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Introduction to this vignette

This vignette describes how to process Illumina BeadArray gene expression data in its var-
ious formats; raw files produced by the scanning software as well as summarized BeadStu-
dio/GenomeStudio output, and data deposited in a public microarray database. For each file
format we introduce a series of ‘use cases’ in the order in which they might be encountered
by an analyst, and demonstrate how to perform specific tasks on the example datasets using
R code from Bioconductor or base packages. The R code is explained immediately afterwards
and where appropriate we given an interpretation of the resultant output (indicated by the 2�
symbol), and pointers (Z) to how the R code might be adapted to other datasets or use cases.
Where attention must be paid to avoid alarming results, we give warnings indicated by the 

symbol.
It is assumed that the reader has familiarity with basic R data structures and operations such
as plotting and reading text files, therefore explanations of these functions will not be given.

The version of R used to compile this vignette is 4.3.0. The Bioconductor packages required
can be installed by typing the following commands at the R command prompt:

1 > if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

2 > BiocManager :: install(c("beadarray", "limma", "GEOquery",

3 + "illuminaHumanv1.db", "illuminaHumanv2.db", "illuminaHumanv3.db",

4 + "BeadArrayUseCases"))

There are also a few packages that are used to illustrate particular use case, but are not crucial
to the vignette. They can be installed in advance, or as required.

1 > BiocManager :: install(c("GOstats", "GenomicRanges", "Biostrings"))

Introduction to the BeadArray technology

Illumina Inc. (San Diego, CA) are manufacturers of the BeadArray microarray technology,
which can be used in genomic studies to profile transcript expression or methylation status, or
genotype SNPs. The BeadArray platform makes use of 50mer oligonucleotide probes attached
to beads that are randomly assembled and replicated many times on each array. Different
probes are designed to target specific positions (transcripts/SNPs) in the genome. A series of
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Figure 1: Schematic of a WG-6
BeadChip and BeadArray section.
This type of BeadChip is made up
of 12 sections (also referred to as
‘strips’) which are paired to allow
6 samples to be processed in par-
allel per chip. Sections are densely
packed with beads which are ran-
domly assembled on the array sur-
face. Another feature of the tech-
nology is the high degree of replica-
tion of beads assigned a particular
probe sequence (from a possible set
of ∼ 48,000 unique sequences).

decoding hybridizations performed in-house by Illumina determines the identity of each bead
on each array.

A BeadChip comprises of a series of rectangular BeadArray sections on a slide, with each
section (sometimes referred to as a strip) containing many thousands of different probes (see
Figure 1). The naming of a chip is decided by the number of unique hybridizations possible
and the version of the probe annotation. For example, there are six pairs of sections on each
Human WG-6 version 2 BeadChip, and 12 sections, one per sample on a Human HT-12 version
3 BeadChip. The high degree of replication makes robust measurements for each probe possible
and provides the opportunity to detect and correct for spatial artefacts that occur on the array
surface. Illumina’s gene expression arrays also contain many control probes, and one partic-
ular class of these, known as ‘negative’ controls can be used in the analysis to improve inference.

2



Experimental data

We make use of three datasets in this vignette (summarized in Table 1) to illustrate how data
in different formats that have undergone varying degrees of preprocessing can be imported and
analyzed using Bioconductor software.

The first example consists of bead-level data from a series of Human HT-12 version 3 Bead-
Chips hybridized at the Cancer Research UK, Cambridge Research Institute Genomics Core
facility. ‘Bead-level’ refers to the availability of intensity and location information for each
bead on each BeadArray in an experiment. In this dataset, BeadArrays were hybridized with
either Universal Human Reference RNA (UHRR, Stratagene) or Brain Reference RNA (Am-
bion) as used in the MAQC project [1]. Bead-level data for all 12 arrays are included in the file
beadlevelbabfiles.zip which is available as part of the BeadArrayUseCases package. These
data are in the compressed .bab format [2], which can be analysed using the beadarray pack-
age. For one array (4613710052 B) we also provide the uncompressed data including the raw
TIFF image. This allows us to demonstrate the processing options available when pixel level
information is at hand.

The second dataset is the AsuragenMAQC_BeadStudioOutput.zip file from Illumina’s website
http://www.switchtoi.com/datasets.ilmn

This experiment uses a Human WG-6 version 2 BeadChip, and consists of 3 replicates of each
of the UHRR and Brain Reference samples. These data are available at the summary level
as generated by Illumina’s BeadStudio software. The Bioconductor packages lumi, limma and
beadarray can all handle data in this format. For this dataset, we focus on tools available in
the limma package.

The final dataset, which is also at the summary level, is publicly available from the GEO
database (accession GSE5350) and was deposited by the MAQC project [1]. This experiment
included pure UHRR and Brain Reference RNA samples as well as mixtures of these two
samples (the mixture proportions were 75:25 and 25:75) hybridized to Human WG-6 version
1 BeadChips. We retrieve this experiment from the GEO database using the GEOquery package.

The goal of each analysis is to find differentially expressed probes between the two distinct RNA
samples included in each experiment (UHRR and Brain Reference). For the differential ex-
pression analysis, we make use of the linear modelling approach available in the limma package.
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Table 1: Summary of the datasets analyzed in the vignette.
Number of arrays Number of array sections

Dataset Type of data Array Generation UHRR Brain UHRR Brain

1 raw/bead-level HT-12 version 3 6 6 6 6

2 summary (BeadStudio) WG-6 version 2∗ 3 3 6 6

3 summary (GEO) WG-6 version 1 15 15 30 30

∗ Note that these data can not be analyzed at the section-level (raw or bead-level data would
be required for this).

1 Analysis of bead-level and raw data using beadarray

Raw and bead-level data types

Reading raw or bead-level data into R using the beadarray package requires several files produced
by Illumina’s scanning software. We briefly describe these files below.

� text files (required - unless bab files present) - a text file (.txt or .csv) for each section
which stores the position, identity and intensity of each bead. These files are usually
named chipID_section.txt for arrays from BeadChips (e.g. 4613710017_B.txt) and
are required because of the random arrangement of probes on the array surface that is
unique for each BeadArray.

� locs files (optional) - 1 (single channel) or 2 (two-color) for each section on a BeadChip.
These are usually named using the convention chipID_section_channel.locs. The
locs file stores the locations of all beads on the array, including all those that could not
be decoded (beads present on the array, but not in the text files). The locs files are
particularly useful for investigating spatial phenomena on the arrays.

� bab files (optional) - one for each section of a BeadChip. These files contain all of the
information from the text and locs files, stored in a substantially more efficient manner
[2].

� tiff files (optional) - 1 (single channel) or 2 (two-color) for each section on a BeadChip.
These are usually named using the convention chipID_section_channel.tif. For ex-
ample, 4613710017_B_Grn.tif is the Cy3 (green) image for the sample in position B on
BeadChip 4613710017. The Cy5 (red) files end in _Red.tif. We refer to these as the raw
data, as access to these images allows the user to carry out their own image processing,
and provides access to the background intensities (the values stored in the text files have
already been background corrected).

� sdf file (optional) - Illumina’s sample descriptor file (one per BeadChip, e.g.
4613710017.sdf). This file is used to determine the physical properties of a section and
which sections to combine for each sample.

� targets file (recommended) - contains sample information for each array. See the file
targetsHT12.txt for an example.
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� metrics file (optional) - one for each BeadChip (usually named Metrics.txt) which
contains summary information about intensity, the amount of saturation, focus and reg-
istration on the image(s) from each section.


 To obtain the tiff and text files from Illumina’s BeadScan software version 3.1 you will
need to modify the settings.xml file used by the software. For further details see the Scan-
ning Settings section of http://www.compbio.group.cam.ac.uk/Resources/illumina/.
For iScan, the steps are similar, although there is a separate settings file for each platform
(expression, Infinium genotyping, etc).

Quality assessment using scanner metrics

The first view of array quality can be assessed using the metrics calculated by the scanner.
These include the 95th (P95) and 5th (P05) quantiles of all pixel intensities on the image.
A signal-to-noise ratio (SNR) can be calculated as the ratio of these two quantities. These
metrics can be viewed in real-time as the arrays themselves are being scanned. By tracking
these metrics over time, one can potentially halt problematic experiments before they even
reach the analysis stage.

Use Case: Plot the P95:P05 signal-to-noise ratio for the HT-12 arrays in this experiment and
assess whether any samples appear to be outliers that may need to be removed or down-weighted
in further analyses.

1 > ht12metrics <- read.table(system.file("extdata/Chips/Metrics.txt",

2 + package = "BeadArrayUseCases"), sep = "\t", header = TRUE ,

3 + as.is = TRUE)

4 > ht12snr <- ht12metrics$P95Grn/ht12metrics$P05Grn

5 > labs <- paste(ht12metrics[, 2], ht12metrics[, 3], sep = "_")

6 > par(mai = c(1.5, 0.8, 0.3, 0.1))

7 > plot (1:12 , ht12snr , pch = 19, ylab = "P95 / P05", xlab = "",

8 + main = "Signal -to-noise ratio for HT12 data", axes = FALSE ,

9 + frame.plot = TRUE)

10 > axis (2)

11 > axis(1, 1:12, labs , las = 2)

The above code uses standard R functions to obtain the P95 and P05 values from the metrics
file stored in the package. The system.file function is a base function that will locate the
directory where the BeadarrayUseCases package is installed. The plotting commands are just
a suggestion of how the data could be presented and could be adapted to individual circum-
stances.

2� The SNR for these arrays seems to be over 15 in most cases, although there is one excep-
tion that is below 2. Illumina recommend that this ratio be above 10 and in our experience
a value below 2 would be grounds for discarding a sample from further analysis. The P95
value for this sample is typical of what we would expect from a blank array with no RNA
hybridized!

Z Scanner metrics information is equally as useful for sample quality assessment of summa-
rized data.
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Z The P95 and P05 values will fluctuate over time and are dependant upon the scanner
setup. Including SNR values for arrays other than those currently being analysed will give a
better indication of whether any outlier arrays exist.

Data import and storage

The next step in our analysis is to read the data into R using the readIllumina function. The
bead-level data you will need for this example are available in the file beadlevelbabfiles.zip
(133 MB) which is located in the extdata/BeadLevelBabFiles directory of the BeadArrayUse-
Cases package. These files were produced using the BeadDataPackR package in Bioconductor
which provides a more compact representation of bead-level data.

Use Case: Read the sample information and bead-level data (stored in compressed bab format)
into R.

