or to recover

partial results from an interrupted run.

The creation of files can be prevented by setting file = “”. In this case all results will be returned
in a list at the end. Note that this will require more memory since all intermediate results have to be
held until the end.

The behaviour of the simulation is mainly controlled through the functions and control argu-
ments. They are expected to be lists of the same length with matching names. The names indicate
the stage of the simulation for which the function should be used; elements of control will be used
as arguments for the corresponding functions.

Value

A list. The components are typically either lists (with one component per chromosome) or file
names but note that this may depend on the return value of functions listed in functions. The
components of the returned list are:

features Either a list of generated features or the name of a file containing that list;
bindDensity Either a list with binding site densities or the name of a file containing that list;
readDensity Either a list of read densities or the name of a file containing that list;

readPosition Either a list of read start sites or the name of a file containing that list;

readSequence The return value of the function listed as ‘readSequence’. The default for this
the name of the fastq file containing the read sequences;

readNames Either a list of read names or the name of a file containing that list.

Author(s)

Peter Humburg

See Also

defaultFunctions, defaultControl

28 simpleNames
Examples
Not run:
To run the default nucleosome positioning simulation
we can simply run something like the line below.
This will result in 10 million reads sampled from the genome.
Of course the file names have to be changed as appropriate.
simChIP(1e7, genome = "reference.fasta”, file = "output/sim_10M")
End(Not run)
simpleNames Generate unique read names
Description
Generates a set of unique (and very simple) read names.
Usage
simpleNames(n, nameBase = "read")
Arguments
n Number of names to generate.
nameBase Base name to use.
Value
A character vector with entries of the form ‘nameBase_i’ where i runs from 1 to n.
Author(s)
Peter Humburg
Examples

simpleNames(5)

writeFASTQ 29

writeFASTQ Write read sequences and qualities to a FASTQ formatted file

Description

This is intended to produce the final output of the simulation by providing a fastq file that may then
be used in an analysis pipeline.

Usage
writeFASTQ(read, quality, name, file, append = FALSE)

Arguments
read List of read sequences.
quality List of read quality scores.
name Read names.
file File name. If this is *”’ results will be printed to the standard output connection.
append Logical indicating the reads should be appended to an existing file.
Details

The first three arguments should have the same length but will be recycled if necessary.

Value

Called for its side effect.

Author(s)

Peter Humburg

See Also

readSequence, readQualitySample, writeReads

Examples

set.seed(1)

generate sequence read and quality

quality <- paste(sample(unlist(strsplit(rawToChar(as.raw(33:126)),"")),

36, replace = TRUE), collapse="")

read <- paste(sample(c("A", "C", "G", "T"), 36, replace = TRUE), collapse = "")

write a fastq record
writeFASTQ(read, quality, "read_1", file="")

30 writeReads

writeReads Create fastq file from read positions

Description

This is an interface to pos2fastq that writes all reads for a given genome to a single file.

Usage
writeReads(readPos, readNames, sequence, quality, file, ...)
Arguments
readPos List of read positions with each component holding the read positions for one
chromosome, which are themselves two component lists that provide forward
and reverse strand positions.
readNames List of the same shape as readPos providing read names.
sequence Genome reference sequence (a DNAStringSet).
quality Read quality scores (see Details).
file Output file.
Further arguments to pos2fastq.
Details

If quality looks like it might refer to a fastq file an attempt is made to create a ShortReadQ
object. The read qualities of any ShortReadQ object passed as quality (directly or indirectly as
file name) are extracted and passed on to pos2fastq as quality argument. Otherwise it is passed
on unchanged.

Value

The name of the output file.

Author(s)

Peter Humburg

See Also

pos2fastq

Index

x datagen
bindDens2readDens, 3
defaultGenerator, 8
distDens, 9
feat2dens, 12
featureDensity, 13
FeatureGenerators, 14
makeFeatures, 16
placeFeatures, 18
readError, 21
readQualitySample, 22
reconcileFeatures, 24
sampleReads, 25

simChIP, 26
* internal
distDens, 9

internal, 15
joinRegion, 16

+ package
ChIPsim-package, 2

+ utilities
decodeQuality, 4
defaultControl, 5
defaultErrorProb, 6
defaultFunctions, 7
defaultGenerator, 8
extractQuality, 10
pos2fastq, 20
readQualitySample, 22
readSequence, 23
simpleNames, 28
writeFASTQ, 29
writeReads, 30

bindDens2readDens, 3, 7, 25, 26
bindLocDens (distDens), 9

ChIPsim (ChIPsim-package), 2
ChIPsim-package, 2

31

decodeQuality, 4, 11
defaultControl, 5,27
defaultErrorProb, 6, 22
defaultFunctions, 6,7, 27
defaultGenerator, 8, 18
defaultInit, /8

defaultInit (defaultGenerator), 8
defaultLastFeat, /8

defaultlLastFeat (defaultGenerator), 8
defaultTransition, /8

defaultTransition (defaultGenerator), 8

distDens, 9
DNAString, 20, 23
DNAStringSet, 30

encodeQuality (decodeQuality), 4
extractQuality, 4, 5, 10

feat2dens, 4, 7, 10,12, 13,16, 18
featureDensity, 12, 13
FeatureGenerators, 14

fragDens, 5

fragDens (distDens), 9

fuzzyFeature (FeatureGenerators), 14

indNuc (distDens), 9
internal, 15

joinRegion, 12, 16
makeFeatures, 8, 12, 13, 16, 18, 19, 24

nfrFeature (FeatureGenerators), 14
noNuc (distDens), 9

phasedFeature (FeatureGenerators), 14
phaseNuc (distDens), 9
placeFeatures, 7, 18, 18, 24
pos2fastq, 20, 30

readError, 6, 20, 21, 23

32 INDEX

readQualitySample, 6, 11, 20, 22, 29
readSequence, 22, 23, 29
reconcileFeatures, 18, 19, 24

sampleFromFile (internal), 15
sampleReads, 4, 7, 25

ShortRead, 3

ShortReadq, /10, 11, 30
simChIP, 3,6, 7, 15,26
simpleNames, 7, 28

solexaNames (internal), 15

stableDens (distDens), 9
stableFeature (FeatureGenerators), 14

writeFASTQ, 29
writeIllumina (internal), 15
writeReads, 7, 23, 29, 30

	ChIPsim-package
	bindDens2readDens
	decodeQuality
	defaultControl
	defaultErrorProb
	defaultFunctions
	defaultGenerator
	distDens
	extractQuality
	feat2dens
	featureDensity
	FeatureGenerators
	internal
	joinRegion
	makeFeatures
	placeFeatures
	pos2fastq
	readError
	readQualitySample
	readSequence
	reconcileFeatures
	sampleReads
	simChIP
	simpleNames
	writeFASTQ
	writeReads
	Index