1 > library(beadarray)

2 > chipPath <- system.file("extdata/Chips", package = "BeadArrayUseCases")

3 > list.files(chipPath)

4 > sampleSheetFile <- paste(chipPath , "/sampleSheet.csv",

5 + sep = "")

6 > readLines(sampleSheetFile)

7 > data <- readIllumina(dir = chipPath , sampleSheet = sampleSheetFile ,

8 + useImages = FALSE , illuminaAnnotation = "Humanv3")

Usually the directory will be in a known location, but for convenience we use the system.file
function this directory and the sample sheet. The section names to be read are then constructed
using the contents of the sample sheet.
The final line executes the reading of the data. By default readIllumina will look in the
current working directory and try to find all BeadArray-associated files. The function will
read any text (or .bab) and TIFF files (if instructed to do so) and save the names of any locs
and sdf files for future reference.
Here we have used the dir and sectionNames arguments to specify what directory to look
in and the names of the sections that should be imported. By setting useImages to FALSE,
we use the intensity values stored in the text files, rather than recomputing them from the
images. The argument illuminaAnnotation is a character string to identify the organism and
annotation revision number of the chip being analysed, but not the number of samples on the
chip. Hence the value Humanv3 can be used for both Human WG-6 and HumanHT12 v3 data.
Setting this value correctly will allow beadarray to identify what bead types are to be used for
control purposes and convert the numeric ArrayAddressIDs to a more commonly-used format.
If you are unsure of the correct annotation to use, this argument can be left blank at this stage.

Z If the data to be imported are not in .bab format, specifying the same arguments to
readIllumina will search for files of type .txt instead.


 Use of the sectionNames argument is recommended when the directory containing bead-
level data contains files other than those produced by the Illumina scanner. Extraneous files
in such directories may confuse the readIllumina function.
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 Storing and reading bead-level data requires a considerable amount of disk space and RAM.
For this example, around 1.1 GB of RAM is required to read in and store the data. One
could process bead-level data in smaller batches if memory is limited and then combine at the
summary-level.

Selecting the annotation for a dataset

If you are unsure of the correct annotation to use and thus left the illuminaAnnotation

argument to readIllumina as the default, suggestAnnotation can be employed to identify
the platform, based on the ArrayAddressIDs that are present in the data. The setAnnotation
function can then be used to assign this annotation to the dataset.

Use Case: Verify the version number of the dataset that has been read in and set the annotation
of the bead-level data object accordingly.

1 > suggestAnnotation(data , verbose = TRUE)

2 > annotation(data) <- "Humanv3"

2� You should see that the percentage of overlapping IDs is greatest for the Humanv3 plat-
form.

Z The result of suggestAnnotation only gives guidance about which annotation to use.
Hence, the results may be unpredictable on custom arrays, or arrays that are not listed in
the suggestAnnotation output.

The beadLevelData class

Once imported, bead-level data are stored in an object of class beadLevelData. This class can
handle raw data from both single-channel and two-color BeadArray platforms.

1 > slotNames(data)

The command above gives us an overview of the structure of the beadLevelData class, which
is composed of several slots. The experimentData, sectionData and beadData slots can be
viewed as a hierarchy, with each containing data at a different level. Each can be accessed
using the @ operator.

The experimentData slot holds information that is consistent across the entire dataset. Quan-
tities with one value per array-section are stored in the sectionData slot. For instance, any
metrics information read by readIllumina, along with section names and the total number
of beads, will be stored there. This is also a convenient place to store any QC information
derived during the preprocessing of the data. The data extracted from the individual text files
are stored in the beadData slot.

Accessing data in a beadLevelData object

Use Case: Output the data stored in the sectionData slot, and determine the section names
and number of bead intensities available from each section. Access the intensities, x-coordinates
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and probe IDs for the first 5 beads on the first array section.

1 > data@sectionData

2 > sectionNames(data)

3 > numBeads(data)

4 > head(data [[1]])

5 > getBeadData(data , array = 1, what = "Grn")[1:5]

6 > getBeadData(data , array = 1, what = "GrnX")[1:5]

7 > getBeadData(data , array = 1, what = "ProbeID")[1:5]

Using the @ operator to access the data in particular slots is not particularly convenient or
intuitive. The functions sectionNames, numBeads and getBeadData provide more convenient
interfaces to the beadLevelData object to retrieve specific information.
The first line above uses the @ operator to access all the data in the sectionData slot, which
can be quite large and unwieldy. The commands below it (lines 2-3) are accessor functions for
retrieving a specific subset of data from the same slot.

Line 4 shows that if a beadLevelData object is accessed in the same fashion as a list, a data
frame containing the bead-level data for the specified array is returned. To access a specific
entry in this data frame, we can use a further subset, or the data can be accessed using the
getBeadData function. In addition to the beadLevelData object, you need to specify the section
(array=...) of interest and the column heading you want.

Extracting transformed data

In this example, the data stored in the beadLevelData object by readIllumina are extracted
directly from the Illumina text files. The values in the Grn vector are intensity values inferred
from a known location in the scanned image and there are a number of steps involved before
these can be translated into quantities that relate to the expression levels. The scanner gener-
ally produces values in the range 0 to 216−1, although the image manipulation and background
subtraction steps can lead to values outside this range. This is not a convenient scale for visual-
ization and analysis and it is common to convert intensities onto the approximate range 0 to 16
using a log2 transformation (possibly after an additional step to adjust non-positive intensities).

Although this is simple to do in isolation using R’s built in functions, it becomes more com-
plicated within a function, leading to a large number of arguments being required in order to
specify whether the function should process the green or red channel, use foreground or back-
ground intensities, convert to the log2 scale etc. Even in this situation the user is restricted to
the options that are provided by the arguments.

A more flexible way to obtain transformed per-bead data from a beadLevelData object is to
define a transformation function that takes as arguments the beadLevelData object and an
array index. The function then manipulates the data in the desired manner and returns a
vector the same length as the number of beads on the array. Many of the plotting and quality
assessment functions within beadarray take such a function as one of their arguments. By
using such a system, beadarray provides a great deal of flexibility over exactly how the data is
analysed.
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Use Case: Extract the green intensities on the log2 scale for the first 10 probes from the first
array section.

1 > log2(data [[1]][1:10 , "Grn"])

2 > log2(getBeadData(data , array = 1, what = "Grn")[1:10])

3 > logGreenChannelTransform(data , array = 1)[1:10]

The above example shows three different ways of obtaining the log green channel intensity data.
Lines 1 and 2 use R’s log2 function on data extracted using the methods we’ve already seen.
The third entry uses one of beadarray’s built in transformation functions. To view an example
of how a transformation function is defined you can enter the name of one of beadarray’s
pre-defined functions without any parentheses or arguments.

1 > logGreenChannelTransform

function (BLData , array)

{

x = getBeadData(BLData , array = array , what = "Grn")

return(log2.na(x))

}

<bytecode: 0x564ea2c6a4c8 >

<environment: namespace:beadarray >

Z In addition to the logGreenChannelTransform function shown above, beadarray provides
predefined functions for extracting the green intensities on the unlogged scale
(greenChannelTransform), analogous functions for two-channel data
(logRedChannelTransform, redChannelTransform), and functions for computing the log-
ratio between channels (logRatioTransform).

Analysis of raw data when the images are available

The bead-level expression intensity values that Illumina’s software provides (i.e. those stored
in the .txt or .bab files) are the result of a certain amount of preprocessing and so are not
strictly the raw data. In most situations, these values are sufficient for our use, but we may
on occasion wish to begin from the image file, either to reassure ourselves that there are no
concerns or to address a problem that has become manifest.
It is important then that we understand what preprocessing steps Illumina apply by default.
These are well-documented elsewhere, but to summarize: a local background value is calculated
by taking the mean of the five lowest intensity pixels from a square around the bead. A filter is
then applied to the image (to concentrate the intensities in the centre of beads) and foreground
values are calculated as a weighted sum of the intensities in a 4 × 4 square around the bead
centre. It is worth noting that the filter applied to the image, a sharpening filter, contrasts
the value of a pixel with the pixels surrounding it, and as such itself could be viewed as a
background correction step. The final intensity for a bead is then calculated as the foreground
value minus the local background value.
By starting from the image we can adjust any of these steps (e.g. for the background we can
adjust the size of the area around the bead or the function applied to it, for the foreground we
can change the filtering step or adjust the pixel weighting scheme, or finally we can use a more
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sophisticated measure of intensity than ‘foreground minus local background’ to avoid negative
values. beadarray includes three functions that closely mirror the processing performed by
Illumina: illuminaBackground, illuminaSharpen and illuminaForeground.
We will illustrate a change to the Illumina process that we recommend if beginning from the
image.

Use Case: Identify abnormally low intensity pixels and then plot a section of the image that illus-
trates the benefit of adjusting the standard analysis.

1 > TIFF <- readTIFF(system.file("extdata/FullData/4613710052_B_Grn.tif",

2 + package = "BeadArrayUseCases"))

3 > cbind(col(TIFF)[which(TIFF == 0)], row(TIFF)[which(TIFF ==

4 + 0)])

5 > xcoords <- getBeadData(data , array = 2, what = "GrnX")

6 > ycoords <- getBeadData(data , array = 2, what = "GrnY")

7 > par(mfrow = c(1, 3))

8 > offset <- 1

9 > plotTIFF(TIFF + offset , c(1517, 1527), c(5507, 5517),

10 + values = T, textCol = "yellow", main = expression(log [2]( intensity +

11 + 1)))

12 > points(xcoords [503155] , ycoords [503155] , pch = 16, col = "red")

13 > plotTIFF(TIFF + offset , c(1202, 1212), c(13576 , 13586) ,

14 + values = T, textCol = "yellow", main = expression(log [2]( intensity +

15 + 1)))

16 > points(xcoords [625712] , ycoords [625712] , pch = 16, col = "red")

17 > plotTIFF(TIFF + offset , c(1613, 1623), c(9219, 9229),

18 + values = T, textCol = "yellow", main = expression(log [2]( intensity +

19 + 1)))

20 > points(xcoords [767154] , ycoords [767154] , pch = 16, col = "red")

2� There are three pixels of value zero in the image that must be an imaging artefact rather
than a true measure of intensity for that location (note that we add an offset of 1 to avoid
taking the log of zero). These pixels will bias the estimate of background for all nearby beads
and so we will try a more robust estimate of the background. Rather than using the mean
of the five lowest pixel values, we will use the median (equivalently, the third lowest pixel
value). This is done using the medianBackground function.

Use Case: Calculate a robust measure of background for this array and store it in a new slot
”GrnRB”.

1 > Brob <- medianBackground(TIFF , cbind(xcoords , ycoords ))

2 > data <- insertBeadData(data , array = 2, what = "GrnRB",

3 + Brob)

The medianBackground function takes two arguments, the first of which is the image itself and
the second is a two-column data frame specifying the bead-centre coordinates. We then use
insertBeadData to add the new values to the existing beadLevelData object.

Because the presence of extremely low intensity beads is a known issue, the authors have
provided the medianBackground function within beadarray to perform an alternative local
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background correction. However the same methodology can be used to perform the image
processing in any way the user sees fit.

Use Case: Calculate foreground values in the normal way, and subtract the median background
values to get locally background corrected intensities.

1 > TIFF2 <- illuminaSharpen(TIFF)

2 > IllF <- illuminaForeground(TIFF2 , cbind(xcoords , ycoords ))

3 > data <- insertBeadData(data , array = 2, what = "GrnF",

4 + IllF)

5 > data <- backgroundCorrectSingleSection(data , array = 2,

6 + fg = "GrnF", bg = "GrnRB", newName = "GrnR")

We could have chosen a more sophisticated background correction method (approximately a
hundred beads end up with a negative intensity using a crude subtraction) but this suffices
to illustrate the point. The majority of the beads have an intensity that barely changes, and
those that do we can attribute to the effect of these problematic pixels.

Use Case: Compare the Illumina intensity with the robust intensity we have just calculated, plot
the locations of beads whose expressions change substantially, and overlay the locations of the
implausibly low-intensity pixels in red.

1 > oldG <- getBeadData(data , array = 2, "Grn")

2 > newG <- getBeadData(data , array = 2, "GrnR")

3 > summary(oldG - newG)

4 > par(mfrow = c(1, 2))

5 > plot(xcoords [(abs(oldG - newG) > 50)], ycoords [(abs(oldG -

6 + newG) > 50)], pch = 16, xlab = "X", ylab = "Y", main = "entire array")

7 > points(col(TIFF)[TIFF < 400], row(TIFF)[TIFF < 400],

8 + col = "red", pch = 16)

9 > plot(xcoords [(abs(oldG - newG) > 50)], ycoords [(abs(oldG -

10 + newG) > 50)], pch = 16, xlim = c(1145, 1180) , ylim = c(15500 ,

11 + 15580) , xlab = "X", ylab = "Y", main = "zoomed in")

12 > points(col(TIFF)[TIFF < 400], row(TIFF)[TIFF < 400],

13 + col = "red", pch = 16)

Of course, in practice we would probably save the new intensities in the Grn column of a section
in the beadData slot so as not to use more memory than necessary, nor to cause confusion later
on.

The image file may also be of value for the purposes of quality control and assessment. In
particular, by plotting the recorded co-ordinates of the bead centres over the TIFF image,
we can visually check that the image has been correctly registered, however there are other
approaches to checking this as will be seen in the next section.
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Quality assessment for raw and bead-level data

Boxplots of intensity values

Boxplots are routinely used to assess the dynamic range of each sample and look for unusual
signal distributions.

Use Case: Create boxplots of the green channel intensities for all arrays.

1 > boxplot(data , transFun = logGreenChannelTransform , col = "green",

2 + ylab = expression(log [2]( intensity)), las = 2, outline = FALSE ,

3 + main = "HT -12 MAQC data")

The boxplot function is a standard function in R that we have extended to work for the
beadLevelData class. Consequently, the standard parameters to boxplot, such as changing
the title of the plot, scale and axis labels are possible, some of which are shown in the final
five arguments above. The help page for the par function provides information on these and
other arguments that can be supplied to boxplot. The only beadarray specific argument is the
second, transFun, which takes a transformation function of the format shown previously. In
this case we have selected to use the log2 of the green channel, which is also the default.

2� Most arrays have a similar distribution of intensities with a median value of around 5.7.
Array 4616443081 B has a lower median and IQR than other arrays and 4616443081 H has
a higher median and IQR. Further quality assessment will focus on these arrays and whether
they should be excluded from the analysis.

Visualizing intensities across an array surface

The combination of both an intensity and a location for each bead on the array allows us to
visualize how the intensities change across the array surface. This kind of visualization is not
possible when using the summarized output, as the summary values are averaged over spatial
positions. The imageplot function can be used to create false color representations of the
array surface.

Use Case: Produce a graphic with imageplots of all arrays in the dataset, with each image on
the same scale.

1 > par(mfrow = c(6, 2))

2 > par(mar = c(1, 1, 1, 1))

3 > for (i in 1:12) {

4 + imageplot(data , array = i, high = "darkgreen", low = "lightgreen",

5 + zlim = c(4, 10), main = sectionNames(data)[i])

6 + }

The imageplot function has a number of arguments; the first two shown above are the object
containing the data to be visualized and the index of the desired array. The high and low

arguments specify the colors representing the extreme values. The function automatically
interpolates the colors for values in between. The use here of zlim ensures that the color
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range is the same between arrays. Any value that falls outside this range will be shown in the
same color as these limits. This is beneficial for making comparisons between arrays, and can
prevent minor variations, on otherwise perfectly acceptable arrays, from being exaggerated.
By contrast, we need to be cautious that the use of zlim may be detrimental if the same limits
are not appropriate for each array, which could lead to some spatial artefacts being overlooked.
This is especially the case for our example, since these arrays have not been normalized.

2� White patches on the imageplot are due to beads that could not be (or were not) decoded
for the end-user by Illumina. As each array is randomly constructed, decoding takes place
at Illumina before the BeadChips are supplied, in order to identify the sequence attached to
each bead. Beads that could not be decoded are not present in the bead-level text files (nor
do they contribute to Illumina’s summary data). Hence their intensities are not available
for display on the imageplot. You should notice obvious spatial artefacts on arrays 8 and 12
(4616443081 H and 4616494005 A).

Plotting the location of outliers

Recall that the BeadArray technology includes many replicates (typically ∼ 20 of each probe
type in each sample on an HT-12 array). BeadStudio/GenomeStudio removes outliers greater
than 3 median absolute deviations (MADs) from the median prior to calculating summary
values.

Use Case: Plot the location of outliers on the arrays with the most obvious spatial artefacts and
plot their location.

1 > par(mfrow = c(2, 1))

2 > for (i in c(8, 12)) {

3 + outlierplot(data , array = i, main = paste(sectionNames(data)[i],

4 + "outliers"))

5 + }

By default, the outlierplot function uses Illumina’s ‘three MADs from the median’ rule,
but applied to log-transformed data. It then plots the identified outliers by their location
on the surface of the array section. Of course, the user can specify alternative rules and
transformations and the function is additionally able to accept arguments to plot such as
main.

2� In this example, the regions of the arrays that appear to be spatial artefacts are also flagged
as outliers, which would be removed before creating summarized values for each probe as re-
ported in BeadStudio/GenomeStudio. Blue points represent outliers which are below aver-
age, while pink points are outliers above the average (these colors can be set by the user -
refer to the outlierplot help page for details).
The dotted red lines running vertically indicate the segment boundaries, with each Humanv3

section made up of 9 segments that are physically separated on the section surface. The lo-
cations of these segments are taken from an sdf file, or can be specified manually if the sdf
file is not available.
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Excluding beads affected by spatial artefacts

It should be apparent that some arrays in this dataset have significant artefacts and, although
it appears that most beads in these regions are classed as outliers, it would be desirable to
mask all beads from these areas from further analysis. Our preferred method for doing this is
to use BASH [3], which takes local spatial information into account when determining outliers,
and uses replicates within an array to calculate residuals.

BASH performs three types of artefact detection in the style of the affymetrix-oriented Harsh-
light [4] package: Compact analysis identifies large clusters of outliers, where each outlying
bead must be an immediate neighbour of another outlier; Diffuse analysis finds regions that
contain more outliers than would be anticipated by chance, and Extended analysis looks for
chip-wide variation, such as a consistent gradient effect.

The output of BASH is a list containing a variety of data, including a list of weights indicat-
ing the beads that BASH has identified as problematic. These weights may be saved to the
beadLevelData object for future reference by using the setWeights function. The locations of
the masked beads can be visualized using the showArrayMask function.

Use Case: Run BASH on the two arrays identified previously to have the most serious spatial
artefacts, mask the affected beads and visualize the regions that have been excluded. How many
beads does BASH mask on the two arrays?

1 > BASHoutput <- BASH(data , array = c(8, 12))

2 > data <- setWeights(data , wts = BASHoutput$wts , array = c(8,

3 + 12))

4 > head(data [[8]])

5 > par(mfrow = c(1, 2))

6 > for (i in c(8, 12)) {

7 + showArrayMask(data , array = i, override = TRUE)

8 + }

9 > table(getBeadData(data , what = "wts", array = 8))

10 > table(getBeadData(data , what = "wts", array = 12))

11 > BASHoutput$QC

Line 1 calls the BASH function, with the array argument specifying that it should be run on
arrays 8 and 12. If this argument was not specified the default behaviour is to process each
array. As mentioned above, the output from BASH is a list with several entries. The $wts entry
is a further list, where each entry is a vector of weights (one value per-bead) with 0 indicating
a that a bead should be masked.

We then use the setWeights function to assign these weights to our beadLevelData object.
Line 4 shows how the setWeights function has added an additional column to the specified
array in the beadLevelData object.

Finally we call showArrayMask, which creates a plot similar to outlierplot mentioned earlier.
In addition to displaying the beads classed as outliers, showArrayMask shows in red the beads
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that are currently masked from further analysis. By default the function refuses to create the
plot if over 200,000 beads have been masked, as this can cause considerable slowdown on older
computers, so the override argument has been used in this example to force the plot creation.
Finally, we can use the getBeadData function to see how many beads were assigned a weight
of 0 (i.e. completely masked) on the arrays. The numbers can also retrieved from the QC
information that BASH returns.

2� You should see that the setWeights has added an extra wts column into the beadLevel-
Data object. The positions of the masked beads are indicated in red in the result of showAr-
rayMask and should agree well with the outlier locations, however BASH should have identi-
fied more beads than straightforward outlier removal may have missed.


 Running BASH for this example uses around 2.2 GB of RAM and takes 10 minutes per
sample on our computer system. If you are running short on time, you may wish to skip this
exercise.

Z The different components of BASH to find compact or diffuse defects plus the extended
score analysis can be run separately; see the BASHCompact, BASHExtended and BASHExtended

functions.

Z Try running the BASHExtended function for some of the other arrays in this dataset. e.g.

BASHExtended(data, array=1)

You should see extended scores of around 0.1.

Removing intensity gradients

The Extended score returned by BASH in the previous use case gives an indication of the level of
variability across the entire surface of the chip. If this value is large it may indicate a significant
gradient effect in the intensities. The HULK function can be used to smooth out any gradients
that are present.
HULK uses information about neighbouring beads, but rather than mask them out as in BASH,
it adjusts the log-intensities by the weighted average of residual values within a local neigh-
bourhood.

Use Case: Run HULK on the first array, and replace the original intensities with the gradient ad-
justed values.

1 > HULKoutput <- HULK(data , array = 1, transFun = logGreenChannelTransform)

2 > data <- insertBeadData(data , array = 1, data = HULKoutput ,

3 + what = "GrnHulk")

Similar to BASH, the primary argument to HULK is a beadLevelData object. It also takes a
transformation function, allowing the intensity adjustment to be performed on any data stored
within the object.
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 Typically, we would run BASH followed by HULK on a dataset. However, the order in
which one does BASH and HULK could be a topic for research. In cases of severe gradients
across the array, you might get a lot of beads masked at one edge of the array. However, if
HULK were run first these beads might be saved.

Checking image registration

Tools such as BASH and HULK are of no use if the process of generating the image and finding
beads as the array is scanned (known as ‘registration’) fails. We have previously encountered
arrays where the position of the beads within the image was not found correctly [5], resulting
in the identity of all beads being scrambled. The function checkRegistration can be used to
identify chips where such mis-registration may have taken place.


 This functionality is only available in beadarray version 2.3.0 or newer

1 > registrationScores <- checkRegistration(data , array = c(1,

2 + 7))

3 > boxplot(registrationScores , plotP95 = TRUE)

The checkRegistration function takes a beadLevelData object as it’s primary argument, along
with the indices of the array sections that should be checked. The output from checkRegis-

tration is an object of class beadRegistrationData. We have extended the standard boxplot

function to accept this class, providing an easy way to visualise the registration scores.

2� The registration scores are generated by looking at the the difference between the within
bead-type variance for the given bead IDs and a randomised set of IDs. If the registration
has been sucessful you expect this value to be greater than zero. Any section where the me-
dian registration score is close to zero is of concern. There are two reasons why a median
value of zero may be seen, either then array was misregistered or there are no beads present
in the image. The plotP95 argument shown above allows these cases to be distinguished.

Plotting control probes

Illumina have designed a number of control probes for each BeadArray platform. Two partic-
ular controls on expression arrays are housekeeping and biotin controls, which are expected to
be highly expressed in any sample. With the poscontPlot function, we can plot the intensities
of any ArrayAddressIDs that are annotated as belonging to the Housekeeping or Biotin control
groups.

Use Case: Generate plots of the housekeeping and biotin controls for the 6th, 7th, 8th and 12th
arrays from this dataset.

1 > par(mfrow = c(2, 2))

2 > for (i in c(6, 7, 8, 12)) {

3 + poscontPlot(data , array = i, main = paste(sectionNames(data)[i],

4 + "Positive Controls"), ylim = c(4, 15))

5 + }
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4616443081_B Positive Controls
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4616443081_H Positive Controls
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4616494005_A Positive Controls

lo
g2

 in
te

ns
ity

4
10

14
30

23
9

29
40

40
3

44
90

16
1

59
00

11
0

65
10

13
6

Provided the annotation of the beadLevelData object has been correctly set, the poscontPlot
function should be able to identify the revelant probes and intensities. This code generates
positive controls plots for four arrays in the dataset; one good quality array and three that we
have noted problems with.

2� For the good quality array, the control probes are highly-expressed as expected. For the
array with poor scanner metrics, all the housekeeping beads are lowly expressed but the Bi-
otin controls are highly-expressed, indicating successful staining, but unsuccessful hybridiza-
tion. For the arrays with severe artefacts, 4616443081 H has a large spread of values for the
control probes, indicating that much of the array is affected by the artefact. On the other
hand, 4616494005 A shows high expression of the control probes, giving hope that this array
can be used in further analysis.
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Producing control tables

With knowledge of which ArrayAddressIDs match different control types, we can easily provide
summaries of these control types on each array. In quickSummary the mean and standard
deviation of all control types is calculated for a specified array, using intensities of all beads that
correspond to the different control types. Note that these summaries may not correspond to
similar quantities reported in Illumina’s BeadStudio/GenomeStudio software, as the summaries
are produced after removing outliers. The makeQCTable function extends this functionality to
produce a table of summaries for all sections in the beadLevelData object. These data can
be stored in the sectionData slot for future reference. It is also informative to compare the
expression level of various control types to the background level of the array. This is done by
the controlProbeDetection function that returns the percentage of each control type that
are significantly expressed above background level. For positive controls we would prefer this
to be near 100% on a good quality array.

Use Case: Summarize the control intensities for the first array, then tabulate the mean and stan-
dard deviation of all control probes on every array.

1 > quickSummary(data , array = 1)

2 > qcReport <- makeQCTable(data)

3 > head(qcReport)[, 1:5]

The above code generates a quality control summary for a single array (Line 1), then for all
arrays in the beadLevelData object using the makeQCTable function.

2� You should notice that the housekeeping controls are lower for array 7, as we have noted
in previous quality assessments.

Saving control tables to a bead-level object

The insertSectionData function allows the user to modify the sectionData slot of a
beadLevelData object. We can use this functionality to store any quality control (QC) values
that we have computed.

Use Case: Store the computed QC values into the bead-level data object.

1 > data <- insertSectionData(data , what = "BeadLevelQC",

2 + data = qcReport)

3 > names(data@sectionData)

The insertSectionData function requires a data frame with the same number of rows as the
number of sections in the beadLevelData object. The what parameter is used to assign a name
to the data in the sectionData slot.

Z You could also save the QC table to disk using the write.csv function (or similar).

Defining additional control probes

beadarray allows flexibility in the way that control reports are generated. For instance, users
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are able to define their own control reporters. We have observed that certain probes located
on the Y chromosome are beneficial in discriminating the gender of samples in a population.
Below we provide an example of how these probes can be incorporated into a QC report. This
utilizes the fact that internally, beadarray uses a very simple matrix to assign ArrayAddressIDs
to control types.

1 > cprof <- makeControlProfile("Humanv3")

2 > sexprof <- data.frame(ArrayAddress = c("5270068", "1400139",

3 + "6860102"), Tag = rep("Gender", 3))

4 > cprof <- rbind(cprof , sexprof)

5 > makeQCTable(data , controlProfile = cprof)

Line 1 obtains the control information currently in use for the Humanv3 platform. We then
create a new data frame with three rows, each representing a probe from chromosome Y, and
row-bind this to the Humanv3 control object. The makeQCTable is able to accept the new
object as an argument, rather than using the default Humanv3 profile.

Generating QC reports

The generation of quality assessment plots for all sections in the beadLevelData object is pro-
vided by the expressionQCPipeline function. Results are generated in a directory of the
users choosing. This report may be generated at any point of the analysis. If the overWrite

paramater is set to FALSE, then any existing plots in the directory will not be re-generated.
Futhermore, QC tables that have been stored in the beadLevelData object already can be used.

Use Case: Generate a QC report for all arrays.

1 > expressionQCPipeline(data)

The above code runs the QC pipeline with the default options. However, many aspects of the
expressionQCPipeline function are configurable, such as the transformation function applied
to the data, or the identities of the controls.


 The expressionQCPipeline function will attempt to create graphics and HTML files in
the specified directory, so it is important that this directory is writable by the user.

Summarizing the data

The summarization procedure takes the beadLevelData object, where each probe is replicated
a varying number of times on each array, and produces a summarized object which is more
amenable for making comparisons between arrays. For each array section represented in the
beadLevelData object, all observations are extracted, transformed, and then grouped together
according to their ArrayAddressID. Outliers are removed and the mean and standard deviation
of the remaining beads are calculated.

There are many possible choices for the extraction, transformation and choice of summary
statistics and beadarray allows users to experiment with different options via the definition
of an illuminaChannel class. For expression data, the green intensities will be the quantities
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to be summarised. However, the illuminaChannel class is designed to cope with two-channel
data where the green or red (or some combination of the two) may be required with minimal
changes to the code. The summarize function is used to produce summary-level data and has
the default setting of performing a log2 transformation.

Use Case: Generate summary-level data for this dataset on the log2 and unlogged scale.

1 > datasumm <- summarize(BLData = data)

2 > grnchannel.unlogged <- new("illuminaChannel", transFun = greenChannelTransform ,

3 + outlierFun = illuminaOutlierMethod , exprFun = function(x) mean(x,

4 + na.rm = TRUE), varFun = function(x) sd(x, na.rm = TRUE),

5 + channelName = "G")

6 > datasumm.unlogged <- summarize(BLData = data , useSampleFac = FALSE ,

7 + channelList = list(grnchannel.unlogged ))

Line 1 uses the default settings of summarize to produce summary-level data. Line 2 shows the
full gory details of how to modify how the bead-level data are summarized by the creation of an
illuminaChannel object. We use a transformation function that just returns the Grn intensities,
Illumina’s default outlier function and modified mean and standard deviation functions that
remove NA values. This new channel definiton is then passed to summarize. In this call we also
explicitly set the useSampleFac argument to FALSE. The useSampleFac parameter should be
used in cases where multiple sections for the same biological sample are to be combined, which
is not applicable in this case.

2� summarize produces verbose output which firstly gives details on how many sections are
to be combined (none in this case) and how many ArrayAddressIDs are to be summarized.
Notice that we summarize all arrays in beadLevelData object, even though we may not use
the poor quality arrays in the analysis. This is just for convenience as each array is summa-
rized independently (so there is no way of the data from a poor quality array to contaminate
the data from other arrays) and it is simpler to remove outlier arrays from the summarized
objects.

Z For WG-6 arrays, which have two sections per biological sample, BeadStudio combines
the two sections together prior to calculating means and standard deviations. It is possible
to mimic this behaviour by setting the useSampleFac = TRUE argument in summarize. This
either uses information from the sdf file (if present) or the value of the sampleFac argument.
However, we recommend summarizing each section separately.

Z If we wanted to have the un-logged and log2 intensities in the same summary object, we
could have used supplied both channels in a list as an argument to summarize.

datasumm.all <- summarize(data, list(grnchannel, grnchannel.unlogged),

useSampleFac=FALSE)

Z During the summarization process, the numeric ArrayAddressIDs used in the beadLevel-
Data object are converted to the more commonly-used Illumina IDs. However, control probes
retain their original ArrayAddressIDs and any IDs that cannot be converted (e.g. internal
controls used by Illumina for which no annotation exists) are removed unless
removeUnMappedProbes = TRUE is specified.
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The ExpressionSetIllumina class

Summarized data are stored in an object of type ExpressionSetIllumina which is an extension
of the ExpressionSet class developed by the Bioconductor team as a container for data from
high-throughput assays.

Objects of this type use a series of slots to store the data. For consistency with the definition
of other ExpressionSet objects, we refer to the expression values as the exprs matrix (this
stores the probe-specific average intensities) which can be accessed using exprs and subset in
the usual manner. The se.exprs matrix, which stores the probe-specific variability can be
accessed using se.exprs, and phenotypic data for the experiment can be accessed using pData.
To accommodate the unique features of Illumina data we have added an nObservations slot,
which gives the number of beads that we used to create the summary values for each probe
on each array after outlier removal. The detection score, or detection p-value is a standard
measure for Illumina expression experiments, and can be viewed as an empirical estimate of the
p-value for the null hypothesis that a particular probe in not expressed (for a more complete
definition, refer to section 2). These can be calculated for summarized data provided that the
identity of the negative controls on the array is known using the function calculateDetection.

Use Case: Produce boxplots of the summarized data and calculate detection scores.

1 > dim(datasumm)

2 > exprs(datasumm )[1:10 , 1:2]

3 > se.exprs(datasumm )[1:10 , 1:2]

4 > par(mai = c(1.5, 1, 0.2, 0.1), mfrow = c(1, 2))

5 > boxplot(exprs(datasumm), ylab = expression(log [2]( intensity)),

6 + las = 2, outline = FALSE)

7 > boxplot(nObservations(datasumm), ylab = "number of beads",

8 + las = 2, outline = FALSE)

9 > det <- calculateDetection(datasumm)

10 > head(det)

11 > Detection(datasumm) <- det

The dim function has been extended to report the key dimensions of the data, namely the
number of probes and samples. The expression matrix and associated probe-specific variability
are returned by lines 2 and 3 (However, see the note below about the se.exprs function)
The calculateDetection function uses the annotation information stored in the Expression-
SetIllumina object to identify the negative control and do the detection calculation, giving a
detection value for each probe on each array.

2� The dimensions should be reported as 49,576 Features (probes) and 12 samples and 1
channel. The boxplot of the expression matrix should agree with your observations from the
bead-level data. The boxplot showing the distribution of bead numbers used in the calcula-
tion of the summary values for each array can reveal arrays with significant spatial artefacts
(arrays 8 and 12 in this case).


 Pay attention to the scale on the y-axis. The median level of expression should be some-
where around 5 to 6 with the lowest values around 4. If the median level is around 2 to 3 you
may have logged the data twice.
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 The se.exprs function has been named to be consistent with existing Bioconductor func-
tions. However, it may not always return standard errors as its name suggests. The data re-
turned will depend on the definition of the illuminaChannel class. In the example above, the
line

>se.exprs(datasumm)[1:10,1:2]

returns standard deviations, which must be divided by the sqrt of the nObservations values
to report standard errors.

Z calculateDetection assumes that the information about the negative controls is found
in a particular part of the ExpressionSetIllumina object, and takes the form of a vector of
characters indicating whether each probe in the data is a control or not. This vector can be
supplied as the status argument along with an identifier for the negative controls
(negativeLabel).

Concluding remarks

So far we have looked at the kinds of low-level analysis that are possible when you have access
to the raw and bead-level data. Once quality assessment is complete and the probe intensities
have been summarized, one can continue down the usual analysis path of normalizing between
samples, and assessing differential expression using limma or other Bioconductor tools. We will
leave this task for now and revisit it later.
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2 Analysis of summary data from BeadStudio/GenomeStudio using
limma

BeadStudio/GenomeStudio is Illumina’s proprietary software for analyzing data output by the
scanning system (BeadScan/iScan). It contains different modules for analyzing data from dif-
ferent platforms. For further information on the software and how to export summarized data,
refer to the user’s manual. In this section we consider how to read in and analyze output from
the gene expression module of BeadStudio/GenomeStudio.

The example dataset used in this section consists of an experiment with one Human WG-6
version 2 BeadChip. These arrays were hybridized with the control RNA samples used in the
MAQC project (3 replicates of UHRR and 3 replicates of Brain Reference RNA).
The non-normalized data for regular and control probes was output by BeadStudio/GenomeS-
tudio.
The example BeadStudio output used in this section is available in the file
AsuragenMAQC_BeadStudioOutput.zip which can be downloaded from
tt http://www.switchtoi.com/datasets.ilmn.
You will need to download and unzip the contents of this file to the current R working directory.
Inside this zip file you will find several files including summarized, non-normalized data and a
file containing control information. We give a more detailed description of each of the particular
files we will make use of below.

� Sample probe profile (AsuragenMAQC-probe-raw.txt) (required) - text file which contains
the non-normalized summary values as output by BeadStudio. Inside the file is a data
matrix with some 48,000 rows. In newer versions of the software, these data are preceded
by several lines of header information. Each row is a different probe in the experiment
and the columns give different measurements for the gene. For each array, we record
the summarized expression level (AVG Signal), standard error of the bead replicates
(BEAD STDERR), number of beads (Avg NBEADS) and a detection p-value (Detection
Pval) which estimates the probability of a gene being detected above the background level.
When exporting this file from BeadStudio, the user is able to choose which columns to
export.

� Control probe profile (AsuragenMAQC-controls.txt) (recommended) - text file which
contains the summarized data for each of the controls on each array, which may be
useful for diagnostic and calibration purposes. Refer to the Illumina documentation for
information on what each control measures.

� targets file (optional) - text file created by the user specifying which sample is hybridized
to each array. No such file is provided for this dataset, however we can extract sample
annotation information from the column headings in the sample probe profile.

Files with normalized intensities (those with avg in the name), as well as files with one inten-
sity value per gene (files with gene in the name) instead of separate intensities for different
probes targeting the same transcript, are also available in this download. We recommend users
work with the non-normalized probe-specific data in their analysis where possible. Illumina’s
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background correction step, which subtracts the intensities of the negative control probes from
the intensities of the regular probes, should also be avoided.

Use Case: Read the example files using the read.ilmn function. Work out how many different
classes of probes are present on these Human arrays.

1 > library(limma)

2 > maqc <- read.ilmn(files = "AsuragenMAQC -probe -raw.txt",

3 + ctrlfiles = "AsuragenMAQC -controls.txt", probeid = "ProbeID",

4 + annotation = "TargetID", other.columns = c("Detection Pval",

5 + "Avg_NBEADS"))

6 > dim(maqc)

7 > maqc$targets

8 > maqc$E[1:5, ]

9 > table(maqc$genes$Status)

The files argument is the only compulsory argument in read.ilmn. The directory where the
probe profile or control files is located can be specified using the path and ctrlpath arguments
respectively.

2� The intensities are stored in an object of class EListRaw defined in the limma package.
The dimensions of this object should be 50,127 rows and 6 columns; in other words, there
are 50,127 probes and 6 arrays. Each row in the object has an associated status which deter-
mines if the intensities in the row are for a control probe, or a regular probe that we might
want to use in an analysis. The maqc$targets data frame indicates the biological samples
hybridized to each array.

Preprocessing, quality assessment and filtering

The controls available on the Illumina platform can be used in the analysis to improve inference.
As we have already seen in section 1, positive controls can be used to identify suspect arrays.
Negative control probes, which measure background signal on each array, can be used to assess
the proportion of expressed probes that are present in a given sample [6]. The propexpr

function estimates the proportion of expressed probes by comparing the empirical intensity
distribution of the negative control probes with that of the regular probes. A mixture model
is fitted to the data from each array to infer the intensity distribution of expressed probes and
estimate the expressed proportion.

Use Case: Estimate the proportion of probes which are expressed above the level of the negative
controls on the MAQC samples using the propexpr function. Do you notice a difference between
the expressed proportions in the UHRR and Brain Reference RNA samples?

1 > proportion <- propexpr(maqc)

2 > proportion

3 > t.test(proportion [1:3], proportion [4:6])

Z Systematic differences exist between different BeadChip versions, so these proportions
should only be compared within a given platform type [6]. This estimator has a variety of
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applications. It can be used to distinguish heterogeneous or mixed cell samples from pure
samples and to provide a measure of transcriptome size.

2� The UHRR and Brain Reference samples used in this experiment have a similar propor-
tion of expressed probes.

Background correction and normalization

A second use for the negative controls is in the background correction and normalization of
the data [7]. The normal-exponential convolution model has proven useful in background
correction of both Affymetrix [8] and two-color data [9]. Having a well-behaved set of negative
controls simplifies the parameter estimation process for background parameters in this model.
Applying this approach to Illumina gene expression data has been shown to offer improved
results in terms of bias-variance trade-off and reduced false positives [7]. The neqc function
[7] in limma fits such a convolution model to the intensities from each sample, before quantile
normalizing and log2 transforming the data to standardize the signal between samples.

Use Case: Apply the neqc function to calibrate the background level, normalize and transform
the intensities from each sample. Make boxplots of the regular probes and negative control probes
before normalization and the regular probes after normalization and assess whether the neqc pro-
cedure improves the consistency between different samples.

1 > maqc.norm <- neqc(maqc)

2 > dim(maqc.norm)

3 > par(mfrow = c(3, 1))

4 > boxplot(log2(maqc$E[maqc$genes$Status == "regular", ]),

5 + range = 0, las = 2, xlab = "", ylab = expression(log [2]( intensity)),

6 + main = "Regular probes")

7 > boxplot(log2(maqc$E[maqc$genes$Status == "NEGATIVE",

8 + ]), range = 0, las = 2, xlab = "", ylab = expression(log [2]( intensity)),

9 + main = "Negative control probes")

10 > boxplot(maqc.norm$E, range = 0, ylab = expression(log [2]( intensity)),

11 + las = 2, xlab = "", main = "Regular probes , NEQC normalized")

2� The neqc preprocessed intensities are stored in an EList object in which the control probes
have been removed, leaving us with 48,701 regular probes. In this dataset, the intensities are
fairly consistent to begin with, so calibration, normalization and transformation with neqc

does not dramatically change the intensities on any array.

Z Data exported from BeadStudio/GenomeStudio may already be normalized, however we
recommend where possible analyzing the non-normalized intensities, which can be normal-
ized in R.

Z Recall that there are 6 samples per WG-6 BeadChip. Boxplots allow within-BeadChip
trends, such as intensity gradients from top to bottom of the chip to be assessed. Differences
between BeadChips hybridized at different times may also be expected.

Z The neqc function is also able to accept a matrix as an argument, rather than the limma
EListRaw class. Therefore users who might have read the data using lumi or processed bead-
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level data with beadarray (as per section 1) will still be able to use this processing method.
However, the status, negctrl and regular arguments will need to be set appropriately.
The beadarray package includes neqc as an option in its normaliseIllumina function.


 When applying quantile normalization, it is assumed that the distribution in signal should
be the same from each array. This assumption may be unreasonable in some experiments,
and should be carefully checked with diagnostic plots.

Dealing with batch effects

Multidimensional scaling (MDS), assesses sample similarity based on pair-wise distances be-
tween samples. This dimension reduction technique uses the top 500 most variable genes
between each pair of samples to calculate a matrix of Euclidean distances which are used to
generate a 2 dimensional plot. Ideally, samples should separate based on biological variables
(RNA source, sex, treatment, etc.), but often technical effects (such as samples processed to-
gether on the same BeadChip) may dominate. Principal component analysis (PCA) is another
dimension reduction technique frequently applied to microarray data.

Use Case: Generate a multidimensional scaling (MDS) plot of the data using the plotMDS func-
tion. Assess whether the samples cluster together by RNA source.

1 > plotMDS(maqc.norm$E)

2� In this experiment, the first dimension separates the UHRR samples from the Brain Ref-
erence samples. The second dimension separates replicate Brain Reference samples, indicat-
ing that these are less consistent than the UHRR samples. The scale for dimension 2 is much
reduced compared to dimension 1, indicating that the underlying biological differences be-
tween the two RNA sources explains most of the between sample variation.

Z The plotMDS function accepts a matrix as an argument so could be used on the expres-
sion matrix of an ExpressionSetIllumina object, extracted using the exprs function.

Filtering based on probe annotation

Filtering non-responding probes from further analysis can improve the power to detect differ-
ential expression. One way of achieving this is to remove probes whose probe sequence has
undesirable properties. Annotation quality information is available from the platform specific
annotation packages, which are discussed in more detail later.
The illuminaHumanv2.db annotation package provides access to the reannotation information
provided by Barbosa-Morais et al. [10]. In this paper, a scoring system was defined to quantify
the reliability of each probe based on its 50 base sequence. These mappings are based on the
probe sequence and not the RefSeq ID, as for the standard annotation packages and can give
extra criteria for interpreting the results. For instance, probes with multiple genomic matches,
or matches to non-transcribed genomic locations are likely to be unreliable. This information
can be used as a basis for filtering promiscuous or un-informative probes from further analysis,
as shown above.
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Four basic annotation quality categories (‘Perfect’, ‘Good’, ‘Bad’ and ‘No match’) are defined
and have been shown to correlate with expression level and measures of differential expression.
We recommend removing probes assigned a ‘Bad’ or ‘No match’ quality score after normal-
ization. This approach is similar to the common practice of removing lowly-expressed probes,
but with the additional benefit of discarding probes with a high expression level caused by
non-specific hybridization.
The illuminaHumanv2.db package is an example of a Bioconductor annotation package built
using infrastructure within the AnnotationDBi package. More detailed descriptions of how to
access data within annotation packages (and how it is stored) is given with the AnnotationDbi
package. Essentially, each annotation package comprises a database of mappings between a
defined set of microarray identifiers and genomic properties of interest. However, the user of
such packages does not need to know the details of the database scheme as convenient wrapper
functions are provided.

Use Case: Retrieve quality information from the Human v2 annotation package and verify that
probes annotated as ‘Bad’ or ‘No match’ generally have lower signal. Exclude such probes from
further analysis.

1 > library(illuminaHumanv2.db)

2 > illuminaHumanv2 ()

3 > ids <- as.character(rownames(maqc.norm))

4 > ids2 <- unlist(mget(ids , revmap(illuminaHumanv2ARRAYADDRESS),

5 + ifnotfound = NA))

6 > qual <- unlist(mget(ids2 , illuminaHumanv2PROBEQUALITY ,

7 + ifnotfound = NA))

8 > table(qual)

9 > AveSignal = rowMeans(maqc.norm$E)

10 > boxplot(AveSignal ~ qual)

11 > rem <- qual == "No match" | qual == "Bad"

12 > maqc.norm.filt <- maqc.norm[!rem , ]

13 > dim(maqc.norm)

14 > dim(maqc.norm.filt)

All mappings available in the illuminaHumanv2.db can be listed by the illuminaHumanv2 func-
tion. The default keys for each mapping are Illumina IDs that have the prefix ILMN. As the
row names in the maqc.norm object are numeric ArrayAddressIDs we first have to convert
them. This is achieved by use of the revmap function which reverses the direction of standard
mapping from Illumina ID to ArrayAddressID. The mget function can then be used to query
the probe quality for our new IDs and return the result as a list, which we then convert to a
vector. The rowMeans is a base function to calculate the mean for each row in a matrix. We
then make a boxplot of the average signal using probe quality as a factor.

2� The output of illuminaHumanv2() lists all mappings available in the package and these
are divided into two sections. Firstly there are mappings that use the RefSeq ID assigned
to each probe to map to genomic properties, and secondly there are mappings based on the
probe sequence itself using the procedure described by Barbosa-Morais et al. [10].
You should see that the expression level of the probes annotated as ‘No match’ or ‘Bad’
are generally lower than other categories. After applying this filtering step, we are left with
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31,304 probes (out of a possible 48,701 regular probes) for further analysis.

Z The packages used to annotate Illumina BeadArrays have a very simple convention which
is illumina followed by an organism name, followed by annotation version number. Hence,
the above code could be executed for a Humanv3 array by simply replacing v2 with v3.

library(illuminaHumanv3.db)

illuminaHumanv3()

###...

ids2 <- unlist(mget(ids, revmap(illuminaHumanv3ARRAYADDRESS), ifnotfound=NA))

##etc....

You may notice a few outliers in the ‘Bad’ category that have consistently high expression.
Some strategies for probe filtering would retain these probes in the analysis, so it is worth
considering whether they are of value to an analysis.

Use Case: Investigate any IDs that have high expression despite being classed as ‘Bad’.

1 > queryIDs <- names(which(qual == "Bad" & AveSignal > 12))

2 > unlist(mget(queryIDs , illuminaHumanv2REPEATMASK ))

3 > unlist(mget(queryIDs , illuminaHumanv2SECONDMATCHES ))

4 > mget("ILMN_1692145", illuminaHumanv2PROBESEQUENCE)

2� You should see that probes annotated as ‘Bad’ hybridize to multiple places in the genome
and often contain repetitive sequences; making their inclusion in the analysis questionable.
The probe sequences themselves can be retrieved and subjected to manual BLAT search (e.g.
using the UCSC genome browser). The above example (ILMN 1692145) will return many
matches.

Other data visualisation

Although we will concentrate on a differential expression analysis, there are many other com-
mon analysis tasks that could be performed once a normalized expression matrix is available.

Use Case: Pick a set of highly-variable probes and cluster the samples.

1 > IQR <- apply(maqc.norm.filt$E, 1, IQR , na.rm = TRUE)

2 > topVar <- order(IQR , decreasing = TRUE )[1:500]

3 > d <- dist(t(maqc.norm.filt$E[topVar , ]))

4 > plot(hclust(d))

We calculate the interquartile range (IQR) of each probe across all samples and then order to
find the 500 (an arbitrary number) most variable. These probes are then used to cluster the
data in a standard way.

Use Case: Make a heatmap to show the differences between the groups.
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1 > heatmap(maqc.norm.filt$E[topVar , ])


 Not all datasets will show such large differences between biological groups!

Differential expression analysis

The differential expression methods available in the limma package can be used to identify
differentially expressed genes. The functions lmFit, contrasts.fit eBayes can be applied to
the normalized and filtered data.

Use Case: Fit a linear model to summarize the values from replicate arrays and compare UHRR
with Brain Reference by setting up a contrast between these samples. Assess array quality using
empirical array weights and incorporate these in the final linear model. Is there strong evidence of
differential expression between these samples?

1 > rna <- factor(rep(c("UHRR", "Brain"), each = 3))

2 > design <- model.matrix(~0 + rna)

3 > colnames(design) <- levels(rna)

4 > aw <- arrayWeights(maqc.norm.filt , design)

5 > aw

6 > fit <- lmFit(maqc.norm.filt , design , weights = aw)

7 > contrasts <- makeContrasts(UHRR - Brain , levels = design)

8 > contr.fit <- eBayes(contrasts.fit(fit , contrasts ))

9 > topTable(contr.fit , coef = 1)

10 > par(mfrow = c(1, 2))

11 > volcanoplot(contr.fit , main = "UHRR - Brain")

12 > smoothScatter(contr.fit$Amean , contr.fit$coef , xlab = "average intensity",

13 + ylab = "log -ratio")

14 > abline(h = 0, col = 2, lty = 2)

The code above shows how to set up a design matrix for this experiment to combine the data
from the UHRR and Brain Reference replicates to give one value per condition. Empirical
array quality weights [11] can be used to measure the relative reliability of each array. A
variance is estimated for each array by the arrayWeights function which measures how well
the expression values from each array follow the linear model. These variances are converted
to relative weights which can then be used in the linear model to down-weight observations
from less reliable arrays which improves power to detect differential expression.
We then define a contrast comparing UHRR to Brain Reference and calculate moderated t-
statistics with empirical Bayes’ shrinkage of the sample variances.
For more information about the lmFit, contrasts.fit and eBayes functions, refer to the
limma documentation.

2� The array weights are lowest for the first and second Brain Reference samples, which
means the observations from these samples will be down-weighted slightly in the linear model
analysis. You will recall that the Brain Reference samples were less consistent than the UHRR
samples in the MDS plot (the second dimension separated out different replicate Brain Ref-
erence samples). The UHRR and Brain Reference RNA samples are very different and we
find many differentially expressed genes between these two conditions in our analysis.

29



Z The lmFit function is able to accept a matrix as well as a limma object. Hence, users
with summarised bead-level data (as created in section 1) can also use this function after
extracting the expression matrix using the exprs function. The code would look something
like.

fit <- lmFit(exprs(datasumm), design, weights=aw)

Annotation

Annotating the results of a differential expression analysis

The topTable function displays the results of the empirical Bayes analysis alongside the an-
notation assigned by Illumina to each probe in the linear model fit. Often this will not provide
sufficient information to infer biological meaning from the results. Within Bioconductor, an-
notation packages are available for each of the major Illumina expression array platforms that
map the probe sequences designed by Illumina to functional information useful for downstream
analysis. As before, the illuminaHumanv2.db package can be used for the arrays in this example
dataset.

Use Case: Use the appropriate annotation package to annotate our differential expression analy-
sis. Include the genome position, RefSeq ID, Entrez Gene ID, Gene symbol and Gene name infor-
mation. Write the results from this analysis out to file.

1 > library(illuminaHumanv2.db)

2 > illuminaHumanv2 ()

3 > ids <- as.character(contr.fit$genes$ProbeID)

4 > ids2 <- unlist(mget(ids , revmap(illuminaHumanv2ARRAYADDRESS),

5 + ifnotfound = NA))

6 > chr <- mget(ids2 , illuminaHumanv2CHR , ifnotfound = NA)

7 > cytoband <- mget(ids2 , illuminaHumanv2MAP , ifnotfound = NA)

8 > refseq <- mget(ids2 , illuminaHumanv2REFSEQ , ifnotfound = NA)

9 > entrezid <- mget(ids2 , illuminaHumanv2ENTREZID , ifnotfound = NA)

10 > symbol <- mget(ids2 , illuminaHumanv2SYMBOL , ifnotfound = NA)

11 > genename <- mget(ids2 , illuminaHumanv2GENENAME , ifnotfound = NA)

12 > anno <- data.frame(Ill_ID = ids2 , Chr = as.character(chr),

13 + Cytoband = as.character(cytoband), RefSeq = as.character(refseq),

14 + EntrezID = as.numeric(entrezid), Symbol = as.character(symbol),

15 + Name = as.character(genename ))

16 > contr.fit$genes <- anno

17 > topTable(contr.fit)

18 > write.fit(contr.fit , file = "maqcresultsv2.txt")

Other useful applications of annotation packages

We now give a few brief example use cases that we have encountered in our own analyses.

Use Case: Retrieve the Illumina Humanv2 IDs that are part of the cell cycle according to GO
(GO:0007049) or KEGG (04110)
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1 > cellCycleProbesGO <- mget("GO :0007049", illuminaHumanv2GO2PROBE)

2 > cellCycleProbesKEGG <- mget("04110", illuminaHumanv2PATH2PROBE)

Use Case: Retrieve the Illumina Humanv2 IDs representing the ERBB2 oncogene. Which probe
seems to be most appropriate for analysis?

1 > queryIDs <- mget("ERBB2", revmap(illuminaHumanv2SYMBOL ))

2 > mget("ERBB2", revmap(illuminaHumanv2SYMBOL ))

3 > mget(unlist(queryIDs), illuminaHumanv2PROBEQUALITY)

The illuminaHumanv2SYMBOL mapping is defined to map Illumina IDs to probe symbol, so if
we want to go the opposite way, we have to use the revmap function.

2� There are three probes on the illuminaHumanv2 platform for ERBB2. All three are classed
as Perfect, although only one is located at the 3’ end of the gene.

Use Case: Calculate the GC content of all Humanv2 probes and plot a histogram.

We will illustrate this use case using the Biostrings package. If you do not have this package
you can install it in the usual way.

1 > if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

2 > BiocManager :: install("Biostrings")

1 > require("Biostrings")

2 > probeseqs <- unlist(as.list(illuminaHumanv2PROBESEQUENCE ))

3 > GC = vector(length = length(probeseqs ))

4 > ss <- BStringSet(probeseqs[which(!is.na(probeseqs ))])

5 > GC[which(!is.na(probeseqs ))] = letterFrequency(ss, letters = "GC")

6 > hist(GC/50, main = "GC proportion")

This code requires the Bioconductor Biostrings package which implements efficient string op-
erations. The as.list(illuminaHumanv2PROBESEQUENCE) command is simply a shortcut to
return the probe seqeunce for all mapped keys. We then convert the sequences into a Biostrings
class, on which we can use the letterFrequency function to give the desired result.

Use Case: Convert the Humanv2 probe locations into a RangedData object.

We will illustrate this use case using the GenomicRanges package. If you do not have this
package you can install it in the usual way.

1 > if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

2 > BiocManager :: install("GenomicRanges")

1 > require("GenomicRanges")

2 > allLocs <- unlist(as.list(illuminaHumanv2GENOMICLOCATION ))

3 > chrs <- unlist(lapply(allLocs , function(x) strsplit(as.character(x),

4 + ":")[[1]][1]))

5 > spos <- as.numeric(unlist(lapply(allLocs , function(x) strsplit(as.character(x),

6 + ":")[[1]][2])))
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7 > epos <- as.numeric(unlist(lapply(allLocs , function(x) strsplit(as.character(x),

8 + ":")[[1]][3])))

9 > strand <- substr(unlist(lapply(allLocs , function(x) strsplit(as.character(x),

10 + ":")[[1]][4])) , 1, 1)

11 > validPos <- !is.na(spos)

12 > Humanv2RD <- GRanges(seqnames = chrs[validPos], ranges = IRanges(start = spos[validPos],

13 + end = epos[validPos]), names = names(allLocs )[ validPos],

14 + strand = strand[validPos ])

Again we retrieve all genomic locations using the unlist(as.list(..) )trick. The location
of each probe is encoded as a string with the chromosome, start and end separated by a :

character. We can use the base strsplit function to decompose this string within an lapply

to process all sequences at once. The RangedData object can be created now, although we add
a check to make sure that no NA values are passed.

Use Case: Find all Humanv2 probes located on chromsome 8 between bases 28,800,001 and
36,500,000. What gene symbols do they target?

1 > query <- IRanges(start = 28800001 , end = 36500000)

2 > olaps <- findOverlaps(Humanv2RD , GRanges(ranges = query ,

3 + seqnames = "chr8"))

4 > matchingProbes <- as.matrix(olaps)[, 1]

5 > Humanv2RD[matchingProbes , ]

6 > Humanv2RD$names[matchingProbes]

7 > unlist(mget(Humanv2RD$names[matchingProbes], illuminaHumanv2SYMBOL ))

This example code uses functions from the IRanges package, so users wanting a deeper un-
derstanding of the commands should consult the documentation for that package, and the
appropriate help files. Essentially, we define a query region using the desired chromosome,
start and end values. The findOverlaps function will then find regions on chromosome 8 of
the Humanv2RD object that overlap with the query. The indices of the matching probes are
given in the matchMatrix slot, which can be used to subset the Humanv2 Ranges.

What next?

The results of a differential expression analysis are often not the end-point of an analysis, and
there is an increasing desire to relate findings to biological function. Although this is beyond
the scope of this vignette, we will give a brief example of how a Gene Ontology analysis could
be performed within Bioconductor. There is a wide range of online tools can perform similar
analyses, of which DAVID and Genetrail seem to be the most popular.

Use Case: Using GOstats find over-represented GO terms amongst the probes that show evi-
dence for differential expression.

We will illustrate this use case using the GOstats package. If you do not have this package you
can install it in the usual way.

1 > if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

2 > BiocManager :: install("GOstats")
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1 > require("GOstats")

2 > universeIds <- anno$EntrezID

3 > dTests <- decideTests(contr.fit)

4 > selectedEntrezIds <- anno$EntrezID[dTests == 1]

5 > params = new("GOHyperGParams", geneIds = selectedEntrezIds ,

6 + universeGeneIds = universeIds , annotation = "illuminaHumanv2",

7 + ontology = "BP", pvalueCutoff = 0.05, conditional = FALSE ,

8 + testDirection = "over")

9 > hgOver = hyperGTest(params)

10 > summary(hgOver )[1:10 , ]

The decideTests function is useful for selecting probes that show evidence for differential
expression after correcting for multiple testing. We also have to define a universe of all possible
Entrez IDs in the dataset, and Entrez IDs that are significant. The GOstats package will
then map the Entrez IDs to GO terms (for both universe and significant probes) and use a
hypergeometric test to see if any GO terms appear more often in the significant list than we
would expect by chance. See the vignette of the GOstats package for more details.
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3 Analysis of public data using GEOquery

In this section we show how to retrieve an Illumina MAQC dataset (Human WG-6 version
1) from the Gene Expression Omnibus database (GEO) using the GEOquery package [12].
The GEO database is a public repository supporting MIAME-compliant data submissions of
microarray and sequence-based experiments.

Use Case: Read in the MAQC submitted data [1] from the Illumina platform using the getGEO
function. Extract information about the site each sample was prepared at, and the RNA sample
hybridized. Make a boxplot of the intensities, color-coded by site to look for systematic differ-
ences between labs.

1 > library(GEOquery)

2 > library(limma)

3 > library(illuminaHumanv1.db)

4 > Sys.setenv(VROOM_CONNECTION_SIZE = 256000)

5 > gse <- getGEO(GEO = "GSE5350")[["GSE5350 -GPL2507_series_matrix.txt.gz"]]

6 > dim(gse)

7 > exprs(gse)[1:5 , 1:2]

8 > samples <- as.character(pData(gse)[, "title"])

9 > sites <- as.numeric(substr(samples , 10, 10))

10 > shortlabels <- substr(samples , 12, 13)

11 > rnasource <- pData(gse)[, "source_name_ch1"]

12 > levels(rnasource) <- c("UHRR", "Brain", "UHRR75", "UHRR25")

13 > boxplot(log2(exprs(gse)), col = sites + 1, names = shortlabels ,

14 + las = 2, cex.names = 0.5, ylab = expression(log [2]( intensity)),

15 + outline = FALSE , ylim = c(3, 10), main = "Before batch correction")

Z Data deposited in the GEO database may be either raw or normalized. This preprocess-
ing information is annotated in the database entry, and is accessible by typing
pData(gse)$data_processing in this example. Boxplots of the data can also be used to see
whether normalization has taken place.

2� This dataset consists of 59 arrays, each of which contains 47,293 probes. Samples were
processed and hybridized in 3 different labs (see the sites vector), and subject to cubic
spline normalization which appears to have been applied separately to the data from each
site.

Z Microarray data deposited in ArrayExpress, the other major public database of high-
throughput genomics experiments, can be imported into R using the ArrayExpress package
[13].


 If the above code does not work due to a network error, the same dataset, albeit with fewer
replicates, may be obtained from an existing Bioconductor package named MAQCsubsetILM.

1 > if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

2 > BiocManager :: install("MAQCsubsetILM")

3 > library(MAQCsubsetILM)

4 > data(refA)

5 > data(refB)
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6 > data(refC)

7 > data(refD)

8 > gse = combine(refA , refB , refC , refD)

9 > sites = pData(gse)[, 2]

10 > shortlabels = substr(sampleNames(gse), 7, 8)

11 > rnasource = pData(gse)[, 3]

12 > levels(rnasource) = c("UHRR", "Brain", "UHRR75", "UHRR25")

13 > boxplot(log2(exprs(gse)), col = sites + 1, names = shortlabels ,

14 + las = 2, cex.names = 0.5, ylab = expression(log [2]( intensity)),

15 + outline = FALSE , ylim = c(3, 10), main = "Before batch correction")

Use Case: Remove any differences between labs using the removeBatchEffect function and
make a boxplot and MDS plot of the corrected data to assess the effectiveness of this step. Next
filter out probes with poor annotation and perform a differential expression analysis between the
UHRR and Brain Reference samples. Annotate the results with the same information obtained in
section 2 (genome position, RefSeq ID, Entrez Gene ID, Gene symbol and Gene name) with an
appropriate annotation package. Write the results out to file.

1 > gse.batchcorrect <- removeBatchEffect(log2(exprs(gse)),

2 + batch = sites)

3 > par(mfrow = c(1, 2), oma = c(1, 0.5, 0.2, 0.1))

4 > boxplot(gse.batchcorrect , col = sites + 1, names = shortlabels ,

5 + las = 2, cex.names = 0.5, ylab = expression(log [2]( intensity)),

6 + outline = FALSE , ylim = c(3, 10), main = "After batch correction")

7 > plotMDS(gse.batchcorrect , labels = shortlabels , col = sites +

8 + 1, main = "MDS plot")

9 > ids3 <- featureNames(gse)

10 > qual2 <- unlist(mget(ids3 , illuminaHumanv1PROBEQUALITY ,

11 + ifnotfound = NA))

12 > table(qual2)

13 > rem2 <- qual2 == "No match" | qual2 == "Bad" | is.na(qual2)

14 > gse.batchcorrect.filt <- gse.batchcorrect[!rem2 , ]

15 > dim(gse.batchcorrect)

16 > dim(gse.batchcorrect.filt)

17 > design2 <- model.matrix(~0 + rnasource)

18 > colnames(design2) <- levels(rnasource)

19 > aw2 <- arrayWeights(gse.batchcorrect.filt , design2)

20 > fit2 <- lmFit(gse.batchcorrect.filt , design2 , weights = aw2)

21 > contrasts2 <- makeContrasts(UHRR - Brain , levels = design2)

22 > contr.fit2 <- eBayes(contrasts.fit(fit2 , contrasts2 ))

23 > topTable(contr.fit2 , coef = 1)

24 > volcanoplot(contr.fit2 , main = "UHRR - Brain")

25 > ids4 <- rownames(gse.batchcorrect.filt)

26 > chr2 <- mget(ids4 , illuminaHumanv1CHR , ifnotfound = NA)

27 > chrloc2 <- mget(ids4 , illuminaHumanv1CHRLOC , ifnotfound = NA)

28 > refseq2 <- mget(ids4 , illuminaHumanv1REFSEQ , ifnotfound = NA)

29 > entrezid2 <- mget(ids4 , illuminaHumanv1ENTREZID , ifnotfound = NA)

30 > symbols2 <- mget(ids4 , illuminaHumanv1SYMBOL , ifnotfound = NA)

31 > genename2 <- mget(ids4 , illuminaHumanv1GENENAME , ifnotfound = NA)

32 > anno2 <- data.frame(Ill_ID = ids4 , Chr = as.character(chr2),

33 + Loc = as.character(chrloc2), RefSeq = as.character(refseq2),

34 + Symbol = as.character(symbols2), Name = as.character(genename2),

35 + EntrezID = as.numeric(entrezid2 ))

35



36 > contr.fit2$genes <- anno2

37 > write.fit(contr.fit2 , file = "maqcresultsv1.txt")

2� The batch correction procedure equalizes the mean expression level from each lab, which
removes the differences that were evident in the earlier boxplot. The MDS plot shows that
samples separate by RNA source, with the first dimension separating the pure samples (UHRR
(A) and Brain Reference (B)) from each other, and the second dimension separating the
pure samples (A and B) from the mixture samples (75% UHRR:25% Brain Reference (C)
and 25% UHRR:75% Brain Reference (D)). After filtering out the probes with poor annota-
tion, we are left with 25,797 probes. As we saw in the Asuragen MAQC dataset, there is a
great deal of differential expression between the UHRR and Brain Reference samples. Hav-
ing a greater number of replicate samples (15 each for UHRR and Brain Reference) leads to
greater statistical significance for this comparison relative to the Asuragen dataset, which
had just 3 replicates for each RNA source.

Combining data from different BeadChip versions

In this section we illustrate how to combine data from different BeadChip versions from the
same species, using the GEO MAQC dataset (Human version 1) and the Asuragen MAQC
dataset (Human version 2). The approach taken in this example can be used to combine data
from different microarray platforms as well.

Use Case: Use Entrez Gene identifiers to match genes from different BeadChip versions. Make
a data frame which includes fold-changes between UHRR and Brain Reference samples for both
datasets for the genes which could be matched between platforms and plot the log-fold-changes.
Does expression agree between platforms?

1 > z <- contr.fit[!is.na(contr.fit$genes$EntrezID), ]

2 > z <- z[order(z$genes$EntrezID), ]

3 > f <- factor(z$genes$EntrezID)

4 > sel.unique <- tapply(z$Amean , f, function(x) x == max(x))

5 > sel.unique <- unlist(sel.unique)

6 > contr.fit.unique <- z[sel.unique , ]

7 > z <- contr.fit2[!is.na(contr.fit2$genes$EntrezID), ]

8 > z <- z[order(z$genes$EntrezID), ]

9 > f <- factor(z$genes$EntrezID)

10 > sel.unique <- tapply(z$Amean , f, function(x) x == max(x))

11 > sel.unique <- unlist(sel.unique)

12 > contr.fit2.unique <- z[sel.unique , ]

13 > m <- match(contr.fit.unique$genes$EntrezID , contr.fit2.unique$genes$EntrezID)

14 > contr.fit.common <- contr.fit.unique[!is.na(m), ]

15 > contr.fit2.common <- contr.fit2.unique[m[!is.na(m)],

16 + ]

17 > lfc <- data.frame(lfc_version1 = contr.fit2.common$coef[,

18 + 1], lfc_version2 = contr.fit.common$coef[, 1])

19 > dim(lfc)

20 > options(digits = 2)

21 > lfc[1:10, ]

22 > plot(lfc[, 1], lfc[, 2], xlab = "version 1", ylab = "version 2")

23 > abline(0, 1, col = 2)
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2� Even though the probes were redesigned between versions 1 and 2 of the Human gene
expression BeadChip, we see good concordance between the log-ratios from each dataset.

Z A representative probe was selected for each gene on each platform before the two datasets
could be combined. In this example, the probe with the largest average intensity among all
the probes belonging to the same gene was selected from each version.

Use Case: (Advanced) Compare the version 1 and 2 results with those obtained from the Hu-
man HT-12 version 3 dataset analyzed earlier in this tutorial. You will first need to between-array
normalize the HT-12 data, and may find it useful to filter poorly annotated probes and down-
weight observations for less reliable arrays identified during the quality assessment process. Dif-
ferential expression can be assessed using linear modelling and contrasts as previously shown. You
will then need to annotate the probes using Entrez Gene IDs. How many probes can be matched
between all 3 platforms? How well does the version 3 data agree with data from earlier BeadChip
versions.

Z Example code for this final use case has not been provided. The reader should be able
to complete this exercise independently using knowledge gained from the previous examples
given in the vignette.

There are many other analysis tools available from R or Bioconductor that could be used for
downstream analysis on these data. For further details, see the relevant vignettes or help pages.

The version of R and the packages used to complete this tutorial are listed below. If you have
further questions about using any of the Bioconductor packages used in this tutorial, please
email the Bioconductor mailing list (bioconductor@stat.math.ethz.ch).

1 > sessionInfo ()

R version 4.3.0 RC (2023 -04 -13 r84269)

Platform: x86_64-pc -linux -gnu (64-bit)

Running under: Ubuntu 22.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs -3.17- bioc/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux -gnu/lapack/liblapack.so .3.10.0

locale:

[1] LC_CTYPE=en_US.UTF -8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF -8 LC_MESSAGES=en_US.UTF -8

[7] LC_PAPER=en_US.UTF -8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF -8 LC_IDENTIFICATION=C

time zone: America/New_York

tzcode source: system (glibc)
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attached base packages:

[1] stats4 stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] limma_3.56.0 GenomicRanges_1.52.0

[3] Biostrings_2.68.0 GenomeInfoDb_1.36.0

[5] XVector_0.40.0 illuminaHumanv3.db_1.26.0

[7] illuminaHumanv1.db_1.26.0 illuminaHumanv2.db_1.26.0

[9] org.Hs.eg.db_3.17.0 AnnotationDbi_1.62.0

[11] IRanges_2.34.0 S4Vectors_0.38.0

[13] GEOquery_2.68.0 beadarray_2.50.0

[15] hexbin_1.28.3 Biobase_2.60.0

[17] BiocGenerics_0.46.0

loaded via a namespace (and not attached ):

[1] KEGGREST_1.40.0 gtable_0.3.3

[3] ggplot2_3.4.2 lattice_0.21 -8

[5] tzdb_0.3.0 vctrs_0.6.2

[7] tools_4.3.0 bitops_1.0-7

[9] generics_0.1.3 curl_5.0.0

[11] tibble_3.2.1 fansi_1.0.4

[13] RSQLite_2.3.1 BeadDataPackR_1.52.0

[15] blob_1.2.4 R.oo_1.25.0

[17] pkgconfig_2.0.3 data.table_1.14.8

[19] lifecycle_1.0.3 GenomeInfoDbData_1.2.10

[21] compiler_4.3.0 stringr_1.5.0

[23] munsell_0.5.0 RCurl_1.98 -1.12

[25] pillar_1.9.0 crayon_1.5.2

[27] tidyr_1.3.0 R.utils_2.12.2

[29] openssl_2.0.6 cachem_1.0.7

[31] tidyselect_1.2.0 stringi_1.7.12

[33] dplyr_1.1.2 reshape2_1.4.4

[35] purrr_1.0.1 fastmap_1.1.1

[37] grid_4.3.0 colorspace_2.1-0

[39] cli_3.6.1 magrittr_2.0.3

[41] utf8_1.2.3 withr_2.5.0

[43] readr_2.1.4 scales_1.2.1

[45] bit64_4.0.5 httr_1.4.5

[47] bit_4.0.5 R.methodsS3_1.8.2

[49] askpass_1.1 png_0.1-8

[51] hms_1.1.3 memoise_2.0.1

[53] rlang_1.1.0 illuminaio_0.42.0

[55] Rcpp_1.0.10 glue_1.6.2

[57] DBI_1.1.3 xml2_1.3.3

[59] base64_2.0.1 R6_2.5.1

[61] plyr_1.8.8 zlibbioc_1.46.0
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